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RETRACTION METHODS IN NIELSEN
FIXED POINT THEORY

ROBERT F. BROWN

Let X be a topological space, A a subset of X, and F: X -» X a map.
Suppose there exists a retraction p: W -^ A where Λ U F(A) c W Q X;
then define/: Λ -» Λ by f(a) = pF(a). The map/is called a retract of
F. If all the fixed points of / are fixed points of F, we say that F is
retractable onto A (with respect to p). Then, if A is a compact ANR, the
Nielsen number N(f) of / is a lower bound for the number of fixed
points of F, or of any map G: X -* X retractible onto A with retract
homotopic to /. Many classes of examples of retractible maps can be
found, even if X is required to be a euclidean space. If F is retractible
onto a compact ANR with respect to a deformation retraction of X onto
A, then we say that F is deformation retractible (dr) and we define a
number D(F) which we prove to have the property: if G: X -> X is a dr
map homotopic to F, then G has at least D(F) fixed points. If X is an
ANR and F is a compact map, then D(F) is the Nielsen number of F.
We find conditions, for any map F: X -> X retractible onto A, so that
there exists G: X -> Xretractible onto Λ and with retract homotopic to/
such that G has exactly N(f) fixed points. Furthermore, if F is dr, the
hypotheses yield a dr map G homotopic to F and with exactly D(F) fixed
points. These last results are based on a technique, of independent
interest, for extending a map g: A -* A, on a finite subpolyhedron of a
locally finite polyhedron X, to a map G: X -> X in such a way that G has
no fixed points on X — A,

1. The Poincare-Bohl theorem. Retraction-type results are among

the oldest in fixed point theory. In 1904, Bohl [1] proved

THEOREM 1.1. Let C = [x = (xl9...,xn) e R" | |jcf| < a() for some

positive numbers al9... 9an. If g: C -> R" — 0 is a map, then there exists a

point x on the boundary of C such that g(x) = ax, for some a < 0.

In 1910, Hadamard [13] observed that BohΓs result was equivalent to

an earlier theorem of Poincare [28] and therefore called it the Poincare-Bohl

Theorem. It will be convenient to restate the theorem in the form:

THEOREM 1.2. (Poincare-Bohl Theorem.) Let F: Rn -> W be a map and

suppose there exists R > 0 such that

(*) ||.x|| = R implies F(x) Φ λ c, for all λ > 1.

Then F(x) = x for some x with \\x\\ < R.

277



278 ROBERT F. BROWN

It is not difficult to show that this statement is equivalent to BohΓs
result.

To see the relationship of the Poincare-Bohl theorem to the retraction
concept, we give the following well-known proof (compare [22]). The
proof also serves to introduce concepts that will be used in later sections.
Set BR = {x e R" | ||JC|| < R} and define a "radial" retraction p: R" -» BR

by

p(χ) =

\χ iϊ\\χ\\<R.

Let ι: BR-* Rn be inclusion and define/ = pFi: BR~* BR. By the Brouwer
Fixed Point Theorem, f{x) = x for some x e BR. It cannot be that
\\F(x)\\ > R because then we would have f{x) = R/\\F(x)\\ F(x) = x,
or F(x) = | |F(x)| |/iί x9 contrary to (*), so it must be that F(x) = x.

Letting "Fix" denote the set of fixed points of a map; we see from the
argument that (*) implies Fix(/) = Fix(F) Π BR. Thus, information about
fixed points of/is information about fixed points of F as well. Notice that
the use of the radial retraction p permitted us to "retract" the map F of R"
to a map / on the compact space BR for which an appropriate fixed point
theorem was available.

2. The basic example. In this section, we will extend the techniques
of the above proof of the Poincare-Bohl theorem to prove a result which
will serve as a model for the approach we use in the rest of the paper.

Let 0 < r < R be given and define the annulus

Ar,R = {xeR2\r <\\x\\ < R).

Denote the degree of a map /: Ar R -> Ar R by deg(/). In 1921, Brouwer
[2] used a technique of Nielsen [27] to obtain a lower bound for the
number of fixed points of a map from a torus T = S1 X Sι to itself. If we
view T as the double of Ar R, we can use/from both the "top half" and
the "bottom half to, say, the top half to define a map/': T -» Ar R c Γ.
It follows from the Nielsen-Brouwer theorem that /', and therefore the
map/as well, has at least |deg(/) - 1| fixed points.

In place of the retraction p: Rn -> BR we used in §1, we need the
radial retraction p: R2 - 0 -» Ar R defined by

x if r <\x\ < R,

x li |μ|| > K.
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Given a map F: R2 -> R2 such that F(Ar R) c R2 - 0, we can again
retract F9 this time to a map on ΛΓ R, by letting 6: 4,. R -> R2 be inclusion
and setting/ = pFt: ̂ 4r R -> i4ΓfΛ.

PROPOSITION 2.1. Lei F: R2 -> R2 be a map. Suppose there exist
0 < r < R such that:

(0) r < \\x\\ < R implies F(x) Φ 0;
(*) ||JC|| = R implies F{x) Φ λxjorallλ > 1;

(**) 11*11 = r implies F(x) Φ μx, for all 0 < μ < 1.
Then Fhas at least |deg(/) - 1| fixed points x with r < \\x\\ < R.

Condition (0) is required so that / will be well-defined. The Nielsen-
Brouwer theorem implies that / has at least |deg(/) - 1| fixed points.
Suppose/(JC) = x; then Hi^jc)!! > R would contradict (*), precisely as in
§1. Similarly 11^0)11 < r would contradict (**). Therefore, conditions (*)
and (**) imply that Fix(/) = Fix(F) Π ArR, so Fhas at least |deg(/) - 1|
fixed points, which lie in Ar R. Obviously this result could have been
proved at any time since 1921, but it seems not to have been noticed.

The Nielsen-Brouwer theorem, which is the basis for Proposition 2.1,
depends on the fact that the fundamental group is not trivial. Thus, in this
section, the advantage of retracting, and then studying a map on ArR

rather than on R2, is that not only are we working on a compact set, but
on one that is non-simply-connected.

3. Retractibility. With the previous two sections in mind, it is
natural to make the following definitions. Let X be a topological space
and let F: X -> X be a map. Suppose for a subset A of X there is a
retraction p: W -* A where A U F{A) c W c X. Then, for i: A -> X the
inclusion, / = pFi: A ~> A is a well-defined map we call the retract of F
(with respect to p). The following easily proved result justifies our use of
this terminology.

PROPOSITION 3.1. A subspace A of a space X is a retract of X if, and
only if, the identity map on A is a retract of the identity map on X.

The example we keep in mind is X = R2, A = Ar R, W = R2 - 0, and
p is the radial retraction. A map F: R2 -> R2 has a retract with respect to p
provided F{ArR) c R2 - 0.

Returning to the general setting, notice that even if a map F: X -» X
has a retract/: A -> A, the map/is of no use in studying the fixed points
of F unless we require more. Thus, we call F "retractible" onto A only if
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the fixed points of the retract / are related to those of F as in the previous
sections. To be precise, we say that F: X -> X is retractible onto a subset A
of X if there exists W in X containing A U F(A) and a retraction p:
W -> A such that Fix(/) = Fix(F) Π ̂ 4, for f: A -+ A the retract of i 7

with respect to p. The following simple observation is useful in verifying
that a map is retractible onto a set.

PROPOSITION 3.2. Letf: A -> A be the retract of a map F: X -> X with
respect to a retraction p: W -> A9 where A U F(A) Q W. Then Fix(/) =
Fix(F) Π A if, and only if, for each x e ρ(F(A) - A), either F{x) = x or
F(x) 4-p-\x).

Having replaced the hypotheses of the basic example, Proposition 2.1,
by a suitable generalization, we need a form of the conclusion that is
appropriate for spaces other than the annulus. For a map /: A -» A on a
compact ANR, the Nielsen number N(f) is a lower bound for the number
of fixed points of /. Homotopic maps have equal Nielsen numbers. The
relationship with Proposition 2.1 is given by the fact that iff: A -» A is a
map on an annulus, then N(f) = |deg(/) - 1|. Expositions of Nielsen
fixed point theory can be found in [4] and [21]. The generalization of
Proposition 2.1 is

PROPOSITION 3.3. Let X be a topological space and let A be a compact
ANR in X. Suppose a map F: X -+ X is retractible onto A, with retract /:
A -> A. If a map G: X -* X is retractible onto A, with retract g: A -> A
homotopic tof, then G has at least N(f) fixed points in A,

REMARKS. (1) If A, a compact ANR, is simply-connected, then
N(f) < 1 for any map /: A -> A, Thus Proposition 3.3 is of interest
primarily when F can be retracted to a map on a non-simply-connected
set such as the annulus of §2.

(2) Since the retract / depends only on the behavior of F on A, the
definition of retractibility and the statement of Proposition 3.3 could have
been given in terms of maps F: A -> X. However, fixed point theory is
generally concerned with the fixed points of a self-map of a space, so it
seems more natural to assume F: X -> X is such a map, of a space on
which the usual topological methods cannot be used (for instance, when X
is a euclidean space). Then, if F is retractible onto a compact ANR,
Proposition 3.3 implies that we can, nevertheless, recover information
about Fix(F) by those methods.
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(3) The approach suggested by 3.3 is also useful in nonlinear analysis;
see [5].

In the next section, we present some examples of maps retractible
onto compact ANRs. We restrict ourselves to maps on euclidean spaces to
keep the list reasonably short.

Section 5 begins with an example that illustrates the fact that the
lower bound N(f) for the number of fixed points of F: X -> X on A
depends on the choice of the retraction p. We can overcome this problem
by restricting ourselves to retractions that, like the radial retractions of the
first two sections, are deformation retractions. Then we prove that when
we impose an additional restriction on the map F as well, the lower bound
depends only on the homotopy class of F and therefore we can define a
"Nielsen number" for such maps.

In the Nielsen fixed point theory of maps /: K -> K on finite
polyhedra, the Nielsen number N(f) is not only a lower bound for the
number of fixed points of / or any map homotopic to it but, if the
polyhedron K satisfies certain additional topological conditions, then
N(f) is a sharp lower bound in the sense that / can be homotoped to a
map with exactly N(f) fixed points. Sections 6 and 7 are devoted to an
analogous result concerning locally finite polyhedra, for maps which are
retractible onto finite polyhedra. The preliminary results of §6 present a
technique for extending a map g: A -> A, on a finite subpolyhedron of a
locally finite polyhedron X, to a map G: X -> X without introducing
additional fixed points, that is, such that Fix(G) = Fix(g). This technique
is of interest independent of its use in proving the "minimality theorem",
of §7.

4. Other examples of retractible maps. The distance between points
x, j/ e R" is ||JC — y\\9 so for C a subset of R" and x e R" we have the
"distance"

d(x9C) = inf{\\x-y\\\yeC}.

We can generalize the example of §2 as follows. Let k > 0 be given
and define S c R" as the set of points x = (xl9... 9xn) such that x\ + x\
= k2 and x3 = = xn = 0. Given ε such that 0 < ε < A:, let

A =A(k,ε) = {x<ΞRn\d(x,S) < ε},

t h e n A i s a s o l i d « - t o r u s , t h a t i s , i t i s h o m e o m o r p h i c t o S 1 X B n l . D e f i n e

W = [x = (xl9... 9xn) e R" I xl + x\ Φ 0}

then for each x e W there is a unique point p(x) e S such that \\x -
/Kx)|| = d(x, S). Let dA denote the boundary of A. For each x in W — A,
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the line segment between x and p(x) intersects dA at one point; call it
p(x). Extend p to all of W by setting p(x) = x for x G A, then p is
continuous and therefore a retraction of W onto A. Furthermore, ||x —
p(jc)|| = d(x, A) for all x <E W. If we take n = 2, k = \{R + r), and ε
= ^(i? - r), then W = R2 — 0 and p is radial retraction, so in this way
we recover the example of §2.

A map F: Rn -> R" will be retractible onto A = A(k, ε) with respect
to the retraction p if F(A) c W and, for each x ^ dA, either F(x) G A or,
if .F(x) ί A, then x does not lie on the line segment between F(x) and
pF(x) because, if it did, then x = ρ(F(x)) (compare Proposition 3.2). In
particular, a map F: R" -> R" is retractible onto A if F(A) c fF and
F(3>4) c yί. We can replace the condition F(dA) c 4̂ by a considerably
weaker one, as follows. For each X G 3 ^ , let

^ ( x ) = {x + c(α - x)\α ^ A and c > 1}.

Then, following Caristi [6], we say that F is weakly inward on 9̂ 4 if JF(x) is
in the closure of IA(x), for all x ^ dA.

PROPOSITION 4.1. Let A = A(k9 ε) be a solid torus in Rn and let
W = {(*!,... ,JCΠ) e R" I xx

2 + x 2 ^ 0}. //i 7 : RΛ -> R" w α m ^ rac
c fFα«J F is weakly inward on dA, then F is retractible onto A.

Proof. Given x e dA, let u be a point of W — A such that p(u) = x.
We have observed above that this implies \\u — x\\ = d(u, A). We claim
that if z is a point such that \\z — u\\ < \\x — u\\9 then z £ IA(x). To prove
the claim, assume the contrary, so z = x + c(a — x) for some a ^ A and
c > 1. Then

a = - z + 1 x
c \ c I

and

1 / 1 \

~~ c \ c)

which is impossible because a ^ A. We have established the claim and

therefore u is in an open subset of R" disjoint from IA(x). Since F is

weakly inward on dA, we see that F(x) Φ u for all u G W - A with

p(w) = x, so Fix(/) = Fix(.F) Π^l by Proposition 3.2, where / is the

retract of F with respect to p. D

A map F: Rn -> Rn satisfying the hypotheses of Proposition 4.1 has at
least |deg(/) - 1| fixed points, where/is the retract of F with respect to p,
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because, by a theorem of Hopf [14], / has at least that many. This
computation also follows from Proposition 3.3 and [18].

Observe that Proposition 4.1 generalizes to any sets A Q WQRn

provided there is a "closest point" retraction p: W' -> A, that is, one such
that \\x - p(x)\\ = d(x, A) for all x e W. The same proof shows that if
F: Rn -» R" is a map with F(A) c Wand F weakly inward on p(W - A),
then F is retractible onto A.

The next class of examples was developed with the assistance of
Robert Edwards. Let A be a compact π-manifold with nonempty boundary
dA and suppose A is embedded in R" as a subpolyhedron. Write Sn = Rn

U {oo} and let 7 be a complementary spine of 4̂ in S"2, in the sense of
Rourke [29]. That is, 7 is a subpolyhedron of Sn - A such that Sn - A
collapses to 7, where A = A - dA. We will assume, without loss of
generality, that o o e Γ . The manifold Sn — A is a regular neighborhood
of 7. Let N(Y) be the second derived regular neighborhood of 7 [17; page
50], then N(Y) - Y is homeomorphic to dN(Y) X [0,1) , so there is a
retraction of N(Y) — Y onto dN(Y). Consequently, by the uniqueness of
regular neighborhoods [30; page 33], (Sn - A) - Y retracts to d(Sn - A)
= 3,4, by a retraction we will call p.LQtW=Sn- Y = Rn - 7, then we
can extend p to a retraction p: W -+ A.

In the previous example (Proposition 4.1), A was a solid torus, the
complementary spine in Sn was 7 = {(0,0, X 3,. . .,JCΠ) e R"} U (oo),
which is homeomorphic to Sn~2, and we used a "closest point" retraction
p: R" - 7 -> A Since the retraction obtained from the regular neighbor-
hood structure on 5"* — A lacks the "closest point" property, the best we
can do in general is the following.

PROPOSITION 4.2. Let A be a compact n-manifold with nonempty

boundary dA and suppose A is embedded in Rn as a subpolyhedron. Let 7 be

a complementary spine of A in Sn = R" U {oo} such that oo e 7 // F:

Rn -> R" is a map such that F(A) ΠY=0 and F(dA) c A, then F is

retractible onto A.

In view of the hypothesis F(A) Π 7 = 0 in Proposition 4.2, it is
desirable that we choose a complementary spine of A in Sn that is as

"small" as possible. If π.(Sn - A9 dA) = 0 for all / < r, where r < n - 4,
then it follows from a theorem of Wall [34] that A has a complementary
spine of dimension less than or equal to n + 1 — r.

We can combine 4.2 with Proposition 3.3 to obtain a lower bound for
the number of fixed points of F9 provided we can compute the Nielsen
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number of the retract /: A -» A. There is an extensive treatment of the
computational problem, due to Jiang, available for this purpose [18], [20],
[21].

Next we suppose that A is still a compact ^-manifold with nonempty
boundary dA and that A is embedded in Rw, but now we require that A be
a smooth (C00) submanifold of R". Then dA is a smooth (n — l)-manifold
without boundary embedded in R" so, by the local retraction theorem [26;
page 51], there is a neighborhood U of dA in Rn and a retraction p':
U -> dA. Furthermore, from the proof of that theorem, we observe that if
w G ί/ and v is in Tp^u)(dA), the tangent space to dA at p'(w), then
(ρ'(w) — u) - v = 0. Since the normal bundle of the embedding of dA in
R" is trivial, the set U is homeomorphic to an open subset of dA X R by a
homeomorphism φ with the following property: let π: dA X R -> R be
projection, then τrφ{u) < 0 if and only if u ^ A. Let

W=A U { M G U\πφ(u) > 0}

then W is a neighborhood of 4̂ in R" and there is a retraction p\W-*A
defined by ρ(x) = xif x e A and ρ(x) = ρ'(.x) if x <£ A.

Proposition 3.2 and the property of p' noted above imply

PROPOSITION 4.3. Lei A be a compact n-manifold with nonempty
boundary dA and suppose A is embedded in Rn as a smooth submanifold.
There is a neighborhood W of A in W such that if F(A) c W and
(F(x) - x)' v Φ 0 for all x e dA and υ e 7;(3^4), ί/ze« F is retractible
onto A.

The local retraction theorem of [26] can also be used if A is a closed
(that is, compact and without boundary) /c-dimensional smooth submani-
fold of R", for any k < n. In this case we have

PROPOSITION 4.4. Let A be a closed, smooth submanifold ofRn. There is
a neighborhood W of A in Rn such that ifF(A) c Wand(F(x) - JC) υ Φ 0
for all x e A and v e TX(A), then F is retractible onto A.

The computational results of Jiang mentioned above can be used in
connection with the examples of Propositions 4.3 and 4.4. In addition, if,
in 4.4, A is a 2-manifold, then techniques from [10] apply to the computa-
tion of the Nielsen number of a retract/: A -> A of F.

For a final class of examples, suppose A is a finite, ^-dimensional
subpolyhedron of Rn. A regular neighborhood of A in Rn must collapse to



RETRACTION METHODS IN NIELSEN FIXED POINT THEORY 285

A in such a way that if x e A is in the image of some y e R" — A under
the collapse, then x is in A{n~l), the (n - l)-skeleton of A. We can find
ε > 0 so that if d(y, A) < ε then y is in the regular neighborhood. Thus
we have

PROPOSITION 4.5. Let A be a finite, n-dimensional subpolyhedron ofRn.
There exists ε > 0 such that if F: Rn -» R* has the properties: d(F(x), A)
< εfor all x e A and F{A{n'ι)) c A9 then F is retractible onto A.

We have arbitrarily limited the examples in this section by requiring
that X be a euclidean space. However, all the other results of this paper
apply if X is any locally finite polyhedron and some require even less. So
the material in the following sections can be used in many situations not
included in the preceding list of examples.

5. Deformation retractions. Now we present the example, promised
in §3, that illustrates the fact that, for F: X -> X retractible onto A, the
lower bound N(f) for the number of fixed points of F in A guaranteed by
Proposition 3.3 depends on the choice of the retraction p: W -> A. Let A
be the unit circle centered at the origin in the plane R2 and let W = A U /
where / is the simple closed curve defined, in polar coordinates, by

/ = {(cos0, is in0) |O < θ < 2τr}.

The radial retraction of §2 restricts to a retraction ρλ: W -+ A. Let F:
A -» / be a map such that the retract fx = ρxFι\ A -> A is homotopic to
the identity and has fixed points only at (1,0) and (-1,0). Extend F to a
map F: R2 -> R2.

Let p2: W -> A be the retraction defined by first reflecting / about
the x-axis and then radially retracting it onto A. The retract f2 = p2Ft:
A -> A is a map of degree —1. For a self-map / of A = S1, the Nielsen
number N(f) equals |deg(/) - 1| (see [4; page 107]), therefore N(fλ) = 0
and N(f2) = 2.

By Proposition 3.3, every self-map of R2 retractible onto Sι so its
retract is homotopic to f2 has at least two fixed points. But 3.3 makes no
such claim if the retract is homotopic to fx and in fact it is easy to find a
self-map F of R2 retractible onto A = S1 so that its retract is homotopic to
fλ and F has no fixed points.

As we mentioned in §3, we can obtain a single lower bound for the
number of points of FixΐF) in A by limiting ourselves to deformation
retractions p: W -» A, If, for7 = 0,1, we have deformation retractions py.
W -> A then, since p0 and ρλ are both homotopic to the identity map of
W, they are homotopic to each other by some homotopy H: W X / -> W.
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Let ht: W -> W be defined by ht(x) = H(x, t) and suppose h} = p} for
7 = 0,1. Consider a homotopy # ' : 4̂ X / -> ̂ 4 defined by H\x, t) =
ρohtF(x) and let Λ;(x) = H'{x, t). For ί = 0 we have h'0(x) = pohoF(x)
= po(Po-F(*)) = ρ0F(x) because POJF(X) ^ 4̂. Let /0 be the retract of F
with respect to ρ0, then we have proved that h'o = f0. Similarly h[ = / l 9 the
retract of F with respect to pv so since homotopic maps have equal
Nielsen numbers, we conclude that N(f0) = N(fτ) as we claimed in §3.

We have seen many examples of deformation retractions in previous
sections, but the requirement that p: W -> A be a deformation retraction
actually represents quite a strong restriction because a deformation retrac-
tion is a homotopy equivalence, so W must be the same homotopy type
as^ί.

Suppose we do restrict ourselves to deformation retractions. Although
it is now the single lower bound for the number of points in ¥ix(F), the
Nielsen number N(f) still depends on the choices of A and W. For
example, consider a rotation F of the plane about the origin. If W = A =
BR, as in §1, we have N(f) = 1 while if W = A = Ar R, as in §2, then
N(f) = 0. On the other hand, the Nielsen number of a map on a compact
ANR depends only on the homotopy class of the map. We would like a
Nielsen-type number for retractible maps F: X -> X9 that is, a lower
bound for the number of points in Fix(jF) that depends only on the
homotopy class of F as a map from X to itself.

We can obtain such a number for F if we retain the restriction to
deformation retractions and impose one further condition on the map F.
One way to state this condition on F is to choose W and require
F(W) c W instead of just ^(^4) c W as in the definition of retractibility
onto A. However, once we require that F take W to itself, we have a
self-map of a space (compare Remark (2) following Proposition 3.3), so
we might as well just replace W by X. That is, we consider deformation
retractions p: X -» A and put no restriction on the location of F(A).
Formally, we define a map F: X -> X to be deformation retractible (dr) if
there exists A, a compact ANR in X, and a deformation retraction p:
X -> A such that Fix(/) = Fix( F) Π A9 where / is the retract of F with
respect to p. For example, if in the hypotheses of Proposition 2.1 we
replaced (0): r < \\x\\ < R implies F(x) Φ 0 by: x Φ 0 implies F(x) Φ 0,
then F would be a dr map on X = R2 - 0 provided it satisfied (*), (**) as
well.

Notice that the definition of F as a dr map does not specify a
particular subspace A9 in contrast to the notion of "retractible onto A " in
§3. Thus a dr map F: X -» X might have retracts defined on different
compact ANRs in X.



RETRACTION METHODS IN NIELSEN FIXED POINT THEORY 287

Let F: X -> X be a dr map, then we set D(F) = N(f), where /:
A -> A is any retract of i 7 with respect to a deformation retraction p of X
onto a compact ANR such that Fix(/) = Fix(F) ΠA. We justify the
notation, representing D as just a function of F, by proving:

THEOREM 5.1. The definition of D(F) depends only on the homotopy
class of F.

Proof. Suppose that Fl9 F2: X -> X are dr maps and that Fλ and F2 are
homo topic. Thus, for jr = 1,2 there are compact ANRs 4̂y in ^ and
deformation retractions ρy: X -»^47 such that, for if. Aj -> X the inclu-
sions, the retracts/^ = pjFjif Aj -> ̂ 4y have the property Fix(/^) = Fix(i^)
Π ̂ 47. The maps py and t7 are homotopy inverses of each other, sof2(ρ2ιι)
is homotopic to {p2h)f\ and> by Λe generalization in [9] of the theorem of
Kiang and Jiang [23] (see also [21]), N(fλ) = N(f2). Therefore D(Fλ) =
D(F2). •

Notice, in the proof of 5.1, that although Fλ and F2 themselves must
be dr maps in order for D(Fι) and D(F2) to be defined, the homotopy
between them is not required to satisfy any fixed point conditions.

Theorem 5.1 implies that D(F) is suitable as the proposed Nielsen-
type number, for dr maps:

COROLLARY 5.2. If X is a topological space and F: X -> X is a dr map,
then any dr map G: X -* X homotopic to F has at least D(F) fixed points.

If X is itself a compact ANR, then by definition D(F) is N(F), the
classical Nielsen number. The classical Nielsen theory was extended in [3]
to maps F: X -> X where X is a noncompact ANR and F is a compact
map, that is, there exists a compact subset K of X such that F(X) c K.
(For the particular case of X a locally convex topological vector space, this
extension was accomplished much earlier by Leray [24]). We will show
that if F is a compact, dr map on a noncompact ANR, then it is still true
that D(F) = N(F). We will need to refer to the definition of the Nielsen
number in the setting of compact maps on ANRs, so we review it below.

First, just suppose X is a topological space and F: X -> X is a map.
Call x, xf e Fix(jF) equivalent if there is a path c from x to xf such that c
is homotopic to F(c) rel{x, x'}. (For the definition of homotopy relative
to a subset, see for instance [33; page 23].) The equivalence classes of
Fix(F) are called the fixed point classes of F. The following easily proved
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observations are stated, in a more restricted setting, as Lemma 5.1 of
Chapter I of [21].

LEMMA 5.3. Let Y and Z be topological spaces and let a: Y -> Z, β:
Z -> Y be maps. Then the restriction of a to Fix(βa) is a homeomorphism
onto Fix(aβ). Furthermore, F is a fixed point class of βa if and only ifa(F)
is a fixed point class ofaβ.

Now let X be an ANR, let U be an open subset of X and let α:
U -> Xbe a compact map such that {x e U\a(x) = x) is compact. Then
Granas [12] has defined a fixed point index Ind(α, U). Of the several
properties of that index, we will need to refer to the following:

Excision. If U' is an open subset of U such that <x(x) = x implies
x e U\ then Ind(α, U) = Ind(α, U').

Homotopy. If H: U X / -» X is a compact map such that the set
(x e £/|//(;c, ί) = x for some ί} is compact and we set ht(x) = H(x, t)
for all /, then Ind(Λ0, U) = Indί*^ U).

Commutativity. If for / = 1,2 we have open sets Uι of ANRs Xi and
maps α: t^ -^ Jί2, /3: U2 -> ^ such that βα: Fx = α " ^ ^ ) "* xi i s a

compact map with the set {x e FJβαO) == x} compact then aβ: V2 =
1 > X2 has the same properties and Ind(/?α, Vλ) = Ind(α/?, F2).

A compact map F: X -+ X on an ANR has a finite number of fixed
point classes F 1 , . . . ,Fr, each a compact subset of X [3; Theorem 6]. For
j = 1,... ,r, let Uj be an open subset of X such that Uj Π Fix(F) = F}.
Call Fy essential if and only if Ind(i% φ # 0. The Nielsen number of i%
still denoted by N(F), is the number of essential fixed point classes. The
excision property implies that the definition is independent of the choice
of Uj. The homotopy property of the fixed point index implies that if
F, G: X -> X are maps of an ANR homotopic by a homotopy which is a
compact map, then N(F) = N(G) (see Theorem 2 of [3] or Theorem 2 of
[31]). The commutativity property of the index implies the following
commutativity property of the Nielsen number for compact maps (com-
pare Theorem 5.2 in Chapter I of [21]).

THEOREM 5.4. If a: Y -» Z and β: Z -> Y are compact maps of ANRs,
thenN(βa) = N(aβ).
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Proof. Let F be a fixed point class of βa: Y -* 7, then α(F) is a fixed
point class of aβ: Z -» Z by Lemma 5.3. Let t/' be an open subset of Z
such that t/' Π FixOβ) = α(F) and let U = cr ^ί/7). Using Lemma 5.3,
we can see that U Π Fix(βα) = F. By the commutativiy property of the
fixed point index, lnd(βa, U) = Ind(aβ, V) where V = β~ι{U). Since
V Π Fix(αβ) = α(F), it follows that F is essential if and only if α(F) is
essential. Lemma 5.3 establishes a one-to-one correspondence between
the fixed point classes of βa and of aβ, so we conclude that N(βa) =
N(aβ). D

We can now prove the result promised earlier.

THEOREM 5.5. Let X be an ANR and let F: X -> X be a compact, dr
map, then D(F) = N(F).

Proof. Since F is a dr map, there is a compact ANR A in X and a
deformation retraction p: X -* A such that Fix(/) = Fix(F) Π A for
/ = pFr. A -> A, where ι: A -> X is inclusion. The definition of deforma-
tion retraction gives us a homotopy H: X X I -+ X such that i/(;c, 0) = x
and i/(x, 1) = p(x) for all x e X. Noting that p = tp, we see that the
compact map FH: X X / -> X is a homotopy between Z7 and Ftp, so
N(.F) = N(Fιp). The maps p: X -> ̂ 4 and Ft. A -> X are compact and
therefore N(Fcp) = #(pΛ) = # ( / ) by Theorem 5.4. Finally # ( / ) =
D(F) by definition. D

6. Extensions without additional fixed points. The Minimality The-

orem of §7 will state that, under sufficiently strong hypotheses, given a
map F: X -> X retractible onto A with retract /: A -> A, there exists a
map G: X -> X retractible onto A, with a retract g: A -* 4̂ homotopic to
/, such that G has exactly N(f) fixed points. Thus the lower bound on the
number of fixed points promised by Proposition 3.2 is seen to be sharp
under these hypotheses.

The most general minimality theorem of this sort for maps of finite
polyhedra is due to Boju Jiang [19]. We will require A to be a polyhedron
satisfying the hypotheses of Jiang's theorem and homotope / to a map g
with exactly N(f) fixed points. We would then like to use techniques of
Gen-hua Shi in [32] to extend g to a map G: X -> X which has no fixed
points on X - A and therefore satisfies our requirements. However, we
cannot use Shi's techniques without modification. Shi was concerned with
producing a fixed point free map in a given homotopy class, not with
extending a map already defined on a subspace. His methods will tend to
change the map on A, in an uncontrollable way, as they extend the
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definition over all of X. Therefore we will devote this section to a "relative
to A" version of Shi's techniques.

The principal modification concerns Shi's improvement of a theorem
of Hopf. Hopf proved [15] that any map on a finite polyhedron X can be
approximated by one whose fixed points are isolated and all lie in
maximal simplices of X. Shi [32] extended Hopf's result to locally finite
polyhedra. Our relative form of the Hopf-Shi theorem requires that the
approximation be identical to the original map on a finite subpolyhedron
A.

THEOREM 6.1. Let X be a locally finite polyhedron, A a finite subpoly-
hedron, and Go: X -» X a map such that G0(A) c A, then there exists a
map G: X -> X homotopίc to Go rel A (so, in particular G(a) = G0(a) for
all a e A) such that each fixed point of G in X - A is isolated and lies in a
maximal simplex.

Proof. Let G0\A: A -» A denote the restriction of Go to A and set
g = GQ\A. Let d be the barycentric metric on X. We first show that there
exists ε > 0 and a map Gx\ X -> X such that GX\A = g and if d(x, A) < ε,
then Gx(x) e A. Since A is an ANR, there is an open subset V of X
containing^ and a map Gx: V -* A such that Gλ\A = g. Let S(A) be the
simplicial neighborhood of A in X, that is, the union of all closed
simplices of X that intersect A (see page 32 of [30]). Then A is in the
interior of S(A) and, since A is finite and Jfis locally finite, S(A) is finite.
Therefore, there exists η > 0 such that if Y is any space and a, b:
Y -* S(A) are maps with d(a(y), b(y)) < η for all J G 7 , then a and b
are homotopic by a homotopy that is constant atj> if a(y) = b(y) (see the
proof of Theorem 1.1 on page 111 of [16]). Let int S(A) denote the
interior of S(A) and let W = G ^ i n t S(A)). Then W is a neighborhood
of A in * a n d it follows that d(A9 X - (V Π W)) > 0. Subdivide S(A) so
that the mesh of the triangulation is less than d(A, X - (V Π W)). Let
S'{A) be the simplicial neighborhood of A in S(A) with respect to this
triangulation, then S'(A) c F Π fF. Now Go and Gx are uniformly con-
tinuous on S'(A) so, for / = 0,1, there exist εf > 0 such that iϊ x, c' e
S\A) and <f(x, jcr) < εz , then d(Gi(x), G^x*)) < η/2. Let

2ε = min{ε0, ε1? rf(i4, Z - int S'(A))}

and suppose x e l with d(x, A) < ε. There exists * ' e Λi such that
rf(x, x') = ί/(x, ^4). Keeping in mind that G0\A = Gλ\A = g, we see that

d(G0(x), GM) < d{G0(x), g(O) + d{g(x')9 GM)

= d(GQ(x)9 G0(x'))
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Let

Ne(A)= {x^X\d(x,A)<ε}

then Nε(A) c S\A) QVΠ PΓ._Since G0(W) c S(A) and Gλ(V) QA Q

S(A), then Gλ\Nε(A) and G2|JVε(Λ) are homotopic in S(A) c Z relΛί.
Since X is an ANR and G0\Nε(A) extends to Go: X -> X_then
extends to Gλ: X -> X homotopic to Go rel A. Now G^Λζ^)) c
Q A so Gλ has the required property.

Next subdivide S'(A) to obtain a triangulation of mesh less than ε/4,
and extend arbitrarily to a triangulation of X Define Nε/2(A) = {x e
X|d(.x, 4̂) < ε/2}. Let ίΓ be the subpolyhedron of X consisting of all
closed simplices of X (with respect to the new triangulation) that intersect
X - Nε/2(A). Let G[ = Gλ\K\ K -* Xy then G[ is a map of simplicial
complexes so there is a subdivision of K and a simplicial approximation
φ: K -> X of G( with respect to that triangulation. We will need the map
t:Nε(A)-*R (the reals) defined by

Define G2: X -> Zas follows

[Gi(x) if</(x,Λ)<ε/2,

I x) + t(x)φ(x) if ε/2 < rf(jc, ^ ) < 3ε/4,

ifd(x,>ί) > 3ε/4.

Clearly G2 is homotopic to Gx because φ is homotopic to G[. Note that if
ε/2 < d(x, A) < ε then x e ί s o φ(x) is defined and, since x e Nε(A),
then we know Gj(x) e 4̂. Since φ is a simplicial approximation to G[,
then there is a simplex containing both φ(.x) and Gλ(x), so that simplex
will intersect A. Since the simplex is in S'(A)9 its diameter is less than ε/4.
We conclude that if ε/2 < d(x, A) < ε, then d(G2(x), A) < ε/4 and, in
particular, G2(x) Φ x. If 0 < d(x, A) < ε/2 then G2(x) = G^ c) e 4̂ so
G2 has no fixed points on Nε(A) - A. Now G2 is simplicial on a subcom-
plex of K containing X - Nε(A) so by the first part of the proof of
Lemma 3 of [32], all the fixed points of G2 on X — A are isolated. For the
rest of the proof we just copy Shi's argument for Lemma 3, always
choosing 8t < ε/4 so all homotopies are relative to A (in fact to Nε/2(A)).
Thus we obtain a map G: X -» Xwith the required properties. D

A polyhedron X is said to be two-dimensionally connected if for any
two maximal simplices σ and T of I there are simplices σ = σ0,
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σ1 ?... 9σn_l9 on = T such that α , ^ and σy have a common face of dimension

at least one, for / = 1,2,...,/?.

Theorem 3 of [32] states that if X is an infinite, locally finite, and

two-dimensionally connected polyhedron, then any map G: X -* X is

homotopic to a fixed point free map. As explained above, we require a

"relative to A" version.

Note that if G: X -> X is a map such that G(A) c A, then G is

(trivially) retractible onto A and its retract g: A -* A is just the restriction

of G to A.

THEOREM 6.2. Suppose X is a locally finite polyhedron and A is a finite

subpolyhedron such that each component of X — A is infinite and two-dimen-

sionally connected. If F: X -> X is a map such that G(A) c A, then there

exists a map G'\ X -+ Xhomotopic to Grel A such that Fix(G') = Fix(G\A).

Proof. By Theorem 6.1, we assume that each fixed point of G in

X — A is isolated and in a maximal simplex. We may apply the proof of

Theorem 1 of [32] to each component of X - A to obtain the map G\ if

we make the following observations. Let U be a component of X - A. The

one-complex R of Shi's proof has vertices in a one-to-one correspondence,

all the correspondence ψ, with the maximal simplexes of U. For σ1? σ2

maximal simplices of U9 we will require that the vertices ψ(σx), ψ(σ2) of R

form a one-simplex of R if, and only if, σλ and σ2 have a common face //ι

U of dimension at least one. The hypothesis that U is two-dimensionally

connected implies that R is connected. Then, in the last part of the proof

of Shi's Theorem 1, when his Lemma 1 is used, the definition of R above

assures us that the homotopy is relative to the boundary of £/, which is a

subset of A. D

Theorem 6.2 has some consequences that are of interest in themselves,

independent of the minimality theorem.

COROLLARY 6.3. Suppose X is a locally finite polyhedron and A is a

finite subpolyhedron such that each component of X — A is infinite and

two'dimensionally connected. If G: X -> X is a map such that G(A) c A

and the restriction g: A -> A is fixed point free, then there exists a fixed

point free map G': X -» X homotopic to Grel A.

COROLLARY 6.4. Let A be a finite polyhedron in the euclidean space R"

such that Rn — A is connected. Given a fixed point free map g: A -> A9 there

exists a fixed point free map G: R" -» R" extending g.

Proof. The hypothesis that Rn — A is connected forces n > 2 so

R" — A is an open ^-manifold, n > 2, and therefore is two-dimensionally
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connected. Since R" has the absolute extension property, there is a map
G'\ W -> R" extending g. Now apply Theorem 6.2. D

To see that we must require that Rn - A be connected, consider the
antipodal map g on the unit circle in R2. Any extension of g to R2

produces a map of the unit disc into R2 taking the boundary back into the
disc. Such a map must have a fixed point by the Poincare-Bohl Theorem
(Theorem 1.2).

7. The Minimality Theorem. A point x in a space X is a local
separating (= cut) point if there is a connected neighborhood U of x in X
such that U — {x} is disconnected.

Let X be a space and let A be a subspace of X A map /: 4̂ -»^4 is
X-extendable if there exists a map F': X -> X such that J7'!^ = /.

The term "extendable" is sometimes used by itself for the concept we
have called X-extendable [11; page 176], [25; page 22]. However, since, for
example, the identity map on the unit circle is extendable over the plane
as a map into the plane but not as a map into the circle, it is important to
specify the range of the extension (compare [7; page 13]).

PROPOSITION 7.1. Suppose X is an ANR and A is a subset of X Each of
the following three conditions is sufficient for a map /: A -> A to be
X-extendable:

(i) A is a retract ofX;
(ii) X is contractible;
(iii) / = pFr. A -> A is a retract of a map F: X -» X and p: X -> A is a

deformation retraction.

Proof, (i) Let r: X -> A be the retraction and set F' = tfr: X -> X
where L: A -» X is inclusion, (ii) Since X is an absolute retract, it is an
absolute extensor so ιf\A-+X extends to a map Ff\ X -> X (iii) Of
course Ft: A -» X extends to F: X -> X. Since p is a deformation
retraction, tf = φFt: 4̂ -> X is homotopic to FA. NOW X is an ANR, so /
extends to a map i7': X -> X homotopic to JF by the Homotopy Extension
Theorem. D

EXAMPLE. We will show that part (iii) of Proposition 7.1 fails if p is
assumed only to be a retraction of the sort we used in §3, rather than a
deformation retraction of X onto A. Let em denote a closed m-cell. As a
spherical complex, the quaternionic projective plane HP2 can be written
in the form e° U e4 U es (we omit the attaching maps from our notation).
The 4-sphere e° U e4 generates H4(HP2; Z). Let X = HP2 X R and
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A = (e° U e4) X {0}, then define F: X -> X by F(?, 0 = (#,* + 1) for
^ e H P 2 , / e R. Identify (e° U e4) X {t} with S 4 c R5 for each r e R
and define a retraction

p: (e°U e4) X{O,1} = Λ U F(A) -* A

by P(?> 0 = (( — IJ^O)- Then F is retractible onto Λt with the retract
defined by/(#,0) = (-#,0), which is of degree - 1 on A. Suppose/were
X-extendable to a map F'\ X -» X, then i7 ' induces

F'*: H4{X\ Z) -> i ί 4 (X; Z) = i / 4 ( H P 2 ; Z)

and F'*(ω) = - ω for co a generator of H4(X; Z). But a Steenrod algebra
argument due to Glen Bredon (see [8; page 192]) shows that such a map
F' cannot exist.

We come now to the main result of this section.

THEOREM 7.2 (Minimality Theorem.) Suppose X is a locally finite
polyhedron and A is a finite subpolyhedron without local separating points,
but not a surface of negative Euler characteristic, such that each component
of X — A is infinite and two-dimensionally connected. If a map F: X -> X is
retractible to an X-extendable map /: A -> A9 then there exists a map G:
X -> X retractible to a map g: A -> A homotopic to f such that G has exactly
N(f) fixed points.

Proof. By Theorem 5.3 of [19], there exists a map g: A -> A homo-
topic t o / such that g has exactly N(f) fixed points. Since/is JΓ-extenda-
ble and X is an ANR, the Homotopy Extension Theorem permits us to
extend g to a map G'\ X -* X. Theorem 6.2 completes the argument by
producing the required map G on X. Notice that G{A) = G\A) = g(A)
c A so G is, trivially, retractible onto A. D

The next result furnishes many examples of the use of the Minimality
Theorem.

THEOREM 7.3. Let A be a compact triangulated n-manifold with non-
empty boundary inW, n > 3, such that A has a spine of dimension less than
n — 1. If a map F: Rn -> R" is retractible onto A with retract /: A -> A,
then there exists a map G: W -> R" retractible to a map g: A -> A
homotopic to f such that G has exactly N(f) fixed points.

Proof. Since A is an w-manifold, n > 3, it is not a surface and it has
no local separating points. Its complement X — A is connected by
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Alexander duality [33; page 296] and it is an open ^-manifold, so it is
two-dimensionally connected. The map / is R"-extendable by part (ii) of
Proposition 7.1. •

Propositions 4.1, 4.2 and 4.3 all provide examples of maps satisfying
the hypotheses of Theorem 7.3. For instance,

COROLLARY 7.4. Let A be a compact n-manifold, n > 7, with nonempty

boundary dA such that ^(A, dA) = 0 for all i < 3 and suppose A is

embedded in R" as a subpolyhedron. Let Y be a complementary spine of A in

Sn = R" U {co} with oc e Y. If F: Rn -> R" is a map such that F(A) Π Y

= 0 and F(dA) c A9 then every map retractίble onto A with retract

homotopic to f: A -> A, the retract of F with respect to a retraction of

R" — Y onto A, has at least N(f) fixed points and one such map has exactly

N(f) fixed points.

Proof. The homotopy condition implies that A has a spine of dimen-
sion less than n - 1 [34]. The map F is retractible onto A by Proposition
4.2. Proposition 3.3 and Theorem 7.3 complete the proof. D

In the setting of the dr maps of §5, the Minimality Theorem has the
following form.

THEOREM 7.5. Suppose X is a locally finite polyhedron and F: X -> X is

a dr map. Suppose also that F has a retract f: A —> A with respect to a

deformation retraction and Fix(/) = Fix(,F) Π A, where A is a finite sub-

polyhedron of X with no local separating points, but A is not a surface of

negative Euler characteristic, and such that each component of X — A is

infinite and two-dimensionally connected. Then there exists a dr map G:

X -> X homotopic to F such that G has exactly D(F) fixed points.

Proof. Any retract of F with respect to a deformation retraction is
Jf-extendable by part (iii) of Proposition 7.1. Furthermore, any such
extension is homotopic to F. The required map G is produced by Theorem
7.2 if we note that by using the full statement of Theorem 6.2 in the proof
we obtain a map homotopic to F. The map G is dr because G{A) c A so
we may use the deformation retraction of X onto A, that we know exists
because F is a dr map, to satisfy the same requirement for G. D

The material of §4 can again supply examples, now of maps satisfying
the hypotheses of Theorem 7.5. For instance, corresponding to Proposi-
tion 4.1 we have
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COROLLARY 7.6. Let A = A(k, ε) be a solid torus in Rn and let

X = {(*!,... 9xn) e R"!^2 + x\ φ 0}. // a map F: X -> X w weαfc/y I/I-

wα/tf oτ? &4, /Λeπ i 7 is a dr map and there exists a dr map G: X -* X

homotopic to F such that G has exactly D(F) fixed points.

Finally, the Minimality Theorem gives us the following result, related

to Corollary 6.3, concerning fixed point free maps.

COROLLARY 7.7. Suppose X is a locally finite polyhedron and A is a

finite subpolyhedron without local separating points, but not a surface with

negative Euler characteristic, such that each component of X — A is infinite

and two-dimensionally connected. If a map F: X -» X is retractible to an

X-extendable map f: A -> A with N(f) = 0 (equivalently, f is homotopic to

a fixed point free map), then there exists a fixed point free map G: X -* X

such that G(A) c A and g, the restriction of G to A, is homotopic to f.
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