NONCOINCIDENCE INDEX OF MANIFOLDS

Michael Hoffman

Abstract

For a connected topological manifold M we define the noncoincidence index of M, a topological invariant reflecting the abundance of fixed-point-free self-maps of M. We give some theorems on noncoincidence index and compute the noncoincidence index of the homogeneous manifold $U(n) / H$, where H is conjugate to $U(1)^{k} \times U(n-k)$.

1. Introduction. Let M be a manifold (connected locally Euclidean Hausdorff space). We define the noncoincidence index of M, \#M, as follows. If M admits k fixed-point-free self-maps, no pair of which has a coincidence, set $\# M \geq k+1$. If $\# M \geq i$ for all i, put $\# M=\infty$; otherwise, $\# M$ is the greatest number i with $\# M \geq i$. (This definition is inspired by [5].)

Evidently a manifold has noncoincidence index 1 if and only if it has the fixed-point property. On the other hand, if a group G acts freely on M, then $\# M \geq \operatorname{card} G$ if G is finite and $\# M=\infty$ if G is infinite. In particular, any connected nontrivial Lie group has noncoincidence index ∞.

As we see in §2, many manifolds besides Lie groups have noncoincidence index ∞. In $\S 3$ we show how the Lefschetz coincidence theorem can be used to put a finite upper bound on $\# M$ for certain compact oriented manifolds M. These results are used in $\S 4$ to compute the noncoincidence index of the homogeneous space $U(n) / H$ for H conjugate to $U(1)^{k} \times$ $U(n-k)$. Section 5 is devoted to proving a classification theorem for endomorphisms of $H^{*}(U(n) / H ; \mathbf{Q})$ which is needed in $\S 4$.

I thank my colleague W. Homer for greatly improving Lemma 5.3, and I thank A. Dold for some helpful observations.
2. Sufficient conditions for $\# M=\infty$. In this section we give some sufficient conditions for a manifold M to have $\# M=\infty$. The following result gives some easily checked homological conditions.

Theorem 2.1. Let M be a compact manifold. Then $\# M=\infty$ if either of the following is true:

1. M has nonzero first Betti number, or
2. $\chi(M)=0$.

Proof. For (1), see Corollary 5.1 of [5]. Now suppose $\chi(M)=0$. By [4], there is a map $s:[0,1] \times M \rightarrow M$ with $s(0, \cdot)=\mathrm{id}_{M}$ and $s(t, \cdot)$: $M \rightarrow M$ fixed-point-free for $t>0$. Let d be a metric for M, and set

$$
N(t)=\inf _{x \in M} d(s(t, x), x), \quad F(t)=\sup _{x \in M} d(s(t, x), x) .
$$

Then $F(t) \geq N(t)>0$ for $t>0$, and $F(t), N(t) \rightarrow 0$ as $t \rightarrow 0$. Choose $0<t_{k}<t_{k-1}<\cdots<t_{1} \leq 1$ so that $F\left(t_{t}\right)<N\left(t_{t-1}\right)$: then

$$
x \rightarrow s\left(t_{i}, x\right), \quad 1 \leq i \leq k,
$$

is a set of k fixed-point-free, noncoincident maps. Since we can do this for any $k, \# M=\infty$.

From the preceding result, we see that any odd-dimensional compact manifold has noncoincidence index ∞. It also follows that $\# M=\infty$ for any compact surface M, except $M=S^{2}$ and $M=\mathbf{R} P^{2}$ (of course \# $\mathbf{R} P^{2}$ $=1$, and we see in the next section that $\# S^{2}=2$).

The next result gives another useful sufficient condition for $\# M=\infty$.
Theorem 2.2. Let M be a compact manifold which admits a fixed-point-free nonsurjective self-map. Then $\# M=\infty$.

Proof. Let $f: M \rightarrow M$ be fixed-point-free and nonsurjective. By Theorem 1.11 of [3], there is a path field nonsingular on the image of f, i.e. a map $s:[0,1] \times M \rightarrow M$ such that $s(0, \cdot)=\operatorname{id}_{M}$ and $s(t, \cdot)$ fixes no point of $f(M)$ for $t>0$. Let d be a metric for M and take $\varepsilon>0$ so that $d(f(x), x) \geq \varepsilon$ for $x \in M$. Then there is some $t_{0}>0$ so that

$$
\sup _{x \in M} d(s(t, x), x)<\varepsilon
$$

for $t<t_{0}$. Now proceed as in the proof of 2.1; set

$$
N(t)=\inf _{x \in f(M)} d(s(t, x), x), \quad F(t)=\sup _{x \in f(M)} d(s(t, x), x)
$$

(note $f(M)$ is compact) and choose $0<t_{k}<t_{k-1}<\cdots<t_{1}<t_{0}$ such that $F\left(t_{i}\right)<N\left(t_{i-1}\right)$. Then there are k fixed-point-free noncoincident self-maps of M given by

$$
x \rightarrow s\left(t_{t}, f(x)\right), \quad 1 \leq i \leq k
$$

Since k is arbitrary, \#M $=\infty$.
3. The Lefschetz coincidence theorem. In this section we show how the Lefschetz coincidence theorem can be used to put a finite upper bound on the noncoincidence index in some cases. As we see in the next
section, such an upper bound combined with constructions of fixed-point-free maps often gives the noncoincidence index exactly.

Throughout this section, M will be a compact oriented n-manifold. We shall use the following version of the Lefschetz coincidence theorem: for a more general statement, see [9].

Theorem 3.1. For maps $f, g: M \rightarrow M$, set

$$
L(f, g)=\sum_{l=0}^{n}(-1)^{t} \operatorname{Tr}\left(\Phi_{l}^{-1} g_{*} \Phi_{l} f^{*}\right)
$$

where $\Phi_{i}: H^{i}(M ; \mathbf{Q}) \rightarrow H_{n-i}(M ; \mathbf{Q})$ is the Poincare duality isomorphism. If $L(f, g) \neq 0$, then f and g have a coincidence.

Remarks. 1. It is immediate that $L(f, \mathrm{id})=L(f)$, the ordinary Lefschetz number of f, so this result implies the Lefschetz fixed-point theorem for M.
2. It follows from properties of trace that $L(f, g)=(-1)^{n} L(g, f)$.

Let g be a self-map of M. We define the degree of g by $g_{*}[M]=$ $(\operatorname{deg} g)[M]$, where $[M] \in H_{n}(M ; \mathbf{Q})$ is the fundamental class of M. The following result is useful in computing the Lefschetz coincidence number.

Proposition 3.2. If g is a self-map of M with $\operatorname{deg} g \neq 0$, then g^{*} : $H^{*}(M ; \mathbf{Q}) \rightarrow H^{*}(M ; \mathbf{Q})$ has an inverse \bar{g}^{*} and

$$
L(f, g)=(\operatorname{deg} g) L\left(\bar{g}^{*} f^{*}\right)
$$

for any other self-map f of M.
Proof. If deg $g \neq 0$, it follows from consideration of Poincaré duality that g^{*} is injective. Then g^{*} is an automorphism, since each vector space $H^{i}(M ; \mathbf{Q})$ is finite-dimensional. For $u \in H^{i}(M ; \mathbf{Q})$,

$$
\begin{aligned}
\Phi_{1}^{-1} g_{*} \Phi_{\imath} f^{*}(u) & =\Phi_{i}^{-1} g_{*}\left(g^{*} \bar{g}^{*} f^{*}(u) \cap[M]\right) \\
& =\Phi_{t}^{-1}\left(\bar{g}^{*} f^{*}(u) \cap g_{*}[M]\right)=(\operatorname{deg} g) \bar{g}^{*} f^{*}(u)
\end{aligned}
$$

and the conclusion follows from the definition of $L(f, g)$.
By Theorem 3.1, any fixed-point-free self-map f of M must have $L(f)=0$, and any pair f, g of self-maps without a coincidence must have $L(f, g)=0$. We put

$$
L Z(M)=\left\{f^{*} \mid f: M \rightarrow M \text { and } L(f)=0\right\}
$$

and say $f^{*}, g^{*} \in L Z(M)$ are compatible if $L(f, g)=0$. If $\chi(M) \neq 0$ and $L Z(M)$ consists of automorphisms of $H^{*}(M ; \mathbf{Q})$, we call M L-rigid. We then have the following result.

Proposition 3.3. Suppose M is L-rigid. If $\# M \geq k+1$, then $L Z(M)$ contains a subset of k pairwise compatible elements.

Proof. By the hypothesis, there is a set S of k pairwise noncoincident fixed-point-free self-maps of M. Let $f, g \in S$. Then f^{*} and g^{*} are compatible elements of $L Z(M)$. We have $f^{*} \neq g^{*}$, since otherwise

$$
L(f, g)=L(f, f)=(\operatorname{deg} f) L(\mathrm{id})=(\operatorname{deg} f) \chi(M) \neq 0
$$

Thus, $\left\{f^{*} \mid f \in S\right\}$ is a set of k pairwise compatible elements of $L Z(M)$.
Remark. Note that if M is L-rigid, then any pair $f^{*}, g^{*} \in L Z(M)$ is compatible if and only if $L\left(\bar{g}^{*} f^{*}\right)=0$.

It follows immediately from 3.3 that

$$
\begin{equation*}
\# M \leq \operatorname{card} L Z(M)+1 \tag{1}
\end{equation*}
$$

when M is L-rigid and $L Z(M)$ is finite. Thus we have, e.g., $\# S^{2 n} \leq 2$ for any even sphere $S^{2 n}$ (and in fact $\# S^{2 n}=2$, since the antipodal map is fixed-point-free). As we see in the next section, however, 3.3 sometimes gives a sharper upper bound than (1).
4. Noncoincidence index of some flag manifolds. Let $F\left(1^{k}, n\right)$ denote the homogeneous space $U(n+k) / H$, where H is conjugate to $U(1)^{k} \times U(n)$. (We can assume $n=0$ or $n \geq 2$: in the former case we write $F\left(1^{k}\right)$ instead of $F\left(1^{k}, 0\right)$.) It is proved in [7] that $\# F\left(1^{k}\right)=k$!. In this section we compute $\# F\left(1^{k}, n\right)$ for all k and n.

The manifold $F\left(1^{k}, n\right)$ can be thought of as in the space of k-tuples of orthogonal lines in \mathbf{C}^{n+k}. Thus, there are maps

$$
\pi_{i}: F\left(1^{k}, n\right) \rightarrow \mathbf{C} P^{n+k-1}, \quad 1 \leq i \leq k
$$

given by picking out the i th line. If we let $t \in H^{2}\left(\mathbf{C} P^{n+k-1} ; \mathbf{Q}\right)$ be the first Chern class of the canonical line bundle over $\mathbf{C} P^{n+k-1}$ and put $t_{i}=\pi_{i}^{*}(t)$, we have the following description of $H^{*}\left(F\left(1^{k}, n\right) ; \mathbf{Q}\right)$ [1].

$$
H^{*}\left(F\left(1^{k}, n\right) ; \mathbf{Q}\right)=\mathbf{Q}\left[t_{1}, t_{2}, \ldots, t_{k}\right] /\left\{h_{i} \mid n+1 \leq i \leq n+k\right\}
$$

where h_{i} is the i th complete symmetric function in $t_{1}, t_{2}, \ldots, t_{k}$, i.e.

$$
h_{i}=\sum_{p_{1}+\cdots+p_{k}=i} t_{1}^{p_{1}} t_{2}^{p_{2}} \cdots t_{k}^{p_{k}} .
$$

There is a free action of the symmetric group Σ_{k} on $F\left(1^{k}, n\right)$ by permutation of lines, and this action evidently permutes the t_{i} in cohomology.

For any $m \in \mathbf{Q}$ and $\sigma \in \Sigma_{k}$, let h_{m}^{σ} denote the endomorphism of $H^{*}\left(F\left(1^{k}, n\right) ; \mathbf{Q}\right)$ given by

$$
h_{m}^{\sigma}\left(t_{i}\right)=m t_{\sigma(i)} .
$$

The following classification theorem for endomorphisms of $H^{*}\left(F\left(1^{k}, n\right) ; \mathbf{Q}\right)$ is proved in $\S 5$.

Theorem 4.1. Unless $k=2$ and n is a positive even number, all endomorphisms of $H^{*}\left(F\left(1^{k}, n\right) ; \mathbf{Q}\right)$ are of the form h_{m}^{σ} for some $m \in \mathbf{Q}$ and $\sigma \in \Sigma_{k}$. If $k=2$ and $n \geq 2$ is even, the only additional endomorphisms are

$$
t_{i} \rightarrow(-1)^{i} m t_{q}, \quad i=1,2,
$$

for $q \in\{1,2\}$ and $m \in \mathbf{Q}$.
The next result gives a formula for $L\left(h_{m}^{\sigma}\right)$.
Theorem 4.2. Let $\lambda_{1} \geq \lambda_{2} \geq \cdots$ be the cycle-type of $\sigma \in \Sigma_{k}$ (so λ_{1} is the length of the longest cycle in σ, λ_{2} is the length of the next longest cycle, etc.). Then $h_{m}^{\sigma}: H^{*}\left(F\left(1^{k}, n\right) ; \mathbf{Q}\right) \rightarrow H^{*}\left(F\left(1^{k}, n\right) ; \mathbf{Q}\right)$ has Lefschetz number

$$
\begin{equation*}
L\left(h_{m}^{\sigma}\right)=\frac{\left(1-m^{n+1}\right)\left(1-m^{n+2}\right) \cdots\left(1-m^{n+k}\right)}{\left(1-m^{\lambda_{1}}\right)\left(1-m^{\lambda_{2}}\right) \cdots} . \tag{1}
\end{equation*}
$$

Proof. For $h_{m}^{\sigma}: H^{*}\left(F\left(1^{k}, n\right) ; \mathbf{Q}\right) \rightarrow H^{*}\left(F\left(1^{k}, n\right) ; \mathbf{Q}\right)$, let $P_{k, n}(\sigma, m)$ denote $L\left(h_{m}^{\sigma}\right)$. From [7] we have the formula

$$
\begin{equation*}
P_{k, 0}(\sigma, m)=\frac{(1-m)\left(1-m^{2}\right) \cdots\left(1-m^{k}\right)}{\left(1-m^{\lambda_{1}}\right)\left(1-m^{\lambda_{2}}\right) \cdots} \tag{2}
\end{equation*}
$$

Now the spectral sequence of the fibration

$$
F\left(1^{k}\right) \rightarrow F\left(1^{k}, n\right) \rightarrow G_{k}\left(\mathbf{C}^{n+k}\right),
$$

where $G_{k}\left(\mathbf{C}^{n+k}\right)$ is the Grassmannian of k-planes in \mathbf{C}^{n+k}, collapses for degree reasons. Thus

$$
H^{*}\left(F\left(1^{k}, n\right) ; \mathbf{Q}\right) \cong H^{*}\left(F\left(1^{k}\right) ; \mathbf{Q}\right) \otimes H^{*}\left(G_{k}\left(\mathbf{C}^{n+k}\right) ; \mathbf{Q}\right)
$$

additively. Now $H^{*}\left(G_{k}\left(\mathbf{C}^{n+k}\right) ; \mathbf{Q}\right)$ can be regarded as the invariant subring of $H^{*}\left(F\left(1^{k}, n\right) ; \mathbf{Q}\right)$ under the Σ_{k}-action, and $H^{*}\left(F\left(1^{k}\right) ; \mathbf{Q}\right)$ is a quotient of $H^{*}\left(F\left(1^{k}, n\right) ; \mathbf{Q}\right)$ (the projection is the obvious map sending $t_{l} \in H^{2}\left(F\left(1^{k}, n\right) ; \mathbf{Q}\right)$ to $t_{l} \in H^{2}\left(F\left(1^{k}\right) ; \mathbf{Q}\right)$). Any endomorphism h_{m}^{σ} of
$H^{*}\left(F\left(1^{k}, n\right) ; \mathbf{Q}\right)$ restricts to the endomorphism of $H^{*}\left(G_{k}\left(\mathbf{C}^{n+k}\right) ; \mathbf{Q}\right)$ which multiplies dimension $2 i$ by m^{i}, and gives rise to the corresponding h_{m}^{σ} on $H^{*}\left(F\left(1^{k}\right) ; \mathbf{Q}\right)$. Since trace is multiplicative on tensor products,

$$
\begin{equation*}
P_{k, n}(\sigma, m)=P_{k, 0}(\sigma, m) \sum_{i \geq 0} m^{i} \operatorname{dim} H^{2 i}\left(G_{k}\left(\mathbf{C}^{n+k}\right) ; \mathbf{Q}\right) \tag{3}
\end{equation*}
$$

It is well known (see e.g. [1]) that

$$
\sum_{i \geq 0} m^{i} \operatorname{dim} H^{2 i}\left(G_{k}\left(\mathbf{C}^{n+k}\right) ; \mathbf{Q}\right)=\frac{\left(1-m^{n+1}\right)\left(1-m^{n+2}\right) \cdots\left(1-m^{n+k}\right)}{(1-m)\left(1-m^{2}\right) \cdots\left(1-m^{k}\right)}
$$

and this together with (2) and (3) implies the conclusion.
We can use Theorems 4.1 and 4.2 to show that many of the manifolds $F\left(1^{k}, n\right)$ are L-rigid.

Proposition 4.3. Suppose $k \neq 2$, n is odd, or $n=0$. Then $F\left(1^{k}, n\right)$ is L-rigid. Further, if Γ is the set of products of $[k / 2]$ disjoint transpositions in Σ_{k}, then

$$
L Z\left(F\left(1^{k}, n\right)\right)= \begin{cases}\left\{h_{1}^{\sigma} \mid \sigma \neq \mathrm{id}\right\} \cup\left\{h_{-1}^{\sigma} \mid \sigma \in \Sigma_{k}\right\}, & \text { kn odd } \\ \left\{h_{1}^{\sigma} \mid \sigma \neq \mathrm{id}\right\} \cup\left\{h_{-1}^{\sigma} \mid \sigma \notin \Gamma\right\}, & \text { kn even } .\end{cases}
$$

Proof. By 4.1, an element of $\operatorname{LZ}\left(F\left(1^{k}, n\right)\right)$ must be an endomorphism h_{m}^{σ} of $H^{*}\left(F\left(1^{k}, n\right) ; \mathbf{Q}\right)$ with $L\left(h_{m}^{\sigma}\right)=0$. The above list follows from consideration of (1) (it is easy to see that any $h_{m}^{\sigma}, m= \pm 1$, is induced by a self-map of $F\left(1^{k}, n\right)$). Now

$$
\chi\left(F\left(1^{k}, n\right)\right)=k!\binom{n+k}{k}
$$

and clearly h_{m}^{σ} is an automorphism for $m \neq 0$ (in fact $\operatorname{deg} h_{m}^{\sigma}=m^{d} \operatorname{sgn} \sigma$, where $d=\operatorname{dim}_{\mathbf{C}} F\left(1^{k}, n\right)$), so $F\left(1^{k}, n\right)$ is L-rigid.

Now we can give an upper bound for $\# F\left(1^{k}, n\right)$ when n and k satisfy the hypothesis of the preceding result.

Proposition 4.4. Suppose $k \neq 2$, n is odd, or $n=0$. Then $\# F\left(1^{k}, n\right)$ $\leq k!$ if $k n$ is even, and $\# F\left(1^{k}, n\right) \leq 2 k!$ if $k n$ is odd.

Proof. The statement about $\# F\left(1^{k}, n\right)$ for $k n$ odd follows immediately from 3.3, since $\operatorname{LZ}\left(F\left(1^{k}, n\right)\right)$ has $2 k!-1$ elements by 4.3. Again by 3.3 , to prove the statement about $\# F\left(1^{k}, n\right)$ for $k n$ even it suffices to show that any set of pairwise compatible elements of $L Z\left(F\left(1^{k}, n\right)\right)$ has at most $k!-1$ elements in this case. Suppose $k n$ even and let $S \subset L Z\left(F\left(1^{k}, n\right)\right)$ be a set of compatible elements. Let

$$
\begin{aligned}
H & =\left\{\sigma \in \Sigma_{k} \mid h_{1}^{\sigma} \in S\right\} \cup\{\mathrm{id}\} \\
K & =\left\{\sigma \in \Sigma_{k} \mid h_{-1}^{\sigma} \in S\right\}
\end{aligned}
$$

Then card $S=$ card $H+$ card $K-1$. Since

$$
L\left(h_{-1}^{\tau}, h_{1}^{\sigma}\right)=\left(\operatorname{deg} h_{1}^{\sigma}\right) L\left(h_{1}^{\sigma-1} h_{-1}^{\tau}\right)= \pm L\left(h_{-1}^{\sigma^{-1} \tau}\right)
$$

we must have $\sigma^{-1} \tau \notin \Gamma$ for $\tau \in K$ and $\sigma \in H$ (here Γ is as in 4.3). But then, if we take $\rho \in \Gamma$, we have $\sigma \rho \notin K$ for every $\sigma \in H$: hence card $H+$ card $K \leq k!$, and the conclusion follows.

Next we show that the inequalities of 4.4 are equalities. To do this, we construct fixed-point-free, noncoincident maps. For any even number $2 r$, define $J: \mathbf{C}^{2 r} \rightarrow \mathbf{C}^{2 r}$ by

$$
J\left(z_{1}, z_{2}, \ldots, z_{2 r-1}, z_{2 r}\right)=\left(-\bar{z}_{2}, \bar{z}_{1}, \ldots,-\bar{z}_{2 r}, \bar{z}_{2 r-1}\right) .
$$

Then J is a conjugate-linear map of $\mathbf{C}^{2 r}$ with $J^{2}=-$ id. Under the evident identification $\mathbf{C}^{2 r} \cong \mathbf{H}^{r}$, we can regard J as multiplication by the quaternion j. Any subspace of $\mathbf{C}^{2 r}$ invariant under J can be given the structure of a quaternionic vector space, and thus must be even-dimensional (cf. the proof of Theorem 1 of [6]). Further, if \langle,$\rangle denotes inner product,$

$$
\begin{equation*}
\langle J v, J w\rangle=\langle w, v\rangle \quad \text { for } v, w \in \mathbf{C}^{2 r} . \tag{4}
\end{equation*}
$$

Thus J preserves orthogonality.
ThEOREM 4.5. Unless $k=2$ and n is a positive even number,

$$
\# F\left(1^{k}, n\right)= \begin{cases}2 k!, & k n \text { odd } \\ k!, & \text { kn even } .\end{cases}
$$

Proof. Since there is a free Σ_{k}-action on $F\left(1^{k}, n\right)$ (i.e., permutation of lines), we have $\# F\left(1^{k}, n\right) \geq k!$; together with 4.4 , this disposes of the case $k n$ even. Now suppose $k n$ is odd. Then $n+k$ is even, and we have the map $J: \mathbf{C}^{n+k} \rightarrow \mathbf{C}^{n+k}$ defined above. Consider the $2 k!-1$ self-maps of $F\left(1^{k}, n\right)$ defined by

$$
\begin{equation*}
\left(l_{1}, l_{2}, \ldots, l_{k}\right) \rightarrow\left(l_{\pi(1)}, l_{\pi(2)}, \ldots, l_{\pi(k)}\right), \quad \pi \in \Sigma_{k}-\{\mathrm{id}\} \tag{5}
\end{equation*}
$$

and

$$
\begin{equation*}
\left(l_{1}, l_{2}, \ldots, l_{k}\right) \rightarrow\left(J l_{\pi(1)}, J l_{\pi(2)}, \ldots, J l_{\pi(k)}\right), \quad \pi \in \Sigma_{k} \tag{6}
\end{equation*}
$$

We claim these maps are fixed-point-free and pairwise noncoincident. Clearly the maps in (5) are fixed-point-free and pairwise noncoincident, and the maps in (6) are pairwise noncoincident. Suppose now we have a fixed point of a map in (6) or a coincidence between a map in (5) and one in (6), i.e., an element $\left(l_{1}, l_{2}, \ldots, l_{k}\right)$ of $F\left(1^{k}, n\right)$ with

$$
l_{\pi(i)}=J l_{\sigma(t)}, \quad 1 \leq i \leq k
$$

for some $\pi, \sigma \in \Sigma_{k}$. Then J fixes $l_{1} \oplus l_{2} \oplus \cdots \oplus l_{k}$. But this is impossible, since J cannot fix an odd-dimensional subspace of \mathbf{C}^{n+k}.

Finally, we dispose of the case $k=2$ and $n \geq 2$ even.
Theorem 4.6. If $n \geq 2$ is even, then $\# F\left(1^{2}, n\right)=\infty$.
Proof. Let $J: \mathbf{C}^{n+2} \rightarrow \mathbf{C}^{n+2}$ be as defined above. Note that for $v \in \mathbf{C}^{n+2}$,

$$
\langle J v, v\rangle=\left\langle J v, J^{2} v\right\rangle=-\langle J v, v\rangle
$$

by (4) above; thus $\langle J v, v\rangle=0$, and $J l$ is orthogonal to l for any line l. Define $\psi: F\left(1^{2}, n\right) \rightarrow F\left(1^{2}, n\right)$ by $\psi\left(l_{1}, l_{2}\right)=\left(J l_{1}, l_{1}\right)$: then ψ is fixed-point-free and nonsurjective, and the conclusion follows by 2.2.
5. Proof of the endomorphism theorem. This section is devoted to a proof of Theorem 4.1. We use the notation of the previous section.

Since $t_{i} \in H^{2}\left(F\left(1^{k}, n\right) ; \mathbf{Q}\right)$ is pulled back from $H^{2}\left(\mathbf{C} P^{n+k-1} ; \mathbf{Q}\right)$, we have $t_{i}^{n+k}=0$. The next result gives a converse: it is proved in [8] for $k \leq n$, and in [2] without restriction.

Theorem 5.1. If $u \in H^{2}\left(F\left(1^{k}, n\right) ; \mathbf{Q}\right)$ and $u^{n+k}=0$, then u is of the form at t_{i} for some $a \in \mathbf{Q}$ and $1 \leq i \leq k$.

Now suppose f is an endomorphism of $H^{*}\left(F\left(1^{k}, n\right) ; \mathbf{Q}\right)$. Then $f\left(t_{i}\right)^{n+k}=f\left(t_{i}^{n+k}\right)=0$ for $1 \leq i \leq k$, and it follows from 5.1 that

$$
f\left(t_{i}\right)=m_{i} t_{p(t)}, \quad 1 \leq i \leq k,
$$

for some function $p:\{1,2, \ldots, k\} \rightarrow\{1,2, \ldots, k\}$ and rational numbers m_{i}. We shall prove that p is a permutation and all the m_{i} are equal unless $k=2$ and n is even.

First we prove a technical lemma. The expression $h_{t}\left(x_{1}, x_{2}, \ldots, x_{r}\right)$ denotes the i th complete symmetric function in $x_{1}, x_{2}, \ldots, x_{r}$.

Lemma 5.2. Let $n \geq 0$ be an integer, $a_{1}, a_{2}, \ldots, a_{r}$ real numbers, and suppose

$$
h_{n+i}\left(a_{1}, a_{2}, \ldots, a_{r}\right)=0, \quad 1 \leq i \leq r-1 .
$$

Then unless $r=2$ and n is even, $a_{1}=a_{2}=\cdots=a_{r}=0$. If $r=2$ and n is even, $a_{2}=-a_{1}$.

Proof. Suppose first that $r=2$. Then we have

$$
\begin{equation*}
h_{n+1}\left(a_{1}, a_{2}\right)=a_{1}^{n+1}+a_{1}^{n} a_{2}+\cdots+a_{1} a_{2}^{n}+a_{2}^{n+1}=0 \tag{1}
\end{equation*}
$$

If $a_{1}=a_{2}$, this evidently implies $a_{1}=a_{2}=0$. If $a_{1} \neq a_{2}$, then (1) is

$$
\frac{a_{1}^{n+2}-a_{2}^{n+2}}{a_{1}-a_{2}}=0
$$

from which it follows that $a_{2}=-a_{1}$ and n is even.
Now suppose $r=3$. We have

$$
h_{n+1}\left(a_{1}, a_{2}, a_{3}\right)=h_{n+2}\left(a_{1}, a_{2}, a_{3}\right)=0
$$

Then from the relations

$$
\begin{aligned}
h_{n+2}\left(a_{1}, a_{2}, a_{3}\right)= & a_{1}^{n+2}+a_{1}^{n+1} h_{1}\left(a_{2}, a_{3}\right)+\cdots+a_{1} h_{n+1}\left(a_{2}, a_{3}\right) \\
& +h_{n+2}\left(a_{2}, a_{3}\right)
\end{aligned}
$$

and

$$
a_{1} h_{n+1}\left(a_{1}, a_{2}, a_{3}\right)=a_{1}^{n+2}+a_{1}^{n+1} h_{1}\left(a_{2}, a_{3}\right)+\cdots+a_{1} h_{n+1}\left(a_{2}, a_{3}\right)
$$

we get

$$
\begin{equation*}
h_{n+2}\left(a_{2}, a_{3}\right)=0 \tag{2}
\end{equation*}
$$

Similarly,

$$
\begin{equation*}
h_{n+2}\left(a_{1}, a_{3}\right)=0 \tag{3}
\end{equation*}
$$

and

$$
\begin{equation*}
h_{n+2}\left(a_{1}, a_{2}\right)=0 \tag{4}
\end{equation*}
$$

By the argument of the preceding paragraph, these equations imply $a_{1}=a_{2}=a_{3}=0$ unless n is odd. In this case, (2) gives $a_{3}=-a_{2}$, (4) gives $a_{2}=-a_{1}$, and (3) gives $a_{1}=-a_{3}$: but then $a_{1}=a_{2}=a_{3}=0$. It is now clear how to prove the result by induction for any $r>3$.

As noted in the previous section, $H^{*}\left(F\left(1^{k}, n\right) ; \mathbf{Q}\right)$ is the quotient of $\mathbf{Q}\left[t_{1}, \ldots, t_{k}\right]$ by the ideal generated by $R_{1}, R_{2}, \ldots, R_{k}$, where

$$
R_{\imath}=h_{n+i}\left(t_{1}, t_{2}, \ldots, t_{k}\right), \quad 1 \leq i \leq k
$$

For f to be a well-defined endomorphism of $H^{*}\left(F\left(1^{k}, n\right) ; \mathbf{Q}\right)$ there must be relations

$$
\begin{equation*}
f\left(R_{i}\right)=N_{i} R_{i}+\sum_{1 \leq|\alpha|<i} N_{l}^{\alpha} t^{\alpha} R_{l-|\alpha|}, \quad 1 \leq i \leq k \tag{5}
\end{equation*}
$$

in $\mathbf{Q}\left[t_{1}, \ldots, t_{k}\right]$, where the sum is over multi-indices $\alpha=\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{k}\right)$ with $|\alpha|=\alpha_{1}+\alpha_{2}+\cdots+\alpha_{k}$ and

$$
t^{\alpha}=t_{1}^{\alpha_{1}} t_{2}^{\alpha_{2}} \cdots t_{k}^{\alpha_{k}}
$$

Then we have the following result.

LEmma 5.3. If r of the elements $t_{1}, t_{2}, \ldots, t_{k}$ are missing from the image of f, then $f\left(R_{i}\right)=0$ in $\mathbf{Q}\left[t_{1}, \ldots, t_{k}\right]$ for $1 \leq i \leq r$.

Proof. Permuting the t_{i} if necessary, we can assume that $t_{1}, t_{2}, \ldots, t_{r}$ are missing from the image of f. Define $\pi: F\left(1^{k}, n\right) \rightarrow F\left(1^{k-r}, n+r\right)$ by

$$
\pi\left(l_{1}, l_{2}, \ldots, l_{k}\right)=\left(l_{r+1}, \ldots, l_{k}\right)
$$

Then π^{*} sends $t_{l} \in H^{2}\left(F\left(1^{k-r}, n+r\right) ; \mathbf{Q}\right)$ to $t_{r+i} \in H^{2}\left(F\left(1^{k}, n\right) ; \mathbf{Q}\right)$ for $1 \leq i \leq k-r$, and is injective since the spectral sequence of the fibration

$$
F\left(1^{r}, n\right) \rightarrow F\left(1^{k}, n\right) \xrightarrow{\pi} F\left(1^{k-r}, n+r\right)
$$

collapses for degree reasons. Now t_{1}, \ldots, t_{r} are missing from $\operatorname{im} f$, so $\operatorname{im} f \subset \operatorname{im} \pi^{*}$ in $H^{*}\left(F\left(1^{k}, n\right) ; \mathbf{Q}\right)$. Hence $f=\pi^{*} g$ for

$$
g=\left(\pi^{*}\right)^{-1} f: H^{*}\left(F\left(1^{k}, n\right) ; \mathbf{Q}\right) \rightarrow H^{*}\left(F\left(1^{k-r}, n+r\right) ; \mathbf{Q}\right)
$$

But the first nontrivial relation in $H^{*}\left(F\left(1^{k-r}, n+r\right) ; \mathbf{Q}\right)$ is in dimension $2(n+r+1)$, so $g\left(R_{l}\right)=0$ in $\mathbf{Q}\left[t_{1}, \ldots, t_{k-r}\right]$ for $1 \leq i \leq r$ and the conclusion follows.

Suppose $n \geq 2$. For each i from 1 to k, we define the weight of i to be the cardinality of $\left\{r \mid p(r)=i\right.$ and $\left.m_{r} \neq 0\right\}$, i.e., the number of t_{r} that f maps to t_{l} with nonzero coefficient. The following result is the key to the proof of Theorem 4.1.

Proposition 5.4. Let $n \geq 2$. Then i has weight at most 1 for $1 \leq i \leq k$ unless $k=2$ and n is even. If $k=2, n$ is even, and $q \in\{1,2\}$ has weight 2 , then f has the form

$$
f\left(t_{i}\right)=(-1)^{i} m t_{q}, \quad i=1,2
$$

Proof. Suppose q has weight $w>1$. Then at least $w-1$ of the t_{l} are missing from the image of f, and by 5.3

$$
\begin{equation*}
f\left(R_{i}\right)=0, \quad 1 \leq i \leq w-1 \tag{6}
\end{equation*}
$$

in $\mathbf{Q}\left[t_{1}, \ldots, t_{k}\right]$. We can assume $t_{1}, t_{2}, \ldots, t_{w}$ map to t_{q} with nonzero coefficient. Examine the coefficient of $t_{q}^{n+\iota}$ in (6) to get

$$
h_{\imath}\left(m_{1}, m_{2}, \ldots, m_{w}\right)=0, \quad 1 \leq i \leq w-1
$$

Then unless $w=2$ and n is even, $m_{1}=m_{2}=\cdots=m_{w}=0$ by 5.2 , a contradiction. If $w=2$ and n is even, 5.2 gives $m_{2}=-m_{1} \neq 0$. In this case, $f\left(R_{1}\right)=0$ and $f\left(R_{2}\right) \neq 0$ in $\mathbf{Q}\left[t_{1}, \ldots, t_{k}\right]$: but then no i can have weight 1 and no more than one t_{i} can be missing from the image of f, from which follows $k=2$.

Remark. The case $n=0$ is disposed of in [7], where it is proved that all endomorphisms of $H^{*}\left(F\left(1^{k}\right) ; \mathbf{Q}\right)$ have the form h_{m}^{σ}.

By the preceding result, the function p of $\{1,2, \ldots, k\}$ can be assumed a permutation if $k \neq 2$ or n is odd. To finish the proof of 4.1, we need only show all the m_{i} are equal in this case. Now in $f\left(R_{1}\right)$ the coefficient of t_{r}^{n+1} is m_{s}^{n+1}, where $p(s)=r$. The coefficient of t_{r}^{n+1} on the right-hand side of (5) (with $i=1$) is N_{1}. Thus $m_{s}^{n+1}=N_{1}$ for $1 \leq s \leq k$. For n even, this shows all the m_{s} are equal. For n odd, it is also necessary to inspect the coefficients of terms $t_{r}^{n} t_{s}, r \neq s$, in equation (5) with $i=1$.

References

[1] A. Borel, Sur la cohomologie des espaces fibrés principaux et des espaces homogènes de groupes de Lie compacts, Ann. of Math., 57 (1953), 115-207.
[2] S. A. Broughton, M. Hoffman and W. Homer, The height of two-dimensional cohomology classes of complex flag manifolds, Canad. Math. Bull., 26 (1983), 498-502.
[3] R. F. Brown, Path fields on manifolds, Trans. Amer. Math. Soc., 118 (1965), 180-191.
[4] R. F. Brown and E. Fadell, Nonsingular path fields on compact topological manifolds, Proc. Amer. Math. Soc., 16 (1965), 1342-1349.
[5] E. Fadell and L. Neuwirth, Configuration spaces, Math. Scand., 10 (1962), 111-118.
[6] H. Glover and W. Homer, Fixed points on flag manifolds, Pacific J. Math., 101 (1982), 303-306.
[7] M. Hoffman, On fixed point free maps of the complex flag manifold, Indiana U. Math. J., 33 (1984), 249-255.
[8] A. Liulevicius, Homotopy rigidity of linear actions: characters tell all, Bull. Amer. Math. Soc., 84 (1978), 213-221.
[9] J. Vick, Homology Theory, Academic Press, New York, 1973.
Received March 4, 1983 and in revised form April 29, 1983.

Ohio State University
Columbus, OH 43210
Current address: U. S. Naval Academy
Annapolis, MD 21402

