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NONCOINCIDENCE INDEX OF MANIFOLDS

MICHAEL HOFFMAN

For a connected topological manifold M we define the noncoinci-
dence index of M, a topological invariant reflecting the abundance of
fixed-point-free self-maps of A/. We give some theorems on noncoinci-
dence index and compute the noncoincidence index of the homogeneous
manifold U(n)/H, where H is conjugate to U(l)k X U(n - k).

1. Introduction. Let M be a manifold (connected locally Euclidean
Hausdorff space). We define the noncoincidence index of M, #M9 as
follows. If M admits k fixed-point-free self-maps, no pair of which has a
coincidence, set #M > k + 1. If # M > i for all /, put # M = oo; other-
wise, #M is the greatest number / with #M > i. (This definition is
inspired by [5].)

Evidently a manifold has noncoincidence index 1 if and only if it has
the fixed-point property. On the other hand, if a group G acts freely on M,
then #M > card G if G is finite and #M = oo if G is infinite. In
particular, any connected nontrivial Lie group has noncoincidence index
oo.

As we see in §2, many manifolds besides Lie groups have noncoinci-
dence index oo. In §3 we show how the Lefschetz coincidence theorem can
be used to put a finite upper bound on #M for certain compact oriented
manifolds M. These results are used in §4 to compute the noncoincidence
index of the homogeneous space U(n)/H for H conjugate to U(\)k X
U(n - k). Section 5 is devoted to proving a classification theorem for
endomorphisms of H*(U(n)/H\ Q) which is needed in §4.

I thank my colleague W. Homer for greatly improving Lemma 5.3,
and I thank A. Dold for some helpful observations.

2. Sufficient conditions for #M = oo. In this section we give some
sufficient conditions for a manifold M to have #M = oo. The following
result gives some easily checked homological conditions.

THEOREM 2.1. Let M be a compact manifold. Then #M = oo if either
of the following is true:

1. M has nonzero first Betti number, or
2.χ(M) = 0.
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Proof. For (1), see Corollary 5.1 of [5]. Now suppose χ(M) = 0. By
[4], there is a map s: [0,1] X M -> M with s(0, •) = idM and s(t, •):
M -> M fixed-point-free for t > 0. Let d be a metric for M, and set

= inf d(s(t, x), x), F(t) = sup </(,s(ί, x), x).

Then i^(0 > N(t) > 0 for ί > 0, and /•(*), # ( 0 -> 0 as ί -> 0. Choose
0 < ^ < **-i < ' ' " < *i < 1 so that JPC^) < #(/,_!): then

% -> .sί^, x), I < i < k,

is a set of k fixed-point-free, noncoincident maps. Since we can do this for
any A:, #M = oo.

From the preceding result, we see that any odd-dimensional compact
manifold has noncoincidence index oo. It also follows that # M = oo for
any compact surface M, except M = S2 and M = RP2 (of course # R P 2

= 1, and we see in the next section that # 5 2 = 2).
The next result gives another useful sufficient condition for # M = oo.

THEOREM 2.2. Let M be a compact manifold which admits a fixed-
point-free nonsurjective self-map. Then #M = oo.

Proof. Let/: M -> M be fixed-point-free and nonsurjective. By Theo-
rem 1.11 of [3], there is a path field nonsingular on the image of/, i.e. a
map s: [ 0 , l ] X M ^ M such that s(0, •) = idM and s(t, •) fixes no point
of f(M) for t > 0. Let d be a metric for M and take e > 0 so that
d(f(x), x) > ε for x e Λf. Then there is some ί0 > 0 so that

sup d(s(t, x), x) < ε

for / < tQ. Now proceed as in the proof of 2.1; set

N(t) = inf d{s(t,x),x), F(t) = sup d(>φ, x),
ef(M) x<=f(M)

(note /(Af) is compact) and choose 0 < tk < tk_λ < - < tλ < t0 such
that F(tt) < iV(r,-_!). Then there are k fixed-point-free noncoincident
self-maps of M given by

x ->s{tι9f(x))9 1 < i < k.

Since k is arbitrary, #Λf = oo.

3. The Lef schetz coincidence theorem. In this section we show how
the Lefschetz coincidence theorem can be used to put a finite upper
bound on the noncoincidence index in some cases. As we see in the next
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section, such an upper bound combined with constructions of fixed-
point-free maps often gives the noncoincidence index exactly.

Throughout this section, M will be a compact oriented ^-manifold.
We shall use the following version of the Lefschetz coincidence theorem:
for a more general statement, see [9].

THEOREM 3.1. For maps /, g: M -» M, set

L(f,g)= Σ(-l)"Tτ{Φ^Φ,r),
1 = 0

where Φz: H
ι(M\ Q) -> Hn_i(M\ Q) is the Poincare duality isomorphism. If

L(f9 g) Φ 0, then f and g have a coincidence.

REMARKS. 1. It is immediate that L(/,id) = L(/), the ordinary
Lefschetz number of /, so this result implies the Lefschetz fixed-point
theorem for M.

2. It follows from properties of trace that L(/, g) = (-l)"L(g, / ) .

Let g be a self-map of M. We define the degree of g by g*[M] =
(deg g)[M], where [M] e Hn(M; Q) is the fundamental class of Λf. The
following result is useful in computing the Lefschetz coincidence number.

PROPOSITION 3.2. // g is a self-map of M with degg Φ 0, then g*:
//*(M; Q) -> H*(M\ Q) has an inverse g* and

L(f,g) = (deg g)L(g*f*)

for any other self-map f of M.

Proof. If deg g Φ 0, it follows from consideration of Poincare duality
that g* is injective. Then g* is an automorphism, since each vector space
H\M\ Q) is finite-dimensional. For u G Hι(M; Q),

= (degg)g*/*("),

and the conclusion follows from the definition of L(/, g).
By Theorem 3.1, any fixed-point-free self-map / of M must have

L(f) = 0, and any pair/, g of self-maps without a coincidence must have
L(/,g) = O.We put

LZ(M) = {/*|/: M - ^ M a n d L ( / ) = 0}
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and say/*, g* e LZ(M) are compatible if L(/, g) = 0. If χ(M) Φ 0 and
LZ(M) consists of automorphisms of 7/*(Λf; Q), we call M L-rigid. We
then have the following result.

PROPOSITION 3.3. Suppose M is L-rigid. If #M > k + I, then LZ(M)
contains a subset of k pairwise compatible elements.

Proof. By the hypothesis, there is a set S of k pairwise noncoincident
fixed-point-free self-maps of M. Let /, g e S. Then /* and g* are
compatible elements of LZ(M). We have/* Φ g*, since otherwise

L(/, g) = L(/, f) = (deg/)L(id) = (deg/)χ(M) Φ 0.

Thus, {/* |/ e 5} is a set of /: pairwise compatible elements of LZ(M).

REMARK. Note that if M is L-rigid, then any pair/*, g* e LZ{M) is
compatible if and only if L(g*f*) = 0.

It follows immediately from 3.3 that

(1) # M < card LZ(M) + 1

when M is L-rigid and LZ(M) is finite. Thus we have, e.g., #S2n < 2 for
any even sphere S2n (and in fact #S2n = 2, since the antipodal map is
fixed-point-free). As we see in the next section, however, 3.3 sometimes
gives a sharper upper bound than (1).

4. Noncoincidence index of some flag manifolds. Let F(lk

9 n) de-

note the homogeneous space U(n + k)/H, where H is conjugate to
U(l)k X U(n). (We can assume n = 0 or n > 2: in the former case we
write F(lk) instead of F(l*,0).) It is proved in [7] that #F(lk) = k\. In
this section we compute #^(1*, n) for all k and n.

The manifold jF(l\ n) can be thought of as in the space of k~tuples of
orthogonal lines in Cn+k. Thus, there are maps

τrz : F(lk

9 n) -> C P ^ * " 1 , 1 < i < k9

given by picking out the /th line. If we let / G H2(CPn+kl; Q) be the
first Chern class of the canonical line bundle over CPn+k~ι and put
tt = τr*(O, we have the following description of H*(F(lk, ή)\ Q) [1].

H*{F(lk

9 Λ ) ; Q ) = Q[ί1? ί2,...,^]/{Λf-|Λ + 1 < / < n + k}9

where hi is the /th complete symmetric function in tl912>...,^, i.e.
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There is a free action of the symmetric group Σk on F(lk

9 n) by permuta-
tion of lines, and this action evidently permutes the tt in cohomology.

For any m e Q and σ e Σk, let hσ

m denote the endomorphism of
#i);Q) given by

The following classification theorem for endomorphisms of
H*(F(lk, n)\ Q) is proved in §5.

THEOREM 4.1. Unless k = 2 MM/ w ώ α positive even number, all
endomorphisms of H*(F(lk, n);Q) are of the form hσ

mfor some m e Q αwrf
σ ^ Σk. If k = 2 and n > 2 is even, the only additional endomorphisms are

for q e {1,2} andm e Q.

The next result gives a formula for L(hσ

m).

THEOREM 4.2. Lei λx > λ2 > be the cycle-type ofσ^Σk(so λλ is
the length of the longest cycle in σ, λ2 is the length of the next longest cycle,
etc.). Then h°m\ H*(F(lk, n)\ Q) -> H*(F(lk

9 n)\ Q) has Lefschetz number

x ( l - n ι " + 1 ) ( l - ι w " + 2 ) • • • ( ! - m " + ^ )

. For Λ :̂ /ί*(F(l fc, Λ ) ; Q) -> ff*(F(lΛ, π); Q), let P M ( σ , m)
denote L(hσ

m). From [7] we have the formula

Now the spectral sequence of the fibration

where Gk(C"+k) is the Grassmannian of A -planes in C"+k, collapses for
degree reasons. Thus

H*{F{lk, «); Q) = H*{F(lk); Q) ® if*(G,(C"+ / c); Q)

additively. Now H*{Gk(Cn+k); Q) can be regarded as the invariant sub-
ring of H*(F(lk, π);Q) under the Enaction, and fi*(F(l*);Q) is a
quotient of /ί*(iΓ(lfc, «); Q) (the projection is the obvious map sending
t, e H2(F(\k, n);Q) to ί, e //2(F(1*); Q)). Any endomorphism Λ^ of
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H*(F(lk, ή)\ Q) restricts to the endomorphism of H*(Gk(Cn+k); Q) which
multiplies dimension 2/ by m\ and gives rise to the corresponding h°m on
H*(F(lk); Q). Since trace is multiplicative on tensor products,

(3) PkJσ, m) = Pkfi(a9 m) Σ mιdim H2i{Gk(C"+k); Q).

It is well known (see e.g. [1]) that

and this together with (2) and (3) implies the conclusion.
We can use Theorems 4.1 and 4.2 to show that many of the manifolds

\ « ) are L-rigid.

PROPOSITION 4.3. Suppose k Φ 2, n is odd, or n = 0. Then F(lk, n) is
L-rigid. Further, ifT is the set of products of[k/2] disjoint transpositions in
Σk, then

, , x ( ih\ |σ Φ id} U {h°_x\o e L ) , kn odd,

^ W . » ) ) - ( { Λ i Ί σ ^ i d } u { A β ; i | f f < ε Γ } ) ^ ^
Proof. By 4.1, an element of LZ(F(1*, n)) must be an endomorphism

hσ

m of /Γ*(F(l*,7i);Q) with L(hσ

m) = 0. The above list follows from
consideration of (1) (it is easy to see that any h°m, m = ± 1, is induced by
a self-map of F(lk, n)). Now

χ(F{\k,n)) = k\{n^k

and clearly hσ

m is an automorphism for m ^ 0 (in fact deg AJJ, = m^sgnσ,
where d = dimc T^l*, n)), so T^l*, «) is L-rigid.

Now we can give an upper bound for #F(1*, n) when n and k satisfy
the hypothesis of the preceding result.

PROPOSITION 4.4. Suppose k Φ 2, n is odd, or n = 0. Then #F{\k, n)
< k\ ifkn is even, and #F(lk, n) < 2k\ ifkn is odd.

Proof. The statement about #F(lk, n) for kn odd follows im-
mediately from 3.3, since LZ(F(lk, n)) has 2k\ — 1 elements by 4.3.
Again by 3.3, to prove the statement about #F(lk, n) for kn even it
suffices to show that any set of pairwise compatible elements of
LZ(F(lk, n)) has at most k\ - 1 elements in this case. Suppose kn even
and let S c LZ(F(1^, n)) be a set of compatible elements. Let
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Then card S = card H + card K — 1. Since

L{hll9 h{)

we must have σ'V ί Γ for T e ί and σ e // (here Γ is as in 4.3). But
then, if we take p e Γ, we have op & K for every σ e H: hence card /f +
card K < k\9 and the conclusion follows.

Next we show that the inequalities of 4.4 are equalities. To do this, we
construct fixed-point-free, noncoincident maps. For any even number 2r,
define/: C 2 r - + C 2 r b y

J\Z\> Z2> >Z2r-l> Z2r) = (~^2 > Zl> >~ 2̂r> Z2r-l)

Then / is a conjugate-linear map of C 2 r with / 2 = -id. Under the evident
identification C2r = H r, we can regard / as multiplication by the quater-
nion j . Any subspace of C 2 r invariant under / can be given the structure
of a quatemionic vector space, and thus must be even-dimensional (cf. the
proof of Theorem 1 of [6]). Further, if ( , ) denotes inner product,

(4) (Jυ9 Jw) = (w, υ) for υ9 w e C 2 r .

Thus / preserves orthogonality.

THEOREM 4.5. Unless k = 2 0/?d « is a positive even number,

[k\, kneven.

Proof, Since there is a free Σk-action on F(lk, n) (i.e., permutation of
lines), we have #JF(1*, W) > k\\ together with 4.4, this disposes of the case
kn even. Now suppose kn is odd. Then n + k is even, and we have the
map J: Cn+k -+ Cn+k defined above. Consider the 2k\ - 1 self-maps of
F(lk

9n) defined by

(5) (/i,/2,.. ^ J ^ ( W ) ' / - ( 2 ) ' - /

7 τw)' * τ e Σ Λ - { i d }

and

(6) (/1 ?/2,...,/J -> (J!va)9Jlvm,...9Jlv{k)), π e Σ Λ .

We claim these maps are fixed-point-free and pairwise noncoincident.
Clearly the maps in (5) are fixed-point-free and pairwise noncoincident,
and the maps in (6) are pairwise noncoincident. Suppose now we have a
fixed point of a map in (6) or a coincidence between a map in (5) and one
in (6), i.e., an element (lv /2,. ..,/*) of F(lk, n) with
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for some m, σ e Σk. Then / fixes /x θ /2 Θ θ lk. But this is impossi-
ble, since / cannot fix an odd-dimensional subspace of Cn+k.

Finally, we dispose of the case k = 2 and n > 2 even.

THEOREM 4.6. Ifn>2 is even, then #F(l2, n) = oo.

Proof. Let /: Cn+2 -> CM + 2 be as defined above. Note that for
i; e C"+ 2,

by (4) above; thus (Jv,v)=0, and // is orthogonal to / for any line /.
Define ψ: F(l\ n) -• F(l 2, Λ) by ψ(/ ls /2) = (Jll9 lλ): then ψ is fixed-
point-free and nonsurjective, and the conclusion follows by 2.2.

5. Proof of the endomorphism theorem. This section is devoted to a
proof of Theorem 4.1. We use the notation of the previous section.

Since tt e H2(F(lk, ή)\ Q) is pulled back from H2(CPn+k~ι; Q), we
have t?+k = 0. The next result gives a converse: it is proved in [8] for
k < n, and in [2] without restriction.

THEOREM 5.1. If u e H2(F(lk, n)\ Q) and un+k = 0, then u is of the
form at) for some α e Q and 1 < i < k.

Now suppose / is an endomorphism of H*(F(lk,n);Q). Then

/(*, ) n + * = f(*?+k) = 0 for 1 < / < yt, and it follows from 5.1 that

fa) = m^, l<i<k,

for some function p: {1,2,... ,&} -> {1,2,...,/:} and rational numbers
m r We shall prove that/? is a permutation and all the mi are equal unless
k = 2 and π is even.

First we prove a technical lemma. The expression ht(xl9 x29.. 9xr)
denotes the ith complete symmetric function in xl9 x2>... 9xr.

L E M M A 5.2. Let n > 0 be an integer, al9 al9...9ar real numbers, and
suppose

hn+i(aι>a2>- >ar) = 0. 1 < / < r - 1.

Then unless r = 2 and n is even, ax = α2 = = ar = 0. //> = 2 α«ύf π is
even, a2 = -av

Proof. Suppose first that r = 2. Then we have

(1) hn+ι(aλ, a2) = a?+ι + a{a2 + - + Λ I Λ ; + an

2

 + ι = 0.
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I f a x = a 2 , t h i s e v i d e n t l y i m p l i e s a λ = a 2 = 0 . I f a x Φ a 2 , t h e n ( 1 ) i s

n + 2 _ n + 2
"i ^ _ = 0 ,

ax - a2

from which it follows that a2 = -aλ and n is even.
Now suppose r = 3. We have

Then from the relations

and

aλhn + γ(ax, a29 a3) = a[+1 + a[ + ιhι{a2, a3) + + aιhn+ι(a2, a3)

we get

(2) hn+2(a2,a3) = 0.

Similarly,

(3) K+2(al9a3) = 0

and

(4) hn+2(al9a2) = 0.

By the argument of the preceding paragraph, these equations imply
aγ = a2 = a3 = 0 unless n is odd. In this case, (2) gives a3 = - β 2 ) (4)
gives a2 = -al9 and (3) gives ax = -α 3 : but then ax = α2 = a3 = 0. It is
now clear how to prove the result by induction for any r > 3.

As noted in the previous section, H*(F(\k, n)\ Q) is the quotient of
Q[tv.. .,tk] by the ideal generated by Rl9 i? 2,... ,Rk, where

For/ to be a well-defined endomorphism of H*(F(lk, n); Q) there must
be relations

(5) w
l<\a\<i

in Q[tv...9tk], where the s u m is over multi-indices a = (al9<x29...,0Lk)
with | α | = ax + α 2 + + ak a n d

/ « = t a ι f a 2 . . . ^ ^

Then we have the following result.
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LEMMA 5.3. If r of the elements tv t29...9tk are missing from the image

off, thenfiR,) = 0 in Q[/ 1 ?.. .9tk]for 1 < i < r.

Proof. Permuting the ti if necessary, we can assume that tl9 t2,...,tr

are missing from the image of/. Define π: F(lk, n) -» F(\k~\ n + r) by

7 r ( / l 9 I 2 , . . . j k ) = ( / Γ + i , . . . , / Λ ) .

Then 7τ* sends tt e # 2 ( F ( l * - r , n + r); Q) to fr+I. e H2(F(lk, n)\ Q) for

1 < / < fc — r, and is injective since the spectral sequence of the fibration

F(lr

9 n) -> /'(I*, n) ^ F{lk~\ n + r)

collapses for degree reasons. Now tl9...9tr are missing from im/, so

im / c im 7r* in H*(F(lk, n)\ Q). Hence/ = τr*g for

g = (TΓ*)- 1 / : ^ ( ^ ( 1 * , /ι); Q) -> J Ϊ * ( F ( 1 Λ - Γ , Π + r ) ; Q).

But the first nontrivial relation in H*(F(lk~\ n + r) ; Q) is in dimension

2(rt + r + 1), so g(Rt) = 0 in Q[ί 1 ? . . . ,^_Γ] for 1 < i < r and the conclu-

sion follows.

Suppose n > 2. For each i from 1 to /c, we define the weight of / to be

the cardinality of {r\p(r) = i and mr Φ 0}? i.e., the number of tr that /

maps to tx with nonzero coefficient. The following result is the key to the

proof of Theorem 4.1.

P R O P O S I T I O N 5.4. Let n > 2. Then i has weight at most \for\<i<k

unless k = 2 and n is even. Ifk = 2,n is even, and q e (1 ,2} Λ&s weight 2,

then f has the form

Proo/. Suppose # has weight w > 1. Then at least w - 1 of the ίz are

missing from the image of/, and by 5.3

(6) / ( * , ) = 0, 1 < / < H ; - 1 ,

in Q[tl9...9tk], We can assume tl9 t2, . ,tw map to tq with nonzero

coefficient. Examine the coefficient of tq

 + ι in (6) to get

hι(ml9m29...9mw) = 0, 1 < / < w - 1.

Then unless w = 2 and « is even, mλ = m2= - * * = m w = 0 by 5.2, a

contradiction. If w> = 2 and « is even, 5.2 gives m2 = -mι Φ 0. In this

case, f(Rλ) = 0 and f(R2) Φ 0 in Q[tv.. .9tk]: but then no / can have

weight 1 and no more than one ti can be missing from the image of /,

from which follows k = 2.
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REMARK. The case n = 0 is disposed of in [7], where it is proved that
all endomorphisms of H*(F(lk); Q) have the form hσ

m.

By the preceding result, the function/? of {1,2,... ,/c} can be assumed
a permutation if k Φ 2 or n is odd. To finish the proof of 4.1, we need
only show all the mi are equal in this case. Now in f{Rλ) the coefficient of
t?+1 is mn

s

 + 1, where p(s) = r. The coefficient of tn

r

+ι on the right-hand
side of (5) (with i = 1) is Nv Thus mn

s

 + ι = Nλ for 1 < s < k. For n even,
this shows all the ms are equal. For n odd, it is also necessary to inspect
the coefficients of terms t?ts, r Φ s, in equation (5) with i = 1.
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