ON THE HOMOLOGY OF SPACES OF SECTIONS OF COMPLEX PROJECTIVE BUNDLES

Jesper Michael Møller

Abstract

By means of a Moore-Postnikov decomposition we compute the first homology groups of some spaces of sections of projective bundles associated to complex vector bundles.

1. Introduction. Let $P \xi: P(V) \rightarrow X$ be the projective bundle associated to a complex ($n+1$)-dimensional vector bundle $\xi: V \rightarrow X, n \geq 1$, over a connected CW-complex X. Suppose that $P \xi$ admits a section u : $X \rightarrow P(V)$ and consider the space Γ_{u} of all sections vertically homotopic to u. In this paper we discuss the (co)-homology of Γ_{u} using the construction by Thom-Haefliger [1] of Γ_{u} as an inverse limit derived from the Moore-Postnikov factorization of $P \xi$. Explicit formulas for some (co-)homology groups of Γ_{u} are obtained provided $X=T$ is a closed, orientable surface, $X=P^{m}, 1 \leq m \leq n$, is a complex projective space, or $X=$ $L^{2 m+1}(p), 1 \leq m<n, p$ odd, is a lens space.

If ξ is trivial, then Γ_{u} is a (path-)component of the space $M\left(X, P^{n}\right)$ of maps of X into P^{n}, so in particular we obtain formulas for some homology groups of the components of $M\left(X, P^{n}\right)$. In fact, sufficient information is obtained to show that two components of $M\left(T, P^{n}\right)$ or $M\left(P^{m}, P^{n}\right), 1 \leq m \leq n$, are homotopy equivalent if and only if their associated degrees have the same absolute value.

The work presented here was inspired by the paper [4], in turn inspired by [2], in which Larmore and Thomas computed the fundamental group of some spaces of sections of real projective bundles associated to real vector bundles. In contrast to [4] we avoid, however, the use of twisted coefficients, for $P \xi$ is orientable, and the focus will be on homology groups rather than homotopy groups.
2. Moore-Postnikov factorizations of projective bundles. Since the projective bundle $P \xi: P(V) \rightarrow X$, having a connected structure group, is
orientable, it admits a Moore-Postnikov factorization of the following type

$$
\begin{array}{ccccc}
& & P(V) \\
& & & \\
K(\mathbf{Z} / 2,2 n+2) & \rightarrow & E_{3} & & \\
& & p_{3} \downarrow & & \\
K(\mathbf{Z}, 2 n+1) & \rightarrow & E_{2} & \xrightarrow{k^{2 n+3}} & K(\mathbf{Z} / 2,2 n+3) \\
& & p_{2} \downarrow & & \\
K(\mathbf{Z}, 2) & \rightarrow & E_{1} & \xrightarrow{k^{2 n+2}} & K(\mathbf{Z}, 2 n+2) \\
& & p_{1} \downarrow & & \\
& & X & \xrightarrow{k^{3}} & K(\mathbf{Z}, 3)
\end{array}
$$

where the k-invariants k^{3} and $k^{2 n+2}$ are given in
Lemma 2.1. $k^{3}=0, E_{1}=X \times K(\mathbf{Z}, 2)$ and

$$
k^{2 n+2}=\sum_{i=0}^{n+1}(-1)^{i} c_{i}(\xi) \otimes a^{n+1-i}
$$

where a is a generator of $H^{2}(\mathbf{Z}, 2 ; \mathbf{Z})$ and $c_{i}(\xi) \in H^{2 i}(X ; \mathbf{Z}), 1 \leq i \leq n+1$, are the Chern classes of ξ.

Proof. Choose an imbedding i : $V \rightarrow X \times \mathbf{C}^{\infty}$ of ξ into the trivial infinite dimensional vector bundle over X. The induced map $P(i): P(V)$ $\rightarrow P\left(X \times C^{\infty}\right)=X \times P^{\infty}$ is then an imbedding of $P \xi$ into the trivial infinite-dimensional projective bundle over X and $P(i)^{*}(\lambda)=\lambda_{\xi}$, where λ_{ξ} and λ are the canonical line bundles ([3], p. 233) over $P(V)$ and $X \times P^{\infty}$ respectively.

Since the restriction of $P(i)$ to the fiber is the usual imbedding of P^{n} into P^{∞}, we may take $E_{1}=X \times P^{\infty}$ and $p_{1}=\mathrm{pr}_{1}: E_{1}=X \times P^{\infty} \rightarrow X$ as the first stage in the Moore-Postnikov factorization of $P \xi$.

By the defining relation ([3], Definition 2.6, p. 234) for the Chern classes of ξ, we have

$$
P(i)^{*}\left(\sum_{i=0}^{n+1}(-1)^{i} c_{i}(\xi) \otimes a^{n+1-i}\right)=\sum_{i=0}^{n+1}(-1)^{i} c_{l}(\xi) c_{1}\left(\lambda_{\xi}\right)^{n+1-i}=0
$$

for $P(i)^{*}$ is an $H^{*}(X)$-module homomorphism and $P(i)^{*}(1 \otimes a)=$ $P(i)^{*} c_{1}(\lambda)=c_{1}\left(\lambda_{\xi}\right)$. Since $H^{*}(P(V))$ is free $H^{*}(X)$-module by the

Leray-Hirsch Theorem ([3], Theorem 1.1, p. 231), it follows in fact that

$$
k^{2 n+2}=\sum_{i=0}^{n+1}(-1)^{i} c_{i}(\xi) \otimes a^{n+1-i}
$$

generates $H^{2 n+2}(X \times K(\mathbf{Z}, 2) ; \mathbf{Z}) \cap$ kern $P(i)^{*}$.
Assume for the rest of this section that $\operatorname{dim} X<2 n+1$. For $i=$ $1,2,3$, let Γ_{i} be the space of sections of $E_{i} \rightarrow X$ vertically homotopic to u_{i}, where $u_{3}=q u, u_{2}=p_{3} u_{3}$ and $u_{1}=p_{2} u_{2}$. According to ($\left.[\mathbf{1}], \S 2\right)$ there is then an induced tower of fibrations

$$
\begin{array}{rlrlll}
& & \Gamma_{u} \\
q \downarrow \\
K(\mathbf{Z} / 2,2 n+2)^{X} & \rightarrow & & \\
& & \Gamma_{3} & & \\
p_{3} \downarrow & & \\
K(\mathbf{Z}, 2 n+1)^{X} & & \rightarrow & \Gamma_{2} & \underline{k}^{2 n+3} & K(\mathbf{Z} / 2,2 n+3)^{X} \\
& & p_{2} \downarrow & & \\
& & \Gamma_{1} & \underline{k}^{2 n+2} & K(\mathbf{Z}, 2 n+2)^{X}
\end{array}
$$

where $\underline{k}^{2 n+i}$ denotes the map defined by composition with $k^{2 n+i}, i=2,3$. Moreover, $p_{3}: \Gamma_{3} \rightarrow \Gamma_{2}$ is the pull-back along $\underline{k}^{2 n+3}$ of the path space fibration over $K(\mathbf{Z} / 2,2 n+3)^{X}$ and $p_{2}: \Gamma_{2} \rightarrow \Gamma_{1}$ is the pull-back along $\underline{k}^{2 n+2}$ of the path space fibration over $K(\mathbf{Z}, 2 n+2)^{X}$.

There is a homotopy equivalence

$$
h: K(\mathbf{Z}, 2) \times F_{0}(X, K(\mathbf{Z}, 2)) \rightarrow \Gamma_{1}
$$

where $F_{0}(X, K(\mathbf{Z}, 2)) \subset K(\mathbf{Z}, 2)^{X}$ denotes the space of based, null-homotopic maps of X into $K(\mathbf{Z}, 2)$. Note that $F_{0}(X, K(\mathbf{Z}, 2))=K\left(H^{1}(X ; \mathbf{Z}), 1\right)$; see e.g. ([1], §1). For $y \in K(\mathbf{Z}, 2), \alpha \in F_{0}(X, K(\mathbf{Z}, 2))$ and $x \in X$, the homotopy equivalence h is given by $h(y, \alpha)(x)=(x, y \cdot \alpha(x) \cdot \mu(x))$, where the multiplication refers to the H-space structure of $K(\mathbf{Z}, 2)$ and where $\mu: X \rightarrow K(\mathbf{Z}, 2)$ is the second component of the section $u_{1}: X \rightarrow E_{1}$ $=X \times K(\mathbf{Z}, 2)$.

Via h, the adjoint of $\underline{k}^{2 n+2}$ may be identified with a map

$$
f^{2 n+2}: K(\mathbf{Z}, 2) \times K\left(H^{1}(X ; \mathbf{Z}), 1\right) \times X \rightarrow K(\mathbf{Z}, 2 n+2)
$$

In order to identify $f^{2 n+2}$ as a cohomology class, let $c_{1}(u) \in$ $H^{2}(X ; \mathbf{Z})$ denote $c_{1}\left(u^{*}\left(\lambda_{\xi}\right)\right)=\mu^{*}(a)$, let $\left\{x_{j}\right\}$ be a free basis of $H^{1}(X ; \mathbf{Z})$, and let $\left\{x_{j}^{\prime}\right\}$ be the dual basis of $H^{1}\left(H^{1}(X ; \mathbf{Z}), 1 ; \mathbf{Z}\right)=$ $\operatorname{Hom}\left(H^{1}(X ; \mathbf{Z}), \mathbf{Z}\right)$.

Lemma 2.2. The homotopy class of $f^{2 n+2}$ is given by

$$
\begin{aligned}
f^{2 n+2}= & \sum_{i=0}^{n+1}(-1)^{i}\left(1 \otimes 1 \otimes c_{i}(\xi)\right) \\
& \cup\left(a \otimes 1 \otimes 1+1 \otimes 1 \otimes c_{1}(u)+\sum_{j} 1 \otimes x_{j}^{\prime} \otimes x_{j}\right)^{n+1-i}
\end{aligned}
$$

Proof. Let $g: K(\mathbf{Z}, 2) \times F_{0}(X, K(\mathbf{Z}, 2)) \times X \rightarrow X \times K(\mathbf{Z}, 2)$ be the map given by $g(y, \alpha, x)=(x, y \cdot \alpha(x) \cdot \mu(x))$. Then

$$
\begin{gathered}
g^{*}\left(c_{i}(\xi) \otimes 1\right)=1 \otimes 1 \otimes c_{i}(\xi) \\
g^{*}((1 \otimes a))=a \otimes 1 \otimes 1+1 \otimes 1 \otimes c_{1}(u)+\sum_{j} 1 \otimes x_{j}^{\prime} \otimes x_{j}
\end{gathered}
$$

for it follows from ([1], §1) that $e=\sum_{j} x_{j}^{\prime} \otimes x_{j}$, where $e: F_{0}(X, K(\mathbf{Z}, 2)) \times$ $X \rightarrow K(\mathbf{Z}, 2)$ is the evaluation map $e(\alpha, x)=\alpha(x)$.

As $f^{2 n+2}=g^{*}\left(k^{2 n+2}\right)$, Lemma 2.2 is now a consequence of Lemma 2.1.

As a special case of the above result we emphasize
Corollary 2.3. Suppose $H^{1}(X ; \mathbf{Z})=0$. Then

$$
f^{2 n+2}=\sum_{i=0}^{n+1} \sum_{j=0}^{n+1-i}(-1)^{i}\binom{n+1-i}{j} a^{n+1-i-j} \otimes c_{i}(\xi) c_{1}(u)^{j}
$$

Let Γ denote the space of all sections of $P \xi$. By associating to each section $u \in \Gamma$ the cohomology class $c_{1}(u)=c_{1}\left(u^{*}\left(\lambda_{\xi}\right)\right)$ of the induced line bundle over X we get a map $c_{1}: \pi_{0}(\Gamma) \rightarrow H^{2}(X ; \mathbf{Z})$ from the set $\pi_{0}(\Gamma)$ of (path-)components of Γ to $H^{2}(X ; \mathbf{Z})$. Since $c_{1}(u)=\mu^{*}(a)$, an easy application of obstruction theory shows

Proposition 2.4. The map

$$
c_{1}: \pi_{0}(\Gamma) \rightarrow H^{2}(X ; \mathbf{Z})
$$

is bijective when $\operatorname{dim} X<2 n+1$.

With this classification of the set of vertical homotopy classes of sections of $P \xi$, we conclude $\S 2$. The following sections contain examples of applications of the above results to the computation of the homology of Γ_{u}.
3. Sections of projective bundles over surfaces. Suppose $X=T$ is a closed, orientable surface of genus $g \geq 0$. By Proposition 2.4, the space Γ of sections of the projective bundle $P \xi: P(V) \rightarrow T$ has a countably infinite number of components classified by $H^{2}(T ; \mathbf{Z})$. The component $\Gamma_{u} \subset \Gamma$ containing the section $u: T \rightarrow P(V)$ determines as in $\S 2$ a sequence of fibrations

$$
\begin{aligned}
& \Gamma_{u} \\
& q \downarrow \\
& \prod_{i=0}^{2} K\left(H^{2-i}(T ; \mathbf{Z} / 2), 2 n+i\right) \quad \rightarrow \Gamma_{3} \\
& K(\mathbf{Z}, 2) \times K\left(H^{1}(T ; \mathbf{Z}), 1\right) \quad=\Gamma_{1} \xrightarrow{p_{2} \downarrow} \begin{array}{l}
\underline{k}^{2 n+2}
\end{array} \prod_{i=0}^{2} K\left(H^{2-i}(T ; \mathbf{Z}), 2 n+i\right)
\end{aligned}
$$

where we have identified the fibers as well as the space $K(\mathbf{Z}, 2 n+2)^{T}$ with products of Eilenberg-MacLane spaces ([1], §1). For $i=0,1,2$, let

$$
\underline{k}_{i}^{2 n+2} \in H^{2 n+i}\left(\Gamma_{1} ; \mathbf{Z}\right) \otimes H^{2-i}(T ; \mathbf{Z})
$$

be the components of $\underline{k}^{2 n+2}$ corresponding to the splitting of

$$
K(\mathbf{Z}, 2 n+2)^{T} .
$$

Choose generators $A_{j}, B_{j} \in H^{1}(T ; \mathbf{Z}), 1 \leq j \leq g$, such that $A_{i} A_{j}=$ $B_{i} B_{j}=0$ and $A_{i} B_{j}=\delta_{i j} U$, where U generates $H^{2}(T ; \mathbf{Z})$, and let as before $A_{j}^{\prime}, B_{j}^{\prime}$ be the dual generators of $H^{1}\left(H^{1}(T ; \mathbf{Z}), 1 ; \mathbf{Z}\right)$.

Lemma 3.1. The components $\underline{k}_{i}^{2 n+2}$ of $\underline{k}^{2 n+2}$ are

$$
\begin{aligned}
\underline{k}_{0}^{2 n+2}= & (n+1) a^{n} \otimes 1 \otimes c_{1}(u)-a^{n} \otimes 1 \otimes c_{1}(\xi) \\
& -n(n+1) a^{n-1} \otimes \sum_{j=1}^{g} A_{j}^{\prime} B_{j}^{\prime} \otimes U \\
\underline{k}_{1}^{2 n+2}= & (n+1) \sum_{j=1}^{g}\left(a^{n} \otimes A_{j}^{\prime} \otimes A_{j}+a^{n} \otimes B_{j}^{\prime} \otimes B_{j}\right) \\
\underline{k}_{2}^{2 n+2}= & a^{n+1} \otimes 1 \otimes 1 .
\end{aligned}
$$

Proof. Let

$$
e=\sum_{j=1}^{g}\left(A_{j}^{\prime} \otimes A_{j}+B_{j}^{\prime} \otimes B_{j}\right) \in H^{2}\left(F_{0}(T, K(\mathbf{Z}, 2)) \times T ; \mathbf{Z}\right)
$$

be the evaluation map $e: F_{0}(T, K(\mathbf{Z}, 2)) \times T \rightarrow K(\mathbf{Z}, 2)$. Then

$$
e^{2}=-2 \sum_{j=1}^{g} A_{j}^{\prime} B_{j}^{\prime} \otimes U
$$

while $e^{3}=0$. Lemma 2.2 then shows that the adjoint $f^{2 n+2}$ of $\underline{k}^{2 n+2}$ is

$$
\begin{aligned}
f^{2 n+2}= & \left(a \otimes 1 \otimes 1+1 \otimes 1 \otimes c_{1}(u)+1 \otimes e\right)^{n+1} \\
& -\left(1 \otimes 1 \otimes c_{1}(\xi)\right)\left(a \otimes 1 \otimes 1+1 \otimes 1 \otimes c_{1}(u)+1 \otimes e\right)^{n} \\
= & a^{n+1} \otimes 1 \otimes 1+(n+1) a^{n} \otimes 1 \otimes c_{1}(u)-a^{n} \otimes 1 \otimes c_{1}(\xi) \\
& +(n+1) a^{n} \otimes \sum_{j=1}^{g}\left(A_{j}^{\prime} \otimes A_{j}+B_{j}^{\prime} \otimes B_{j}\right) \\
& -n(n+1) a^{n-1} \otimes \sum_{j=1}^{g} A_{j}^{\prime} B_{j}^{\prime} \otimes U
\end{aligned}
$$

and from this formula we can read off ($[1], \S 1$) the expressions for $\underline{k}_{i}^{2 n+2}$, $i=0,1,2$.

Let $t(u) \in \mathbf{Z}$ be the integer determined by the equation

$$
t(u) U=(n+1) c_{1}(u)-c_{1}(\xi)
$$

in $H^{2}(T ; \mathbf{Z})$. Then we may write

$$
\underline{k}_{0}^{2 n+2}=t(u) a^{n} \otimes 1 \otimes U-n(n+1) a^{n-1} \otimes \sum_{j=1}^{g} A_{j}^{\prime} B_{j}^{\prime} \otimes U
$$

As the main result of this section now follows

Theorem 3.2. The first $2 n-1$ integral homology groups of Γ_{u} are given by

$$
H_{r}\left(\Gamma_{u} ; \mathbf{Z}\right)= \begin{cases}H_{r}\left(\Gamma_{1} ; \mathbf{Z}\right), & 0 \leq r<2 n-1 \\ H_{2 n-1}\left(\Gamma_{1} ; \mathbf{Z}\right) \oplus Z_{u}, & r=2 n-1\end{cases}
$$

where $Z_{u}=\mathbf{Z} /|t(u)| \otimes \mathbf{Z} / n(n+1)$ if $g>0$ and $Z_{u}=\mathbf{Z} /|t(u)|$ if $T=S^{2}$ is the 2-sphere.

Proof. Since the fibres of both $q: \Gamma_{u} \rightarrow \Gamma_{3}$ and $p_{3}: \Gamma_{3} \rightarrow \Gamma_{2}$ have vanishing reduced integral cohomology groups in dimension $\leq 2 n$, it follows that $H^{r}\left(\Gamma_{u} ; \mathbf{Z}\right)=H^{r}\left(\Gamma_{2} ; \mathbf{Z}\right)$ for $r \leq 2 n$.

To compute $H^{r}\left(\Gamma_{2} ; \mathbf{Z}\right)$ we consider the Leray-Serre cohomology
spectral sequence $\left\{E_{s}^{p q}\right\}$ with integral coefficients associated to $p_{2}: \Gamma_{2} \rightarrow$ Γ_{1}. We have $E_{2}^{p q}=0$ for $0<q<2 n-1$ while $E_{2}^{0,2 n-1} \cong \mathbf{Z}$ and $E_{2}^{1,2 n-1}$ $\cong H^{1}(T ; \mathbf{Z}) \cong E_{2}^{0,2 n}$. Since $p_{2}: \Gamma_{2} \rightarrow \Gamma_{1}$ is induced by $\underline{k}^{2 n+2}$ from the path space fibration over $K(\mathbf{Z}, 2 n+2)^{T}$, the first non-trivial differential $d_{2 n}$: $E_{2}^{0,2 n-1} \rightarrow E_{2}^{2 n, 0}$ is determined by $\underline{k}_{0}^{2 n+2}$. Assuming that $g>0$, we conclude that $E_{\infty}^{0,2 n-1}=0$ while

$$
E_{\infty}^{2 n, 0}=H^{2 n}\left(\Gamma_{1} ; \mathbf{Z}\right) / \mathbf{Z} \cdot\left(t(u) a^{n} \otimes 1-n(n+1) a^{n-1} \otimes \sum A_{j}^{\prime} B_{j}^{\prime}\right)
$$

It follows that $H^{r}\left(\Gamma_{u} ; \mathbf{Z}\right)=H^{r}\left(\Gamma_{1} ; \mathbf{Z}\right)$ for $0 \leq r \leq 2 n-1$. Moreover, since $E_{2}^{1,2 n-1}$ and $E_{2}^{0,2 n}$ are free abelian groups, the torsion subgroup of $H^{2 n}\left(\Gamma_{u} ; \mathbf{Z}\right)$ equals the torsion subgroup, $\mathbf{Z} /|t(u)| \otimes \mathbf{Z} / n(n+1)$, of $E_{\infty}^{2 n, 0}$.

Using the extra information contained in Lemma 3.1, the reader may carry the analysis of the spectral sequence a little further and compute $H^{2 n}\left(\Gamma_{u} ; \mathbf{Z}\right)$.

Let R_{u} be the subring of $H^{*}\left(\Gamma_{u} ; \mathbf{Z}\right)$ generated by all cohomology classes of degree ≤ 2 and let T_{u} be R_{u} truncated above degree $2 n$. The proof of Theorem 3.2 shows that

$$
T_{u}=\mathbf{Z}[a] \otimes \Lambda\left(A_{1}^{\prime}, B_{1}^{\prime}, \ldots, A_{g}^{\prime}, B_{g}^{\prime}\right) / I_{u}
$$

where $I_{u} \subset \mathbf{Z}[a] \otimes \Lambda\left(A_{1}^{\prime}, B_{1}^{\prime}, \ldots, A_{g}^{\prime}, B_{g}^{\prime}\right)$ is the ideal generated by

$$
t(u) a^{n} \otimes 1-n(n+1) a^{n-1} \otimes \sum A_{j}^{\prime} B_{j}^{\prime}
$$

together with all elements of degree $>2 n . T_{u}$ is a homotopy invariant of Γ_{u}, so from the fact (pointed out to me by A. Thorup) that

$$
T_{u}^{2 n} /\left\langle T_{u}^{1}\right\rangle^{2 n}=\mathbf{Z} /|t(u)|
$$

where $\left\langle T_{u}^{1}\right\rangle$ is the ideal of T_{u} generated by all elements of degree 1 , we obtain

Corollary 3.3. Let v: $T \rightarrow P(V)$ be a section that is not vertically homotopic to u. If Γ_{u} is homotopy equivalent to Γ_{v}, then

$$
(n+1)\left(c_{1}(u)+c_{1}(v)\right)=2 c_{1}(\xi)
$$

As a special case we take as ξ the trivial $(n+1)$-dimensional vector bundle over T. Then $\Gamma=M\left(T, P^{n}\right)$ is the space of maps of T into P^{n} and $\Gamma_{u}=M_{k}\left(T, P^{n}\right)$ is the component consisting of maps of degree $k=c_{1}(u)$.

Corollary 3.4. Two components of $M\left(T, P^{n}\right)$ are homotopy equivalent if and only if their associated degrees have the same absolute value.

This result was also obtained for $n=1$ in [2] and for $g=0$ in [5].
In the nonorientable case we get

Proposition 3.5. Suppose that the base space $X=U_{h}$ is a closed, nonorientable surface of genus $h>1$. Then there is $a(2 n-1)$-connected map

$$
p_{1}: \Gamma_{u} \rightarrow \Gamma_{1}=K(\mathbf{Z}, 2) \times K\left(\mathbf{Z}^{h-1}, 1\right)
$$

and

$$
H_{2 n-1}\left(\Gamma_{u} ; \mathbf{Z} / 2\right) \cong H_{2 n-1}\left(\Gamma_{1} ; \mathbf{Z} / 2\right) \oplus Z_{u}
$$

where

$$
Z_{u}= \begin{cases}\mathbf{Z} / 2 & \text { if }(n+1) c_{1}(u)=c_{1}(\xi) \\ 0 & \text { if }(n+1) c_{1}(u) \neq c_{1}(\xi)\end{cases}
$$

In particular the two components of Γ_{u} are not homotopy equivalent when n is even.

Depending on knowledge of the cup square e^{2}, the above method actually makes possible the computation of the first $2 n-1$ homology groups of Γ_{u} when the base space X is any 2 -dimensional CW-complex.
4. Sections of projective bundles over projective spaces. In this section we assume that the base space $X=P^{m}$ is the complex projective m-space, $1 \leq m \leq n$. The space of sections Γ then has a countably infinite number of components classified by $H^{2}\left(P^{m} ; \mathbf{Z}\right)$. The component $\Gamma_{u} \subset \Gamma$, containing the section $u: P^{m} \rightarrow P(V)$, determines a tower of fibrations

$$
\begin{array}{rlcl}
& \begin{array}{c}
\Gamma_{u} \\
\\
\\
\prod_{i=0}^{m} K(\mathbf{Z} / 2,2 n-2 m+2+2 i)
\end{array} & \rightarrow & \Gamma_{3} \\
& & \downarrow \\
\prod_{i=0}^{m} K(\mathbf{Z}, 2 n-2 m+1+2 i) & \rightarrow & \Gamma_{2} & \\
& & \downarrow & \\
K(\mathbf{Z}, 2) & = & \Gamma_{1} \xrightarrow{\underline{k}^{2 n+2}} \prod_{i=0}^{m} K(\mathbf{Z}, 2 n-2 m+2+2 i)
\end{array}
$$

where the fibers are products of Eilenberg-MacLane spaces.

Let $a_{m} \in H^{2}\left(P^{m} ; \mathbf{Z}\right)$ be a generator and let $t(u) \in \mathbf{Z}$ be the integer determined by the equation

$$
t(u) a_{m}^{m}=\sum_{i=0}^{m}(-1)^{i}\binom{n+1-i}{n+1-m} c_{i}(\xi) c_{1}(u)^{m-i}
$$

in $H^{2 m}\left(P^{m} ; \mathbf{Z}\right)$. Then by Corollary 2.3, the first component $\underline{k}_{0}^{2 n+2} \in$ $H^{2 n-2 m+2}(\mathbf{Z}, 2 ; \mathbf{Z}) \otimes H^{2 m}\left(P^{m} ; \mathbf{Z}\right)$ of the map $\underline{k}^{2 n+2}$ is

$$
\underline{k}_{0}^{2 n+2}=t(u) a^{n-m+1} \otimes a_{m}^{m}
$$

By a spectral sequence argument similar to that of $\S 3$ we get
Theorem 4.1. For $0 \leq r<2 n-2 m+1, H^{r}\left(\Gamma_{u} ; \mathbf{Z}\right)=H^{r}(\mathbf{Z}, 2 ; \mathbf{Z})$, while the $(2 n-2 m+1)$ - and $(2 n-2 m+2)$-dimensional integral cohomology groups of Γ_{u} are determined by the exact sequence

$$
0 \rightarrow H^{2 n-2 m+1}\left(\Gamma_{u}\right) \rightarrow \mathbf{Z} \xrightarrow{d_{u}} \mathbf{Z} \rightarrow H^{2 n-2 m+2}\left(\Gamma_{u}\right) \rightarrow 0
$$

where d_{u} is multiplication by $t(u)$.
With the trivial $(n+1)$-plane bundle as ξ, this yields
Corollary 4.2. For $k \in \mathbf{Z}$, let $M_{k}\left(P^{m}, P^{n}\right)$ be the space of maps of degree k of P^{m} into $P^{n}, 1 \leq m \leq n$. Then

$$
H_{2 n-2 m+1}\left(M_{k}\left(P^{m}, P^{n}\right) ; \mathbf{Z}\right)=\mathbf{Z} /\binom{n+1}{m}|k|^{m}
$$

This result, which also was obtained in [5] by a different method, shows that two components of $M\left(P^{m}, P^{n}\right)$ are homotopy equivalent if and only if their associated degrees have the same absolute value.
5. Sections of projective bundles over lens spaces. As an example where the space Γ has a finite number of components we shall here consider $X=L^{2 m+1}(p)$, the lens space obtained by letting \mathbf{Z} / p act on $S^{2 m+1}$ in the usual way. Throughout this section we assume that $1 \leq m<n$ and that p is odd. By Proposition 2.4, the components of Γ are classified by $H^{2}\left(L^{2 m+1}(p) ; \mathbf{Z}\right) \cong \mathbf{Z} / p$.

As above, let $\Gamma_{u} \subset \Gamma$ be the component containing the section u : $L^{2 m+1}(p) \rightarrow P(V)$ of $P \xi$. After inserting an extra stage in the MoorePostnikov decomposition of $P \xi$ and noting that

$$
H^{r}\left(L^{2 m+1}(p) ; \mathbf{Z} / 2\right)= \begin{cases}\mathbf{Z} / 2, & r=0,2 m+1 \\ 0, & \text { otherwise }\end{cases}
$$

we obtain the following tower of fibrations

$$
\begin{array}{rll}
& \Gamma_{u} \\
& & \downarrow \\
K(\mathbf{Z} / 2, t+2) \times K(\mathbf{Z} / 2,2 n+3) & \rightarrow & \Gamma_{4} \\
K(\mathbf{Z} / 2, t+1) \times K(\mathbf{Z} / 2,2 n+2) & \rightarrow & \downarrow \\
& & \Gamma_{3} \\
& \\
K(\mathbf{Z}, t) \times \prod_{i=0}^{m} K(\mathbf{Z} / p, t+1+2 i) & \rightarrow & \Gamma_{2} \\
& & \downarrow \\
& & \\
K(\mathbf{Z}, 2) & & \Gamma_{1} \xrightarrow{\underline{k}^{2 n+2}} K(\mathbf{Z}, t+1) \times \prod_{i=0}^{m} K(\mathbf{Z} / p, t+2+2 i)
\end{array}
$$

where $t=2 n-2 m$. Since

$$
H^{r}(K(\mathbf{Z} / 2, t+1) \times K(\mathbf{Z} / 2,2 n+1+i) ; \mathbf{Z} / p)=0
$$

for $0 \leq r \leq t+2, i=1,2$, this implies
Lemma 5.1. $H^{r}\left(\Gamma_{u} ; \mathbf{Z} / p\right)=H^{r}\left(\Gamma_{2} ; \mathbf{Z} / p\right)$ for $0 \leq r \leq 2 n-2 m+2$.
Let $a_{m} \in H^{2}\left(L^{2 m+1}(p) ; \mathbf{Z}\right)$ be a generator and choose $t(u) \in \mathbf{Z}$ such that $0 \leq t(u)<p$ and

$$
t(u) a_{m}^{m}=\sum_{i=0}^{m}(-1)^{i}\binom{n+1-i}{n+1-m} c_{i}(\xi) c_{1}(u)^{m-i}
$$

in $H^{2 m}\left(L^{2 m+1}(p) ; \mathbf{Z}\right) \cong \mathbf{Z} / p$. The first non-trivial component

$$
k_{0}^{2 n+2}: \Gamma_{1} \rightarrow K\left(H^{2 m}\left(L^{2 m+1}(p) ; \mathbf{Z}\right), 2 n-2 m+2\right)
$$

of $\underline{k}^{2 n+2}$ is then, by Corollary 2.3, given by

$$
\underline{k}_{0}^{2 n+2}=t(u) a^{n-m+1} \otimes a_{m}^{m}
$$

Combining this with Lemma 5.1, we can prove
Theorem 5.2. When the base space $X=L^{2 m+1}(p), 1 \leq m<n, p$ odd, is a lens space, we have:
(i) $H^{r}\left(\Gamma_{u} ; \mathbf{Z}\right)=H^{r}(\mathbf{Z}, 2 ; \mathbf{Z})$ for $0 \leq r<2 n-2 m$.
(ii) $H^{2 n-2 m}\left(\Gamma_{u} ; \mathbf{Z}\right)=\mathbf{Z} \oplus \mathbf{Z}$.
(iii) $H^{2 n-2 m+1}\left(\Gamma_{u} ; \mathbf{Z} / p\right)=\mathbf{Z} / t(u) \otimes \mathbf{Z} / p$.
(iv) There is a filtration

$$
\mathbf{Z} / t(u) \otimes \mathbf{Z} / p=J^{0} \subset J^{1} \subset J^{2}=H^{2 n-2 m+2}\left(\Gamma_{u} ; \mathbf{Z} / p\right)
$$

where $J^{1} / J^{0} \cong J^{2} / J^{1} \cong \mathbf{Z} / p$.

Proof. The first two assertions follows easily from the constructed tower of fibrations. To prove the remaining cases we can, according to Lemma 5.1, use the cohomology spectral sequence $\left\{E_{r}^{s t}\right\}$ with \mathbf{Z} / p-coefficients associated to $p_{2}: \Gamma_{2} \rightarrow \Gamma_{1}$. Note that $E_{2}^{s t}=0$ when $0<t<2 n-2 m$ or s is odd. The differentials $d_{2}: E_{2}^{0,2 n-2 m+2} \rightarrow E_{2}^{2,2 n-2 m+1}$ and d_{2} : $E_{2}^{0,2 n-2 m+1} \rightarrow E_{2}^{2,2 n-2 m}$ are trivial for so are the corresponding differentials in the spectral sequence for the path space fibration from which p_{2} : $\Gamma_{2} \rightarrow \Gamma_{1}$ is induced. The only non-trivial relevant differential is thus $d_{2 n-2 m+2}: E_{2}^{0,2 n-2 m+1} \rightarrow E_{2}^{2 n-2 m+2,0}$ which is determined by $\underline{k}_{0}^{2 n+2}$; i.e. there is an exact sequence

$$
0 \rightarrow E_{\infty}^{0,2 n-2 m+1} \rightarrow \mathbf{Z} / p \xrightarrow{d_{u}} \mathbf{Z} / p \rightarrow E_{\infty}^{2 n-2 m+2,0} \rightarrow 0
$$

where d_{u} is multiplication by $t(u)$. This proves (iii). To prove (iv), we note that $E_{\infty}^{0,2 n-2 m+2}=E_{2}^{0,2 n-2 m+2}=\mathbf{Z} / p$ and $E_{\infty}^{2,2 n-2 m}=E_{2}^{2,2 n-2 m}=\mathbf{Z} / p$.

For any $k \in \mathbf{Z}$, let $M_{k}\left(L^{2 m+1}(p), P^{n}\right)$ be the space of maps of degree $k \bmod p$ of $L^{2 m+1}(p)$ into P^{n}.

Corollary 5.3. If $M_{k}\left(L^{2 m+1}(p), P^{n}\right)$ is homotopy equivalent to $M_{l}\left(L^{2 m+1}(p), P^{n}\right)$, then

$$
\operatorname{gcd}\left(\binom{n+1}{m}|k|^{m}, p\right)=\operatorname{gcd}\left(\binom{n+1}{m}|l|^{m}, p\right)
$$

The above necessary condition only provides a partial solution to the homotopy classification problem for the components of the space $M\left(L^{2 m+1}(p), P^{n}\right)$ of maps of $L^{2 m+1}(p)$ into P^{n}. The complete solution is unknown.

After finishing this manuscript I learned that the results stated in Corollary 3.4 and in the remark immediately after Corollary 4.2 also have been obtained by M. C. Crabb and W. A. Sutherland.

References

[1] A. Haefliger, Rational homotopy of the space of sections of a nilpotent bundle, Trans. Amer. Math. Soc., 273 (1982), 609-620.
[2] V. L. Hansen, On the space of maps of a closed surface into the 2-sphere, Math. Scand., 35 (1974), 149-158.
[3] D. Husemoller, Fibre Bundles, Second Edition. Graduate Texts in Mathematics 20. Springer-Verlag 1975.
[4] L. L. Larmore and E. Thomas, On the fundamental group of a space of sections, Math. Scand., 47 (1980), 232-246.
[5] J. M. Møller, On spaces of maps between complex projective spaces, Proc. Amer. Math. Soc., (to appear).

Received May 5, 1983.

University of Copenhagen
UNIVERSITETSPARKEN 5
DK - 2100 København \varnothing
Denmark

