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LIFTINGS OF SUPERCUSPIDAL REPRESENTATIONS
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Josέ E. PANTOJA

Let F be a/ -field. Let E/F be a tamely ramified cyclic extension of
odd degree. Denote by πE/F and Π respectively, the lift and the Shintani
lift of an irreducible supercuspidal representation π of G12(F). The
comparison of these two lifts of π is made by breaking up the formula for
the character of a supercuspidal representation into a sum over a certain
set of double cosets. As a result, we show that the liftings πE/F and Π are
equivalent.

Let F be a /?-field; that is, the completion under the p-adic topology
of either an algebraic number field or an algebraic function field. Let WF

be the absolute Weil group of F. Then it is a conjecture of Langlands that
there should exist a "natural" map σ •-> ττ(σ) between the set Ad(F) of
the continuous J-dimensional representations of WF and a certain subset
of the set A{G\d{F)) of admissible irreducible representations of the
general linear group G\d{F). (For the history and current status of this
problems see for example [J-L], [Sh], [K4]; for generalizations see [B]).

Since the map σ •-> ττ(σ) should be natural, we may expect, among
other things, that the map which sends a ^-dimensional representation σ
of WF to its restriction σE of WE should correspond to a map which sends
irreducible admissible representations of Gld(F) to irreducible admissible
representations of Gld(E). Two candidates for this latter map have been
proposed in different contexts by Shintani and Kutzko when d = 2 (see
[L], [K4]). Shintani's map comes about from global considerations and is
defined in fact as a map on characters in the case that the extension E/F
is cyclic of prime degree. Kutzko's map is defined in terms of the
representations and plays a central role in his proof of the correspondence
in the case of d = 2 (see [K4]). However, it is defined only in case the
extension is tamely ramified. In order to better understand the nature of
Langland's proposed correspondence in dimensions greater than two it is
thus of importance to compare these two maps. This will be our goal in
what follows.

In §1 the requisite definitions and preliminaries are provided to
describe the representation theory of Gl2. In particular, the set of super-
cuspidal representations (those representations which should correspond
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to irreducible representations of WF is constructed). In §2 Kutzko's map
(the tame lift) is defined and several of its properties given. Section 3 is
devoted to discussion of characters and a description of Shintani's lift. In
§4 the main result of this work appears. Our approach here is to break up
the formula for the character of a supercuspidal representation into a sum
over a certain set of double cosets. We then show that these summands in
the character formula for Kutzko's lift satisfy the condition to be Shintani's
lift, at least on the set of elliptic elements. We should note here that we
must use very different arguments depending on whether the double coset
in question is the identity double coset or not. We then apply an
orthogonality result of Langlands to conclude (Theorem 4.11.1) that the
two lifts coincide whenever E/F is a prime cyclic tamely ramified exten-
sion of odd degree.

1.1. Let F be a /7-field; that is, the completion under the /?-adic
topology of either an algebraic number field or an algebraic function field.
Let OF be its ring of integers, PF the maximal ideal of OF, UF = UF the
units of OF, πF a generator of PF, and kF the residue class field OF/PF.
For an element x in F, we denote the valuation of x by vF(x). G\2(F)
(respectively G12(OF)) will denote the group of 2 by 2 invertible matrices
with coefficients in F (respectively in OF).

In what follows we will need certain subgroups of G1 2 (JF) which are
best realized as stability subgroups for certain natural actions of G12(F).
Our approach here is as in [K4]. Also for more details and proofs see [Sp].

Let VF = F ® F.

DEFINITION 1.1.1. A lattice flag in VF is a sequence L = D L_λ

D Lo D Lλ D of free rank 2 0^-modules of VF such that for all ί,
PFLt = Le+t where e = 1 or e = 2 and dimk Lt/Lt+1 = 1. e will be called
the ramification degree of the lattice.

DEFINITION 1.1.2. Two lattice flags L and U are equivalent if there is
an integer r such that for all t, Lt = L't+r. We denote the equivalence class
ofLby[L].

There is a natural action of G\2(F) on both the set of lattices and the
set of equivalence classes of lattices. These actions are transitive.

DEFINITION 1.1.3. Denote by £(L) the ring of endomorphisms g in
EndF(FF) for which for all t we have gLt c Lr Denote for any integer r,
by £r(L), the ^(L)-module (two-sided £(L) ideal if r > 0) consisting of all
g for which for all t we have gLt c Lt+r.
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For this section we assume that e = 2, i.e., the flags are ramified.
We may choose an element Π L in ^(L) such that £r{L) = Hr

L£(L) =

DEFINITION 1.1.4. We denote by K([L]) the stabilizer in G12(F) of
[L] and by B(L) the stabilizer in G\2(F) of L.

Then B(L) is the group of units of the ring £(L).
We obtain a natural filtration for B(L) by setting Bo(L) = B(L) and

Br(L) = 1 +

PROPOSITION 1.1.5. t£L) depends only on the class [L] to which L
belongs. K([L]) is the normalizer of B(L) in G12(F); in fact K([L])
= (UL)B(L).

DEFINITION 1.1.6. If ψ is a non-trivial (complex, continuous) character
of F+, the conductor of ψ is the largest ideal Pg contained in the kernel of
ψ. In this case we write n = /(ψ).

DEFINITION 1.1.7. If χ is a (complex, continuous, not necessarily
jitary) character of Fx then we say that the conductor of χ is P£ if

Up = 1 + Pp is the largest of the subgroups U£ contained in the kernel of
X. Again, we set n = /(χ).

A computation shows that (JC, y)^>iτxy gives a non-degenerate
p a i r i n g o f £ n { L ) / ό 2 n { L r ^ _ 2 n { L ) / ^ _ n ( L ) i n t o F/PF. A l s o , x ^ x - 1

induces an isomoφhism between Bn(L)/B2n(L) and the additive group

DEFINITION 1.1.8. Let ψ be a character of F+ of conductor PF and let
b be an element of #ι_2n(L)/£1_rι(L). Then we define the character ψfe on
Bn(L)/B2n(L) by ψ6(*) = ψ(tr J>(* - 1)).

We note that the map b »-» ψfo induces an isomorphism of the additive
group of £ι_2n(L)/όι_n{L) with the complex dual Bn(L)/B2n(L) of
Bn(L)/B2n(L) and that this isomorphism commutes with the natural
action of K([L]) on both groups; i.e., ψxhx-i = ψ£ for x in ΛΓ(L) where ψ£
is defined by ψx

h(y) = ψ6(x

1.2. In this section we discuss the notion of generic elements. Our
approach follows that of [K5]. The set of generic elements is introduced
for two main reasons. First, as we will see, every irreducible supercuspidal
representation will contain a subrepresentation ψh for generic b. Second,
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the set of generic elements will be a convenient set on which to compute
characters.

Throughout this section we consider ramified lattices.

DEFINITION 1.2.1. An element x of £(L) is *?(L)-generic of level r if
F[x]/F is a totally ramified extension of degree 2, vF[x](x) = r is odd,
and OF[X] = F[x] Π t(L).

An element x of B(L) is 2?(L)-generic of level r if x — 1 is *?(L)-
generic of level r.

An element x of AΓ([L]) is AΓ([L])-generic of level r if for some d in
F x , dx is i?(L)-generic of level r. x is ^([L])-generic of level — oo if x lies
in K([L]) - FXB(L).

We denote by *?'(L), #'(£), #'([L]), respectively, the sets of ^(L),
B(L) and ίΓ([L])-generic elements. Also, we denote by 6f

r(L), B'r(L),
Kr([L]), respectively, the sets of £(L), B(L) and ίΓ([L])-generic elements
of level r.

DEFINITION 1.2.2. A subset S of a group G is a trivial intersection set
in G or a T.I. set if it does not contain 1 and

(a) S c NG(S), the normalizer of S in <?,
(b) if g is an element of G that does not lie in NG(S) then g~ιSg Π S

= 0 .
Given an element x in M2(F) such that ^[xj/i7 is totally ramified

and PF[X](X) is odd there is a natural class of flags ££E associated to the
field E = F[x], this class having the property that if L is in ££E then x is
^(L)-generic. To construct this class we proceed as follows:

Given v Φ 0 in VF9 we map E into FF by g *-> gv. This map is an
F-isomorphism of vector spaces.

Define Lt = PEυ\ the fact that E/F is ramified implies that PFP
r

E =
PE

+2, and we obtain in this way a lattice flag L on VF.
We note here that [L] is independent of v, for if w is in FF, then by

the previous isomorphism we know that there is an element y in E such
that w = yv and then PEw = PEyv = jP^y. Thus, the lattices are equiva-
lent. This class is the class Jδf£ to which we alluded above.

The content of the next proposition is that, with x, E as above, ££E is
the only class of lattices for which x is generic (cf. Corollary 1.2.4 below).

PROPOSITION 1.2.3. Let L be a lattice flag in VF; then £(L) n E = OE

if and only if L lies in
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Proof. Suppose first that L is in J£E. Then L, = PEv and so OFLι =

OEPι

Eυ c i^y = L r This says that OE is a subring of 6(L) Π £". However,

O £ is a maximal proper subring of E and so O£ = £(L) Π 2?.

Conversely we assume that E c M 2 (F), £(L) Π E = OE. lϊ v Φ 0 is

an element of F F then FF = 2?y. The action of E on VF is given by

a(βv) = (aβ)υ. Consider the isomorphism φ: E -> F F such that φ(β) =

/fo and define φ: M2(F) -» EndF(2?) given by φ(g) = Φ~xgΦ; then φ

leaves £ fixed. One checks that φ~ι{L) is a lattice flag in j? and we have

φ-1(£(L) Π E) = Φ'HO^). Thus ^ ( φ - ^ L ) ) Π £ = O^ so that

C^φ-^Lo) c φ'H^o) a n d Φ~\Lo)is a fractional ideal of E. So Φ ^ ( L Q )

= PE for some Λ . By the same reasoning we have φ~ι(Lι) = PE for some

/; since dim/CFL0/L1 = 1 we have that / = s + 1. This implies that the

lattice L in F F is given by {PEυ}, so that L lies in Jδf̂ .

COROLLARY 1.2.4. If F[x]/F is quadratic ramified and vF[x](x) is odd

then <^F[x] is the unique equivalence class of lattice flags for which x is

generic.

The next proposition gives a very useful and important property of

generic elements.

PROPOSITION 1.2.5.

(a) // g is an element of K([L]) then g lies in the normalizer

NGl2{F)(*'(L))oft'(L)inGl2(F).
(b) //g is out of K([L]) then g'Ψ(L)g Π ά\L) - 0.

Proof. Let x be an element of £'(L) and take any lattice flag L

belonging to ^F[x]. It follows that gxg ι is generic with respect to the

class &F[gXg-1] t o which gL belongs. Now, if g does not lie in K([L]) it

follows that gL is not equivalent to L and so ^[gxg-1] ^ &F\X\- Thus,

according to Corollary 1.2.4 gxg'1 is not generic with respect to [L]. On

the other hand, if g is an element of K([L]), then gL is equivalent to L and

then<&F[gxg-
1] = &F[Xγ Thus gxg'1 is generic with respect to [L]. We have

proved (a) and (b).

COROLLARY 1.2.6. B\L) is a T.L set. Specifically:

(a) // g is an element of K([L]) then g lies in the normalizer

NGl2(F)(B'(L)), ofB'(L) in G12(F).

(b) Ifg is out ofK([L]) then g-χB\L)g Π B\L) = 0.
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We note that in fact, K\[L]) is also a T.I. set. This will be proved in

Proposition 1.2.13 below.

Since G12(F) acts transitively on the set of lattices flags, it is only

necessary, for most applications, to work with one such flag. We may

select a convenient lattice flag as follows.

DEFINITION 1.2.7. Let L° = L°(F) be the lattice flag in VF defined by

L°(F)0 =OF® OP9 L°(F)i = OF Θ PF.

Write [AtJ] for the set of matrices [atj] with atJ in Aiy As usual, if r is

a real number, let [r] denote the integer part of r.

We may take

0 1
τrP 0

and a computation shows that

OF OF

PF OF

•p[(« + l)/2]

p[n/2] + l

p[n/2]

p[(/ι + l)/2]

[PF UF\

The following proposition provides additional characterizations of

^(L°)-generic elements.

PROPOSITION 1.2.8. Let x be an element o

an odd number. Then the following are equivalent

°); let pF(det x) = r be

(b)xliesinΠr

LoB(L°);

(c) x is generic of level r.

Proof. The equivalence of (a) and (b) is clear.

Now we assume (a) and consider the element^ = πF

ι~r)/2x of ^ ( L 0 ) .

Let us denote by s the trace of y and by Δ the determinant of y\ then y

satisfies the Eisenstein equation y2 — sy + Δ = 0. Thus, F[x] = F[y] is a

quadratic and ramified extension of F. Since vF{x]{y) = vF(NF[x]/F{y))

(NF[x]/F being the norm of the extension), it follows that y is a prime
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element for F[x] and thus OF[x] = OF[y]. This gives OF[x] c *ί(L°) n ^[JC]
and the maximality of the proper subring OF[x] yields the desired equality
so that (c) holds.

Conversely, assume (c) and define y as above. Since pF(det y) = 1, y
is a prime element in F[x] = F[y]. Thus, the equation j 2 — sy + Δ = 0 is
Eisenstein. Writer = [y^]. It follows that vF(yn)9 vF{y22) > 1, vF{y2lyl2)
= 1. From the fact that y belongs to £(L°) we conclude that y lies in
^ ( L 0 ) and so x is in 6r(L°). We have then that (c) implies (a) and the
proof is complete.

Next we state some lemmas which are going to be useful in proving
thatiΓ([Z,])isaT.I. set

LEMMA 1.2.9. If c is in F and A is in M2(F) then det(c + A) = c2 +
cXτA 4- dot A.

Proof. Straightforward.

LEMMA 1.2.10. If x lies in K{[L°}% then x is K([L°])-generic of level
— oo if and only if vF(det x) is odd.

Proof. K([L0]) is the disjoint union of the sets FXB(L°) and
FxULoB(L°). The first of these sets consists of the elements x of K([L0])
such that pF(det x) is even, and the second consists of elements such that
*>F(det x) is odd. Thus the lemma follows from the fact that if x is in
K([L0]) then x lies in FXB(L°) if and only if *v(det *) is even.

LEMMA 1.2.11. Let x be an element ofFxBn(L°) with n odd. Then

sup vF(det(cx - 1)) > n.
cinFx

We have equality if and only if x is K([L°])-generic of level n.

Proof, x is of the form dk where d lies in Fx and k lies in Bn(L°).
Then d~λx - 1 belongs to tn(L°). So supc i n Fχ *v(det(cjc ~ 1)) ̂  n-
Furthermore if we write d~ιx — 1 = [a^] we observe that vF(aλla22) > n
+ 1 and vF{a12a21) > n. Suppose now that supcin Fχ ̂ F(det(cx — 1)) = n\
then, by the above, it must be that vF(aX2a2Λ) = n and one checks that
d~ιx - 1 belongs to Un

LB(L°). So x is A'F([L()])-generic. Conversely, if x
is ^F([L°])-generic then

_ [ dux

(1)/2 du2
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where ui is in UF (1 < / < 4) and d is in F x . Thus, if c lies in Fx then

det(αc - 1) = (cduλ - l)(cdu2 - 1) - π£c2d2

and we observe that the highest possible valuation is n.

LEMMA 1.2.12. Ifg does not lie in K([L0]) then

Proof, We consider first the case n — — oo. In this case we have that

KL* = ULoFxB(L°) = FxΠLoB(L°) = FX^(L°).

Thus, if g~ιK>_ „{[!»}) g intersects K'_J[L0]) then Fxg-ι^(L°)g inter-

sects 6[{L°) and SOU = cg-1wg for some c in F x and υ and w in £[{L°).

From this *>F(det y) = vF{c2) + ?F(det w), so vF(c2) = 0 and c is a unit.

But then cw lies in ^ί(L°). The element t; = g~1cwg lies in both t[(L?)

and g~1#[(L°)g, which contradicts Proposition 1.2.5.

For the case n > 0, ^ ( [ L 0 ] ) = FxB'n(L°). Assume that

g~ιFxBn(L°)g intersects FxBf

n{L°). It follows that ί = cg~ιkg where ί

and k lie in ^ ( L ° ) and c is an element of Fx. Thus, *>F(det 0 = *v(^2) +

^F(det A:). But both det t and det k are units of F and so c lies in UF. The

element t - I = cg~ιkg - 1 lies in ^'(L°), so that ^F(det(eg' ιkg - 1)) =

n. Write cg~ιkg - 1 = (c - 1) + c(g~ιkg - 1). By Lemma 1.2.9 we have

Λ = vF (det( eg" xfcg- 1))

= irF((c - I ) 2 + c(c - l ) t r(g-^g - 1) + c2det(g-χfcg - l)).

This last expression is less than n if vF{c — 1) < [n/2]. So *>F(c "~ 1) >

[Λ/2] and then c is in C/^ / 2 ] + 1. Thus ck lies in ^ ( L ° ) . We have then that

t = g~ιckg lies in the intersection of B'n(L°) with g'ιBr

n(L°)g, which

contradicts Corollary 1.2.6. This finishes the proof of the Lemma.

PROPOSITION 1.2.13. K'([L]) is a T.I. set. Specifically:

(a) If g lies in K([L]) then g lies in the normalizer NGh{F)(K'([L])) of

K'([L])inG\2(F).

(b) Ifg lies out ofK([L]) then g'ιK\[L])g Π K\[L}) = 0.

Proof. Since G12(JF) acts transitively on the set of lattice flags,

without loss of generality we may assume L = L°.

Assume first that g lies in K([L0]). We observe that K'([L0]) is the

union of the sets K'_J[L0]) = F X ^(L°) and K'n([L0]) = FxB'n{L°) where
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n ranges over the set of the odd positive integers. Now, (a) follows using
Proposition 1.2.5 and Corollary 1.2.6.

On the other hand if g lies out of K([L0]), since the determinant is
invariant under conjugation, it follows from Lemmas 1.2.10 and 1.2.11
that if x is a jfif([L°])-generic element of level n then g~λxg lies in K'[L°] if
and only if g~ιxg is in K'n([L0]). Now by Lemma 1.2.12, (b) holds, and
the proof is complete.

1.3. The set of unramified generic elements will be another convenient
set on which to compute characters. Most of the definitions and proposi-
tions that follow are analogous to the ones in §§1.1-1.2. Thus, we will
often omit details.

Throughout this section we consider unramified lattices flags, i.e.,
lattices such that e = 1 (see Definition 1.1.1).

DEFINITION 1.3.1. Denote by 6un\L) the ring of endomorphisms g in
EndF(FF) for which for all t we have gLt c Lr For any integer r, denote
by Jr

unr(L) the ^WΛ/"(L)-module (two-sided ideal ίun\L) ideal if r > 0)
consisting of all g for which all / we have gLt c Lt+r.

DEFINITION 1.3.2. Denote by Kunr(L) the stabilizer in G\2(F) of [L]
and by K™\L) the stabilizer in G\2(F) of L. Then Kζn\L) = ίunr(L)x.

We obtain a filtration for K™r{L) by setting K?nr(L) = 1 + 6?n\L\
r > 0.

PROPOSITION 1.3.3. Kunr([L]) = FxK£nr(L). Also K?nr(L) is a nor-
mal subgroup ofKunr(L).

Now we select a convenient lattice.

DEFINITION 1.3.4. Let L° = L°(F) be the lattice in VF defined by
L°=OFΘ OF.

It follows that

f»r(L°) = M2(OF),

KΓ(L°) = G\2(OF).

DEFINITION 1.3.5. An element x of £unr{L) is *?"wr(L)-generic if
F[x]/F is an unramified extension of degree two such that
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An element x of K«nr{L) is #0

MΛr(L)-generic if x - 1 is £un\L)-
unramified generic.

An element x oίKunr([L]) is #M"r([L])-generic if for some din F x , dx
is K£nr(L)-geneήc.

We denote by Sunr\L\ Kunr'0(L), Kunr'([L]), respectively, the sets of
Junr(L), K£nr(L), #""r([L])-unramified generic elements.

Given an element x in M2(F) such that F[x]/F is quadratic unrami-
fied there is a natural class of lattices^, associated to the field E = F[x]9

such that if L is in ££E, then x is ^M"r(L)-unramified generic. The
construction of ££E is similar to the one made in the ramified case. As a
consequence we have:

PROPOSITION 1.3.6. If F[x]/F is quadratic unramified then ^F^ is the
unique equivalence class of lattices for which x is unramified generic.

The set of unramified generic elements shares with the set of generic
ones the T.I. property. Namely:

PROPOSITION 1.3.7.
(a) If g is an element of Kunr([L]) then q lies in the normalizer

XGh(F)(ίι"""(L)) of ί»nr'(L) in G\2{F); if g is out of K""r([L]) then
g-^unr'(L)g Π όunr\L) = 0 .

(b) K™r'{L) is a T.I. set with normalizer Kunr{[L}).
(c) Kunr\[L\) is a T.I. set with normalizer Kunr([L]).

The following propositions provide additional characterizations of
*?•""•( L£)-generic elements.

DEFINITION 1.3.8. Denote by ά"nr\L°) the set of unramified generic

elements of #""r(L°)that d o n o t l i e o n PF + C+ί( L °)

LEMMA 1.3.9. f]JF
xKJ

unr(L°) = Fx.

Proof. We need only prove that if x lies in F*Kpr{L°) (for ally) then
x lies in Fx. Let y be an element of Kunr([L0}) = Fx G\2(OF). It follows
from Proposition 1.3.3 that for ally, the commutator yxy~1x~1 lies in
K™r(L°). Thus yxy-ιx~ι lies in the intersection of the KJnr(L°), an
intersection which reduces to the identity since the K"nr(L°) form a
fundamental system of neighborhoods of the identity. We get that x
commutes with each element of Kunr([L0]), i.e., x lies in the center
Z(Kunr([L0])) = Fx.
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PROPOSITION 1.3.10. Let x be an unramifiedgeneric element ofGl2(F).
Then either

(a) there is an element c in Fx such that ex lies in G\2(OF) but not in
UFK?nr{L% or

(b) there is an element c in Fx and a unique r such that ex — 1 lies in

Proof. Since x is unramified generic, there is an element c in Fx such
that ex lies in G12(OF). If ex is in UFK?nr, then, by Lemma 1.3.9, there is
a number r such that ex lies in FxKr

unr(L°) but not in FXK™[{L?)
(observe that then for all d in F, dx is out of FXK™[(L0)). Finally by
modifying c if necessary one may assume that ex lies in K?nr(L°) but not
in FXK™[(L°). this completes the proof of (a) and (b).

DEFINITION 1.3.11. The unramified generic element x has level 0 if
part (a) of Proposition 1.3.10 holds. Otherwise x has level r.

PROPOSITION 1.3.12. Let x be an element of PFM2(0F) that does not lie
in PF + PF

+1M2(0F). Then x is not unramified generic if and only if there is
an element y in G\2(OF) such that y~ιxy is upper triangular modulo

Proof. Without loss of generality we may assume r = 0, so that x lies
in M2(OF) but not in OF + PFM2(OF). This means that x = [a

c

b

d] where
one of fe, c or a — d is a unit.

Let us denote by/, the characteristic polynomial of x, i.e., fx = X2 -
(a + d)X+ ad-be.

We claim that OF[x] = F[x] Π M2(OF). For it is clear that OF[x] is
included in F[x] Π M2(OF). On the other hand if a + βx lies in F[x] Π
M2(OF), then by observing the conditions on the entries of x we conclude
that β lies in OF and so a lies in OF.

Next we observe that x is unramified generic if and only if fx is
irreducible modulo P. In fact, if x is unramified generic then /. is
irreducible and F[x]/F is quadratic unramified. Thus kF[x]/kF is a
quadratic extension. From the above we get OF[x] = OF[x]. It follows that
kF[x] = kF(x) Φ kF and so/, is irreducible modulo PF.

Conversely, if fx is irreducible modulo P then by [Se], F[x]/F is
unramified and OF[x] = OF[x] so that x is unramified generic since
OF[x] = F[x] Π M2(F) by the above.

Finally, sincefx is quadratic,/, is reducible modulo P if and only if/.,
viewed over OF/PF9 has eigenvalues in OF/PF if and only if, modulo P, x
is similar to an upper triangular matrix. Our result now follows.



318 JOSέ E. PANTOJA

1.4. We recall now the definition of a supercuspidal representation.
An admissible representation (p, V) of G12(F) is supercuspidal if when
restricted to M, the subgroup [Q [], it has no identity quotient, i.e., there is
no proper M-subspace W of V such that the representation of M induced
on V/Wis the identity representation.

In constructing supercuspidal representations of G\2(F) we use the
following fundamental fact: Let σ be an irreducible representation of
K([L]) and suppose there is an n such that σ/Bn(L) decomposes in orbits
of \pb9 where b is generic. Then σ induces an irreducible supercuspidal
representation of G\2(F). Furthermore, every irreducible supercuspidal
representation of G\2(F) is either equivalent to (Ind σ) ® χ °det, where χ
is a character of Fx, or it may be induced irreducibly from a finite
dimensional representation of Fx G12(OF). The former representations
are called ramified; the latter, unramified. (For details and proofs see

Properties of the unramified representations are well known. For
more details see [Ge]. Therefore, we restrict our attention to the ramified
supercuspidal representations.

Now we describe how to construct the ramified supercuspidal repre-
sentations of G12(F). We follow [K4].

We consider the character ψ^ of Bn(L) as defined in 1.1.7 with b a
generic element. Let H(ψb) = (F[b])xBn(L). Then H(ψb) is the stabilizer
in K([L]) of the character ψb. Denote by θ a character of (F[b]) such that
θ coincides with \pb on F[b]xΠ Bn(L). We can now define a character p

DEFINITION 1.4.1. Let L, L' be lattice flags in VF9 let n > 1, and let ψb

(resp. ψb,)9 H(\pb) (resp. H(ψb,)) and p (resp. p') be as above. Then we call
the triples (L, ψ6, p) and (Z/, ψ6,, p') equivalent if for some g in G12(F)
we have gL = Z/, ψ^(x) = φb(g~~1xg) for x in Bn(L% and p\x) =

P ί g " 1 ^ ) for JC in J/ίψy).
For a triple (L; ψ6, p) as above, let π(L; ψ6, p) be the representation

of G\2(F) which is oinduced [K3] by p.
The following is Proposition 3.1.1 of [K4] (for more details see also

[K3], [Cl]).

PROPOSITION 1.4.2. τr(L, ψ6, p) w α« irreducible admissible ramified
supercuspidal representation of G\2(F). π(L\'ψb^ pf) is equivalent to
π(L, ψfr, p) // ΛΠJ o«/y // (L\ ψ^, p') w equivalent to (L, ψ6, p). Every
irreducible admissible ramified supercuspidal representation of G12(F) is
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equivalent to some π(L, ψ6, p) ® χ, where χ is a character of Fx which is
either trivial or for which f(χ) > n.

2.1. We are going to define a lifting of lattice flags of VF to VE where
E/F is a tamely ramified extension whose ramification degree e(E/F) is
odd. Using those liftings of flags we later define a tame lift for super-
cuspidal representations. This last notion is due to Kutzko and plays an
important role in proving the Langlands conjecture for G12(F).

DEFINITION 2.1.1. Let E/F be a tamely ramified extension whose
ramification degree e(E/F) is odd. We define the lattice L°E/F (of ramifi-
cation degree 2) in VE by

(L°E/F)0 = Θ OE, (LE/F\ =

DEFINITION 2.1.2. If L is any lattice flag in VF, then there is an
element g of G12(F) such that L = gL0. We define the lift of L to VE to
be the ί^-lattice flag LE/F = gL°E/F.

By Lemma 2.2.1 of [K4], LE/F is well defined.
The following is Corollary 2.2.3 of [K4]. It is a two-dimensional

analog of the properties of the trace (see [Se]).

PROPOSITION 2.1.3. K([LE/F]) n G12(F) = K{[L]\

n EndF(FF) = ΎτE/Fln{LE/F) = ίr{LE/F)

p(l-e(E/F))/2

p(l-e(E/F))/2

with r = 1 + [(/! - l)/e(E/F)].
We notice here that

oE

EE

E

e(E/F))/2

uE
e(E/F))/2

P[En"
[n/2)+(le(E/F))/2

p[n/2]+(l-e(E/F))/2

p[(n + l)/2]

We observe furthermore that

0
K(LE/F) =

71E

π

(l-e(E/F))/2 E/F)
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and

(l-e{E/F))/2 Q ] Γ (e(E/F)-l)/2
E \\K{Llψ

In order to introduce the notion of tame lifting of a supercuspidal

representation we will need the following. Let ψb, θ, p be as in 1.4.

DEFINITION 2.1.4. Set n(E/F) = e(E/F)n - \(e(E/F) - 1) and

define Φb>E/F on Bn(E/F)(LE/F) by

- 1)).

COROLLARY 2.1.5.

K(E/F)(LE/F)

DEFINITION 2.1.6. Define the character ΘE/F on E[b]x by ΘE/F(g) =

) w h e r e ^[fe i/ftδ] i s t h e n o r m m a P f r o m

DEFINITION 2.1.7. One obtains a character pE/F on H{ψbE/F) =
x-β»(£/f)(-L£/f) b y s e t t i n S PE/AS") = θE/F(g)Ψb,E/F(<*) for g in

,α in Bn(E/F)(LE/F). We observe that by Lemma 2.3.4 of [K4] ρE/F

is independent of the choice of b. pE/F is then called the lift of p to

PROPOSITION 2.1.8. Suppose π(L, ψb, p) 0 χ = π(L\ ψb,, p') <8> χ\

Then

= ^(L'E/F, ^b^E/F, p'E/F) = X^ / F,

Proof. See Proposition 3.1.4 of [K4].

DEFINITION 2.1.9. Given an irreducible admissible ramified super-

cuspidal representation π = τr(L, \pb, p) <8> χ of G ^ ί i 7 ) , we may, using

Proposition 2.1.7, define the tame lift rnE/F of TΓ to GL 2 (i?) by

2.2. If Γ = r ( £ / F ) is the Galois group of an odd prime cyclic

extension of degree / such that p Φ /, then the natural action of Γ in E
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provides us with an action of Γ on G\2(E). Thus, we may form the
semidirect product G12(£) = Γ K G\2(E). Since both H(φbE/F),
K([LE/F]) are stable under Γ we may also consider

Since pE/F is fixed by Γ (is defined through norms and traces), we
may extend pE ,F to a character pE ,F on H( ψb E,F) in the obvious way, i.e.,
trivial on Γ. Furthermore, we may define:

DEFINITION 2.2.1.

PE/F

PROPOSITION 2.2.2. πE/Fis an extension ofττE/Fto G\2{E).

Proof. First we make use of Mackey's theorem (see [Kl]) to see that in
fact πE/F is irreducible, for if / ( , ) denotes the space of intertwining
operators we have

F/Γ) = I\ Ind pF /r, Ind

= ®l(pE/F, PXE/F), z e H(*

9 p'E/F)9 z e H(*b9E/P)\Gl2(E)/H(φb9E/F)

Now since Γ is cyclic and fixes πE/F it follows that any irreducible
subrepresentation of I n d G l 2 ( £ ) T G l 2 ( £ ) πE/F is an extension of πE/F (see
[Cl]). Thus, to complete our proof we need only show that

( F / F , Ind fl>/F) > 0.
V E/F' G12(

 E/F>

But

Ind

and by Mackey's theorem

ind ^ pE/F9 Ind
) T G 1 ( £ ) 7 HW)1G
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is isomorphic to a direct sum of spaces, one of which is I(pE/F, PE/F)
Since this space has dimension one, we are done.

3.1. Let Γ be the Galois group of a prime cyclic extension E/F of

degree /. We remarked above that the action of Γ on E induces an action

of Γ on Gl2(2s). For g in G12(E) and τ in Γ let g τ denote this action.

The following observation leads us to the definition of τ-conjugacy.

Consider the elements (T, X), (σ, y) of G\2(E). Then (σ, y)~ι(τ, x)(σ, y)
= (τ> (y~lχyTV~1)- I n particular, for y = (1, y) in Gl2(i?) we have

y~\τ,x)y = (τj"V).

DEFINITION 3.1.1. The elements x, y of G12(2?) are r-conjugate if

there is an element gmG\2(E) such that>> = g~ιxgτ.

Let us fix once for all a generator T of Γ.

We define next a non-abelian norm map N: G\2(E) -> G\2(E),

which was first introduced by Saito.

DEFINITION 3.1.2. Let N: G12(E) -» G12(E) be defined by N(g) =

ggr gτi-ι

We note that the map N is not multiplicative and, in fact, is not even
well-defined, depending as it does on the choice of T. However, one checks

easily that if A/F is a quadratic extension of fields with A lying in M2(F)

then the restriction of N to (EA)x is just the abelian norm map NEA/A.

PROPOSITION 3.1.3. Suppose x andg lie in G12(E). Then:

(a)N(g-1xgτ) = g-1N(x)g;

(b) N(x)τ = χ-λN(x)x;

(d) N(x) is conjugate in G\2(E) to an element ofG\2(F);
(e) N induces an injection form r-conjugacy classes in G\2{E) to

{ordinary) conjugacy classes in G12(F).

Proof. The first three statements are easy calculations. On the other

hand (b) says that N(JC) has F-rational determinant and trace. Thus, the

rational canonical form of N(x) lies in G\2(F). This proves (d). Finally,

(a) and (d) say that N induces a function from τ-conjugacy classes in

G\2(E) to conjugacy classes in G12(F). The injectivity is a result of [Sa].

It should be noticed now that x and y are τ-conjugate if and only if

(r, X) and (T, y) are conjugate in G\2(E).

In the following lemma, we take wι,...,wι_ι to be not necessarily

commuting variables.
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LEMMA 3.1.4.

+ Σ Σ

where Λ indicates that the factor below it has been deleted.

In particular,

N(w) - 1 - Tr(w - 1)

= N(w-l)+Σ Σ (w-l)(wτ-
7 = 1 0<i1< <ij<l-l

1-1 -1).

Proof. We first prove that for all r-tuples (kl9...,kr\ 2 < r < I - 1,

the number of times the element w^w^ n^ appears on the right side

of the statement with positive sign equals the number of times the element

appears on the right side of the statement with negative sign.

Now the summand (w0 — 1) (wι_1 — 1) provides us with one copy

of the above element with sign ( — l)ι~r. Also, only the terms such that

1 <j<l — r provide us with such copies. For eachj we have (ιjr) times

the element H ^ W ^ wk, each with sign (— \)ι~r~j. But from the expan-

sion of 0 = (1 — l)ι~r we get the desired result in this case.

A similar computation shows that the linear terms and the constant

term are the same in both sides of our equation. Our result now follows.

3.2. Let C™(G\2(F)) be the space of compactly supported and locally

constant complex valued functions on G12(F).

Let ΊT be an irreducible supercuspidal representation of G12(F). Since

7r is admissible, we may extend this representation to a function π on

C?(G12(F)) by setting π(f)υ = fGι2(F)f(x)π(x)vdx (where dx is an
appropriate Haar measure on G\2(F)). We note that SG\2{F) f(χ)π(x)v dx

may be defined without difficulty for/ in CC°°(G12(F)) and admissible π

and that, in fact, this integral is a finite sum. For details, see [H — C].
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Furthermore, one may show that π(f) has finite rank. Thus, tτπ(f)
exists and we get in this way a map/ -^ tr ττ(/), which is a distribution on
G12(F), i.e., a linear functional on C?(G12(F)).

It is a theorem of Harish-Chandra that there exists a locally inte-
grable function χw, unique up to measure 0, such that trττ(/) =
/GI 2 (F)/( X )XTT( X ) dx, where dx is a Haar measure on G\2(F).

DEFINITION 3.2.1. χw is called the character of π.

If p and π are as in 1.5.1 then π = I n d ^ ^ t Gi2(F) P a n ( * the Frobenius
formula for induced characters holds.

One would, of course, like to apply Fubini's theorem to the above
formula to obtain a Frobenius formula for χπ. Although this application
of Fubini's theorem is not permissible in general, there is a large set of
elements (the elliptic elements) which have the property that Fubini's
theorem may be applied to the above integral for functions supported on
this set.

DEFINITION 3.2.2. An element x of G1 2 (JF) is called elliptic in case x
is irreducible as a matrix, i.e., the characteristic polynomial of x is
irreducible.

An element (T, X) of G12(E) is elliptic if N(x) is elliptic.

DEFINITION 3.2.3. Define p in G12(F) by setting p(x) = ρ(jc) if x lies
in H{ψb), and p{x) = 0 otherwise.

By [S] if x is an elliptic element of G\2(F) then ρ{y~~ιxy) = 0 for all
but a finite number of y in G\2(F)/H(ψb) so that

x*(χ)= Σ

3.3. Following [L] (see also [G-L]), let TΓ be an irreducible super-
cuspidal representation of G\2(F). Let E/F be as in §2.2. Denote by Π
an irreducible admissible representation of G\2{E) which is stable under
Γ, i.e., which is equivalent to its conjugate by r.

DEFINITION 3.3.1. Π is called a Shintani lift of π if there exists an
extension Π of Π to G12(E) such that Xπ(τ, z) = χ7T(N(z)) for all z in
G12(E) such that Nz has distinct eigenvalues.
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PROPOSITION 3.3.2. Any π as above has, up to equivalence, a unique
Shintani lift.

4.1. By Lemmas 7.9 and 7.12 of [L], in order to show that πE/F is the
Shintani lift of TΓ, it is enough to prove the identity χ~E/F(τ, x) = χtIΐ{n(x))
for those elements x for which N(x) is elhptic (compare Proposition 3.3.3
of [K4]). The proof of this identity will be the goal of this chapter.

Set

Then the collection of zm = zm F, as m ranges over the non-negative
integers, is a complete set of representatives in G\2(F) of the double coset
spaces K([L°F])\Gl2(F)/K([L°F]) and Fx G12(OF)\G12(F)/K([L°F])
(see[K2]).

Let E/F be as in §2.2.

PROPOSITION 4.1.1. The set [zm E}™=0 is a complete set of representa-
tiυes ofK{[Ll/F])\G\2{E)/K{[Ll/F]).

Proof. We consider the case E/F ramified, the unramified case being
clear.

Consider the element

Then we have

- 1 = U wK{[L°E])zmK([L°E])W-1

= U M>K{\LE\)W-'WzmW^K([LE])W-\
m=0

But a computation shows that wzmw~x = zm. Also as we remarked after
Proposition 2.1.3, we have wKdL^w-1 = K([L°E/F]). Thus,

U K([LE/F])zmK([LE/F}).
m = 0

Finally, it is clear that the sets K([L%/F])zmK([L^/F]) are disjoint.
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PROPOSITION 4.1.2.
(a) The set [zm ^ J J J . Q is a complete set of representatives of

K([LE/F])\G12(E)/K([LE/F]).

(b) There is a natural projection between the sets G\2(E)/ίϊ(ψb E/F)
andG\2{E)/H{ψbtE/F).

Proof. If (T, g) is an element of G\2{E) then g is of the form k1zmk2

for some ra>0 and for kx and k2 in K([L°E/F]). Thus (T, g) =

( 1 , ^ X 1 , 0 ( ^ * 2 ) ϋes in U S . 0 ^ ( [ ^ / F D ^ ^ ( [ ^ / F D . From this (a)
follows.

As for (b) we observe that for all z, (τ\ 1) lies in H{ψbE/F). Thus
(T1', g) and (1, g) have the same image in G\2(E)/H(ψbE/F).

PROPOSITION 4.1.3. The set {zmiE}™=_(e(E/F)_l)/2 is a complete set of
representatives of Ex G\2{OE) \ G\2{E)/K{[L°E/F]).

Proof. We prove the proposition when E/F is ramified, the unrami-
fied case being clear.

If w is as in Proposition 4.1.1, we recall that wK([L0

E])w~ι =

Now,

- 1 = U E*GL2(Os)zmK([L%])w-1

m = 0

= ΐ) E*<Ά2(OE)zmw-ίwK([L%])w-'ί

w = 0

= \jE><Gl2(OE)zmw-ικ([Ll/F]).
0

But since

E*GL2(OE)zmw-1K([L°B/F\)

= EXGl2(OE)zm(l_1)/2K([LE/F}),
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we get then from above that

G12(E) = U Ex Gl2(OE)zmκ([L°E/F\).

Finally, we check that the sets are disjoint. Let aιh1zmk1 = a2h2zmk2

where ax and a2 lie in E, hx and h2 are elements of G12(OE) and k1 and k2

lie in K([L^/F]). Since for / = 1,2 we have

Zm/

M/ ^E zm, -K/-l)/2'

we get

Thus,

H -— = m2 H ^— and so m1 = m 2.

This completes the proof.

We note that since Excz K([L°E/F]) then

E*G\2(OE)zmK([Ll/F\) = Gl2(OE)zmK([L°/F]).

4.2. Let b be an elliptic element of G12(F). Denote by s the trace of b
and by Δ its determinant. Then b is a zero of the irreducible polynomial
X2 - sX + Δ.

We embed F[b]x into Gl^ i 7 ) using the right regular representation^
with respect to the basis {1, b), i.e., if γ is an element of F[b]x, so that
γ = x + yb for some x, y in i% then we set

DEFINITION 4.2.1. Let QF be the set of matrices [£* (] and let QnF be
the subgroup of QF of matrices

7 [ (

o
If E/F is a prime cyclic extension of degree / we define the subgroup

' ττ[(n + l)/2] p[n/2]+a-e(E/F))/2]
E E

J
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PROPOSITION 4.2.2. G\2(F) = QFA(F[b]x) = A(F[b]x)QF. Also,

COROLLARY 4.2.3. G12(F) = QFF[b]x= F[b]xQF and QF n F[b]

PROPOSITION 4.2.4. H(φbίE<E/F) nQE= Qn(E/F),E/F.

Proof. The result follows from the following lemmas:

LEMMA 4.2.5. Let b be a J(L)-generic element. Then K([L]) =
F[b]x(QFΠB(L)).

Proof. Let x be an element of K([L]). By Corollary 4.2.3 there is an
element γ in F[b]x and an element q in QF such that x = γq. Since F[b]x

is a subgroup of K([L]) we have, in fact, that q lies in

K([L]) Π QF-{{K([L]) - /**(!.)) Π β,) U(FXB(L) n β,)

n βF

since all elements of β F are split (i.e., reducible as matrices) and so can
never be J5Γ([L])-generic. Now, FXB(L) Π QF = £(L) Π β F , since ele-
ments of QF have one eigenvalue equal to one.

LEMMA 4.2.6. Ifb is a 6'(L)-generic element, then Bn(L) = Uβ[b]QnF.

Proof. Let x be an element of Bn(L). By Lemma 4.2.5, x = yq where
γ lies in F[b]x and q lies in ζ)F Π 2?(L). Since # and x lie in B(L), γ lies
in 2?(L) Π F[&]x= UF[b]. It is easy to see that if γ lie in i% then γ lies in
UF[by It follows that q lies in Bn(L) and the lemma holds in this case.

We assume then that γ does not lie in F, i.e., γ is generic. We observe
as above that on the other hand q is not generic.

There are indices r, s such that γ — 1 lies in £r(L) but not in £r+1(L)
and q — 1 lies in £S{L) but not in £S+1(L).

Suppose that r < s. Since q lies in B(L) we have that (γ — l)qLt =
(γ — l)Lt c Lt+r. Also, given that r < s, we have that (q — l)Lt c L / + r,
so

(x - 1)L, = ((γ - \)q 4- q - l)L, c L ? + r.

This is for all .̂ On the other hand there is an index t such that
(γ - \)qLt <£ Lt+r+1. Since r < s we also have (q - \)Lt c L / + r + 1 . Thus,
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x — 1 lies in £r(L) but not in ̂ r + 1 ( L ) , from which r > n, whence γ and q

lie in £n(L). This completes the proof when r < s. We omit the proof

when r > s, since an argument similar to the one above can be applied.

Finally, we consider the case r = s. Since q — 1 is not generic, there

is, for some t, an element^ lying in Lt but not in Lt+ι such that (q — l)y

lies in Lt+r+1. It follows that (x - l)j/ = ( ( γ - l)q + q - l)y lies in Lt+r

but not in Lt+r+l9 so x — 1 lies in #r(L) but not £r+ι(L). We then have

r > n and the result follows.

4.3. It was proved in [K4] that K([L°F]) c K([L°E/F]). Let zm = zmFbe

as in 4.1. Write ZF = {z m }^ = 0 Then Z F is a complete set of representa-

tives of double cosets of K([L°F]) \ G12(F)/K([L°F]).

Let E/F be a prime cyclic extension of degree / and let πF be a prime

element of F. If i?/F is unramified then *nF remains prime in E and we

may take πE = πF. If ZE/F = {z m E }^ = Q , we have then that

ZF=ZE/FΠG\2(F).

If E/F is ramified, we observe that, given m > 0, there exist <z and r such

that m = la + r. Let

- Γ1 ° l ί 1 °
where 7rF and mE are, respectively, prime elements in OF and O^. Set

zm = ^ , £ / f a n d Z £ / F = {zm}-==0. It follows that ZF = Z F / F n G 1 2 ( ^ ) .

It should be observed that ZE/F is a complete set of representatives of

double cosets of K([L°E]) \ G\2(E)/K([L°E]).

Next, we state some results that are going to be needed later.

LEMMA 4.3.1. If z lies in ZE/F and K([L°E/F])zK([L°E/F]) Π G1 2 (F) Φ

0, then z lies in ZF.

Proof. Lety be an element of K([L°E/F])zK([L°E/F]) Π G12(F). Then

there is zλ in ZF such that y lies in JίΓ([LF])zlJfiΓ([LF]), which is a subset of

K([L0

E/F])zλK{[L°E/F]). We conclude that

Λ:([L|/F])zΛ:([LS/F])nj:([Lϊ/F]

is not empty. Thus, z = zx and the lemma holds.

LEMMA 4.3.2. Suppose zm lies in ZE/F and

QFn(K([LE/F\)zmK([LE/F]))* 0.
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Then zm lies in ZF and

Qrn(κ([L*E/F\)zmK([L%/F\)) = QFC\(K([L%\)zmK([L%\)).

Proof. The first assertion follows from Lemma 4.3.1. As for the
second,

QFnκ([L*E/F\)zmκ([L%/F\)

= ( U QFnκ([LF])zκ([LF}))nκ({Ll/F])zmκ([Ll/F})

= U QFnκ{[L%])zκ([Ll})nκ([Ll/F})zmκ([Ll/F])
Z

-QFnκ([LF])zmK([LF]).

Similar results may be obtained for the decomposition of G\2(E)
determined by the double cosetδ

G\2(OE)zmK([L°E/F}), m > ~(e(E/F) - l)/2.

Namely, if ZE/F = {zm,E}™=_{e{E/F)_1)/2 for the next two lemmas, then

LEMMA 4.3.3. If z lies in ZE/F and (G\2(OE)zK([L°E/F])) Π G12(F) is
not empty then z lies in ZF.

LEMMA 4.3.4. If zm lies in ZE/F and (Gl2(OE)zmK([L°E/F])) n QF is
not empty then zm lies in ZF and QF Π (Gl2(OE)zmK([L°E/F])) =
QFn(Gl2(OF)zmK([L°E/F])).

LEMMA 4.3.5. Let n(E/F) be as in Definition 2.1.4. Then QnF =

QF Π Qn(E/F),E/F

Proof. If E/F is ramified, let sτ be the least multiple of / which is
greater than or equal to [(n(E/F) + l)/2] and let s2 be the least multiple
of / which is greater than or equal to [n(E/F)/2] + (1 - /)/2. Then

Γ ττ(n(E/F) + l)/2 n p pn(E/F)/2 +(1 -/)/2 n p]

QFnQHlE/F>.E/F-[υ* o l J

ψ n F PE

2 n

0 1

One checks that sλ = [(n + l)/2]/ and s2 = [n/2]l. From this the
lemma follows for E/F ramified. The remaining case follows at once.
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Let E/F and r be, respectively, as in 2.2 and 3.1.

LEMMA 4.3.6. // w lies in E and wτ — w lies in PE then there exist

elements a in PE and r in F such that w = a + r.

Proof. We consider first the case that E/F is unramified. In this case

w = Σf=mci

ιπi

F where vE(w) = m and ct are (qE — l)th-roots of unity

where qE = [OE: PE]. We then get wτ - w = ΣfLm(cJ - c,-)*^. Write w =

ΣΐZJnCjiΓJΓ + Σf^c^p and define r = Σ j l ^ c < , a = Σf^c^ Since

vE(wτ — w) > s we have cj — ct = 0 for / < s. It follows that w = r + α,

where r lies in F and α Ues in PE.

We assume now that E/F is ramified. We have w = Σ IQ c/7Γέ f°Γ

some cέ in OF, / = 1,...,/— 1. Since the extension is tamely ramified,

πE = CMTΓ̂  where c lies in UF — UF and u lies in ί/J. If we apply the norm

NE/F to iτE = cwτr£ we get 1 = cιN(u), from which c has order / in UF/UF.

But then vE(ττE — πE) = vE{ττE). Also note that for / # j we have vE(CjπE)

Φ PE(CJ7Γ^) (because i andy are different modulo /). Thus,

/-i \

Define, then, r = c 0 and α = Σ(={ c,-^. It follows that w = r + α, where r

lies in F and ^ ( α ) = vE{wr — w), i.e., a lies in PJ. This completes the

proof.

LEMMA 4.3.7. // w lies in Ex and wτ/w lies in UEfor some s > 0 then

? exist elements a in UE and r in F such that w = ra.

Proof. We claim first that w lies in Fx UE9 for, if w = πEu with u in

UE9 then

w

Since wτ/w lies in UE and .E/i7 is a tamely ramified extension, we see that

tis a multiple of e(E/F). Thus, w lies in F x t/E.

Write then w = rλaλ for some rx in i 7 and β! in UE. We have

wτ/w = al/ax = 1 + {a{ — aι)/aι lies in UE. It follows that α[ — ax is in

P^. Now, Lemma 4.3.6 implies that ax = a2 + r2 for some a2 in P^ and r2

in i7. It should be noticed that r2 is a unit. Then define r = rλr2 and

α = l + CL2/r2. Whence α lies in UE, r lies in F and w = ra.

PROPOSITION 4.3.8. Lety be an element of QE. If'y~ιyτ lies in QHyE/F

then there is an element r in QF and an element a in QnyE/Fsuch thaty = ra.
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Proof. Write

y LO

Since y~ιyΎ lies in QnE/F we have that y{/yx lies in Ugn+1)/2] and
yl(yl-y2) lies in p ^ / V σ - ^ / / ^ Lemma 4.3.7 says that there are
elements aλ in U^n+1)/2] and rx in F such thatj^ = rλav Since

lies in pj/*/2^1 e{E/F))/i^ t f o u o w s that (y2rλ

 x ) τ — y2rx

 λ is in
p[n/2]+(i-e(E/F))/i^ Lemma 4.3.6 implies the existence of an element
a2 lying in p^/2]+a-e(E/F))/2 a n d a n e i e m e n t Vi m p s u c h that y2r{1 =
a2 + r2. Define

Then one checks that j> = ra9 from which the proposition follows.

4.4. In this section we study the connection between generic elements
of G\2(F) with respect to the standard lattice and generic elements of
G12(E) (with respect to the class of the corresponding lifting lattice).

PROPOSITION 4.4.1. // z is K([LF])-generic of level 2m + 1, where
m >0orm = - oo, then z is K([L°E/F])-generic of level (2m + l)e(E/F).

Proof. We consider first the case when z has level — oo. Since
K'-OO(LF)

 = FX£{(LF), we see that z is generic of level - oo if and only if
*>F(det z) is odd. But ^(det z) = e(E/F)vF(det z) and e(E/F) is odd, so
that ^(det z) is odd and z is ϋf([L^//Γ])-generic of level — oo.

Suppose now that z has level 2m + 1, m > 0. Then there is an
element d in Fx such that dz is 2?(L£)-generic of level 2m + 1, i.e., dz — 1
is ^(L^)-generic of level 2m + 1. So dz — 1 lies in £2m+i(L0

F), which is
contained in *e(E/F)(2m+1)(L0

E/F).

pE(det(dz - 1)) = e(E/F)vF(det(dz - 1)) = e(E/F)(2m + 1).

Since the elements g of ^e(£/Fχ2m+i)(^/F) are such that ^(det g) >
e(E/F)(2m + 1), it follows that, in fact, dz - 1 is ^(L£/F)-generic of
level e(E/F)(2m + 1). The result now follows.

PROPOSITION 4.4.2. If x is Kunr([LF])-generic, then x is elliptic over E

and x is Kunr([L0

E/F])-generic.
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Proof. Without loss of generality we may assume that x has level 0.
Since x is unramified generic, it follows from Proposition 1.3.12 that/^.,
the characteristic polynomial of x9 is irreducible modulo PF. Also, fx has
distinct roots in some extension field.

Now, either fx has distinct roots modulo PE or fx is irreducible modulo
PE. The first is not possible because if fx has distinct roots modulo PE,
HenseΓs lemma imphes that/x is reducible in E. Byt [E: F] is odd and
deg fx = 2. Thus fx is irreducible over E and in particular x is elliptic.
Also, by [Se], OE[x] = OE[x]. It follows that x is *:M"r([L°/F])-generic (see
proof of Proposition 1.3.12).

4.5. We introduce in this section the notion of τ-generic element.
These elements are going to be useful in dealing with calculations of
characters that involve τ-conjugations.

Let E/F be as in §2.2. All lattices in this section are assumed to be
ramified.

DEFINITION 4.5.1. AN element x of G12(E) is called τ-£{LE) (respec-
tively, τ-B(LE), τ-K([LE])) generic if N(x) if 4(LE) (respectively, B(LE),
K([LE])) generic. Denote by %(LE), B'τ(LE) and K'τ([LE]) the respective
sets of τ-generic elements.

DEFINITION 4.5.2. The τ-normalizer of a subset S of G\2(E) is the set
NG\2(E)(S)

 o f elements g in G12(E) such that g~λSgT = S.

DEFINITION 4.5.3. A subset S of G\2(E) is a τ-trivial intersection set
in G12(E), or a τ-T.I. set, if it does not contain 1 and

(a) S c N&2iE)(S),
(b) if g is an element of G12(E) that does not lie in NQX ̂  then

g-1Sgτns= 0.
We observe that in fact N^^^S) is a subgroup of G\2(E).

PROPOSITION 4.5.4.
(a) If g lies in K([LE]) then g lies in NQΪ2(E)(^(LE)). On the other hand

ifg lies out ofK([LE]) then g-^(LE)gτ Π %(LE) = 0 .
(b) B'r{LE) andK'τ([LE]) are r-T.I. sets with τ-normalizer K([LE]).

Proof. We prove the statement concerning K'τ([LE]), the others being
similar. So, let g be an element of K([LE]). Then by Proposition 1.2.13 g
lies in NGh(E)(K>([LE])). From this g-ιK'T([LEJ)g* c K'Ύ([LE}\ because if
x lies in K'T([LE]) then N(g'ιxgτ) = g~1N(x)g Ues in K'([LE]). Given
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that g" 1 also lies in K([LE]), the same argument shows that gK'τ([LE])g~τ

c κ'τ([LEj)9 Le., g-^ α^Dg1" => ^ α^D
Now, assume that g lies out of ^([L^]). If there is an element x that

lies in both g~xKf

T([LE])gr and K'T([LE])9 then JV(x) and gN(x)g~1 are
generic. This says that K'([LE]) Π g-^'flX^Dg is nonempty for g out of
K([LE]), which contradicts Proposition 1.2.13.

4.6. We now introduce the notion of τ-unramified generic element.
Let E/F be as in §2.2. The lattices we consider in this section are

unramified.

DEFINITION 4.6.1. An element x of G12(E) is called τ-£unr(LE)
(respectively, τ-K™r(LE), τ-Kunr([LE])) generic if N(x) is tunr(LE) (re-
spectively, K^{LE\ Kunr{[LE])) generic. Denote by ί™rXLE\ K™r'{LE)
and K"nr\[LE]) the respective sets of unramified generic elements.

PROPOSITION 4.6.2.
(a) Ifg lies in Kunr([LE]) then g lies in N^h{E){^nr\LE)). On the other

hand, ifg lies out of Kun\[LE]) then g~Xunr'(LE)gτ Π Λ?nr\LE) = 0.
(b) K™r\LE) and K^nr\[LE}) are r-T.I. sets with normalizer

Kunr([LE]).

Proof. The proof is analogous to the one given in Proposition 4.5.4
and we omit it.

4.7. Let E/F and πE/F be as in §2.2.

It is a consequence of Propositions 4.8.4, 4.8.16, 4.8.23 and 4.9.9
below and our remark following 3.2.4 that if (T, X) is an elliptic element
of Gl 2 (£)then

this last expression is, from Proposition 4.1.2(b) and the definition of pE/F.
equal to

Σ PE/F{y~ι(τ>χ)y)
(χph,E/F)

T> y~lχyτ)

Σ
y€ΞG\2(E)/H(ψbίE/F)
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4.8. In this section the comparison for τ-generic elements is made.

DEFINITION 4.8.1. Set

y^K([LE/F})zm

where zm is as in §4.3.

DEFINITION 4.8.2. Let

σE/F = Ind pE/F, σ = Ind p.
H{ψb,E/F)ϊ K([L°E/F]) H(φ)ϊK([L°])

We observe that xψ (T, X) = χd (T, X). We limit ourselves then to
studying the sums x i ^ O , x).

The proof of next lemma is similar to the one given for Lemma 1.2.11
and we omit it.

LEMMA 4.8.3. Let x be an element of ExBn(L°E/F) with n odd. Then
s uPc in EX vE(det(cx — 1)) > n. We have equality if and only if x is
K([LE/F])-generic of level n.

PROPOSITION 4.8.4. Let x be an element of K([L°E/F]) that does not lie
in N~1(EXBn(E/F^(LE/F)) (N denoting the non-abelian norm map defined
in 3.1.2). Ifx is τ-K([L°E/F\) generic then for m > 0, χ ξ ^ ( τ , JC) = 0.

Proof. Let y be an element of K([LE/F])zmK([LE/F]) and suppose
m > 0. Then y does not lie in K([LE/F]). But given that x lies in
K'r{[LE/F\) and K'T([L°E/F\) is a τ-T.I. set, we have that y~ιxyτ is not
τ-K([LE/F}) generic.

On the other hand the set H{ψbE/F) - N-\ExBn{E/F)(LE/F))
consists only of τ-K([LE/F]) generic elements, because if g lies in
HU>b,E/F) - X~\ExBn(E/F)(L°E/F)) then N(g) lies in

H(^b,E/F)-E-Bn(E/F)(LE/F)

and the elements of this last set are generic. It follows that y~ιxyΎ does
not lie in # ( ψ W F ) - N~\ExBn{E/F)(LE/F)).

We claim now that y~ιxyr does not lie in N~1(ExBn(E/F)(LE/F)),
because if it does, theny~ ιN(x)y lies in ExBn{E/F){LPE/F) and by Lemma
4.8.3 supc i n Eχ vE(det(cN(x)) - 1) > n. But by hypothesis N(x) is a
generic element of K([LE/F]) that does not lie in ExBn{E/F)(LE/F) and
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then supc i n Eχ vEdet(cN(x) — 1) < π, a contradiction. This proves the
claim and we have as a consequence thaty~ ιxyτ does not lie in H(ψbE/F),
so that pE/F{y-ιxyr) = 0 whence χ<ζ)p(r, x) = 0.

In view of the proposition above we now analyze τ-generic elements
lying in N~1(ExBn{E/F)(L^/F)). In particular, the next proposition will
allow us to assume, without loss of generality, that for such elements,
N(x) can be taken to be irrational, i.e., an element of G\2(F).

PROPOSITION 4.8.5. Let x be a τ-K([LE/F]) generic element. Then there
is an element k in K([L°E/F]) such that k~ιN(x)k is F-rational.

Proof. By Proposition 3.1.3(d), there is an element^ in G12(E) such
that y~1N(x)y is jF-rational. We observe that^"xiV(Λ:)^ satisfies the same
irreducible polynomial as N(x), i.e., an Eisenstein polynomial, from which
F[y ~λN(x)y]/Fis quadratic ramified.

Now Corollary 1.2.4 provides us with a unique equivalence class of
lattices [L] on VF such thai y~ιN{x)y is [L]-generic. On the other hand
the transitivity of the action of G12(F) on lattice flags provides us of an
element r in G12(F) such that K([L°F]) = r~ιK([L])r. It follows that
r~1y-ιN(x)yr is #([L°])-generic.

By Proposition 4.4.1, we have that, in fact, (yr)~ιN(x)yr is
AX[Z4/F])-generic. Since, by hypothesis, N(x) is also iΓ([L^/F])-generic,
the T.I. property implies that k = yr lies in K([L0

E/F\). This completes the
proof.

As a consequence of the proposition above, we may assume without
loss of generality that for x r-K([L°E/F\) generic, N(x) is an element of
G\2(F).

PROPOSITION 4.8.6. Let x be α τ-B(L°E/F) generic element of
N~1(BΠ(E/F)(LE/F)) s u c h t h α t N(x) l i e s i n Gli(F)' T h e n t h e r e i s α

B{L°E/Fygeneric element z of the same level as N(x) such that N(z) = N(x).

Proof. We observe that the restriction of N to E[N(x)] is the norm of
the field extension E[N(x)]/F[N(x)] (see the remark after Definition
3.1.2).

We consider first the case when E/F is ramified. Then
E[N(x)]/F[N(x)] is a ramified, tamely ramified extension of degree /. It
follows that N(x) is generic of level si for some s. Since the units of the
field E[N(x)] are given by U£[N{x)] = Bt(L°E/F) Π E[N(x)]9 we have, in
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fact, that N(x) lies in UE[N(x)] but not in UE[%lx)]. On the other hand it is
known that N induces an epimorphism N(UE[N(x)]/UE[%lx)]) =
U£[Nix)]/U£+N\x)] (see [Se]) and since U£[N(x)] Π F[N(x)] = U^N{X)]9 it

follows that N(x) as an element of UF[N(X)]/UF^x)] is not the identity.
We are able then to pick z in UE[N(x)]/UE[%lx)] such that N(z) = N(x).
Finally, we observe that the non-zero elements of UE[NM]/UE

ι^\x)] are in
fact generic elements of level si. This completes the proof in the ramified
case.

We assume now that E/F is unramified. In this case the norm N
satisfies N(UE[N(x)]) = UF[N(x)] for all * > 1 ([Se]). An argument similar to
the one above allows us to pick z generic of level the same as the level of
N(x) and such that N(z) = N(x). From this the result follows.

From the above, we see that by τ-conjugating if necessary, we may
assume for all our purposes that if x is τ-B(L°E/F) generic and lies in
N~1(Brι(E/F)(L%/F)) then x is 5(L^/F)-generic, N(x) is F-rational and
level x = level N(x).

The next proposition tells us that, in fact, it is enough to consider
elements as above, rather than elements lying in N~ι(ExBn{E/F){L°E/F)).

PROPOSITION 4.8.7. Let x be a τ-K{[LQ

E/F\) generic element lying in
N~1(ExBn(E,F)(L°E,F)) and such that has F-rational norm. Then there is an
element a in Ex and a τ-B(L°E/F) generic element g such that x is
T-conjugate with ag.

Note. It is here that our assumption concerning the parity of / is used.

Proof. We have that N(x) lies in G\2{F) and has the form N(x) = βh
where β lies in Ex and h is 5(L^/F)-generic. So

Γβw βa

iβc βv

with u and v units. Set r = βu. Then r lies in F and r~λN(x) = r~ιβh lies
in G\2(F). We observe that r~ιβh = u~ιh and if we set hλ = u~ιh, it
follows that hx is a 5(L^/F)-generic element of the same level as h and we
have N(x) = βh = rhv We may assume then without loss of generality
that N(x) = βh, where β lies in F and h is i?(LF/F)-generic element lying

Now, given that h lies in G\2(F) and is a unit of E[N(x)] we have, by
the properties of the norm of E[N(x)]/F[N(x)l that there is a B(L°E/F)-
generic element g such that N(g) = h (see proof of Proposition 4.8.6).
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At this point, we know that β is an E[N(x)]/F[N(x)]-noτm and we
want to prove now that β is an E/F-norm. To this end, set A = F[N(x)]9

then

E[N(x)]

A = F[N(x)]

and β lies in FXΠ NAE/AAE. By class field theory it is known that
[Fx : NE/FE

X] = /. Also, we have the inclusions NE/FE
xa FXΠ NAE/AAE

c Fx and since / is prime we need only prove that the last inclusion is
proper in order to prove that β lies in NE/FE

X.
Assume first that E/F is unramified. Then the prime element πF of F

has valuation two in A (because A/F is ramified). But then it cannot be in
NAE/AAE, because in this last set the elements have valuations which are
multiples of /.

Suppose now that E/F is ramified. Then there exists a set Cq_x of
(q — l)th (distinct even modulo P) roots of unity in OF(q = [E: F]) such
that UF = Cq_1UF. Let d be a generator of Cq_v Since A/F is ramified we
have that UA = Cq_λU}. By [Se], the element d of F is not a norm, so does
not lie in NAE/AAE.

We have proved that there is an element a in E such that N(a) = β. It
follows that N(x) = N(a)N(g) = iV(αg). By Proposition 3.1.3(e) the
result follows.

PROPOSITION 4.8.8. Let x be a B(L°E/F)'generic element of level s and
lety be an element of K([L°E/F])zmK([L°E/F]). Then y~ιxy lies in Bn(L°E/F)
if and only ifm < (s - l)/2 - [n/2].

Proof. Writej> = kιzmk2 where kv k2 lie in K([L?E/F\). Then we have

^Ea **£'
.(l + eiE/F))/!.. _ „
τE u πEc

where w, v lie in [/£ and α, c lie in O .̂
It follows that y~ιxy lies in Bn(L°E/F) if and only if z~1(kϊ1xk1)zn

lies in Bn(L%/F)9 {Bn{L°E/F) is normal in ^([L^/ F])) if and only if

1 +
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lies in

p[(n + l)/2] p[n/2]+a-e(E/F))/l'

1 +
E

n/2]+(l + e( E/F))/2 p[(
- BΛ(L°E/P)

if and only if -m + (s - l)/2 > [n/2] if and only if m < (s - l)/2 -
[n/2].

DEFINITION 4.8.9. An element x of N~\Bn{E/F)(L°E/F)) such that x is
i?(Z4/F)-generic, τ-B(L°E/F) generic, N(x) is irrational and level x = level
N(x) will be called reduced.

COROLLARY 4.8.10. Let x be reduced and let y be an element of
K([L°E/F])zmK([L°E/F]). Theny-1N(x)y lies in Bn(E/F)(L°E/F) if and only if
y-xxy lies in Bn(E/F)(LE/F).

PROPOSITION 4.8.11. Let x be reduced. Then

x£i(τ,*)= Σ iW(.rV).
yeQBnK(lL%/F])zmK«L0

E/F])/Qn{E/F),E/F

Proof. We first observe that there is a natural bijection between the
sets K([LE/F])zmK([LE/F])/H(4>bE/F) and

QE Π K([LE/F])zmK([LE/F])/Qn(E/FhE/F.

Thus, we have

xS>,*)= Σ fc/Λ r V ) .
yeQEnK([Ll/F])zmK([L%/F])/Qn(E/F),E/F

We have to prove that if y~ιxyτ lies in H{ψbE/F) then it lies in
Bn(E/F)(L%/F). Let, then, j ; " 1 * ) ^ be an element of H(ψbtE/,F)9 wherey lies
in QE Π K([L°E/F])zmK([L°E/F]). It follows that y~ιxyτ = /A:, where / lies
in 1? [ 6 ] x and k is in Bn(^E/F){L°E/F). Since Bn(^E/F){L0

E/F) is normal in

^([L^ / F]), we get, after we apply the norm to y~ιxyτ = tk, that
;;" W(x)>> = 7V(/)Λ for some h in 5 n ( £ / F ) (L^ / F ) .

If y lies in Aχ[L^/F]) then y~ιN(x)y lies in Bn(^E/F){L0

E/F), because
N(x) is in Bn{E/F){L?E/F). \ίy does not lie in K([L^/F]), t h e n ^ " 1 ^ ^ : ) ^ is
a non-generic element lying in H(\pbE/F). It follows thaty~ ιN(x)y lies in
E*Bn{E/F)(L°E/F) since H(ψbtE/F) - ExBn{E/F)(L°E/F) consists entirely of
generic elements. We prove now that under these circumstances y~ιN(x)y
lies in fact in Bn(E/F)(L°E/F). Let

v = vE{dφ-ιN(x)y - 1)) = vE(det(N(x) - l));
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v is in fact an odd number greater than or equal to n(E/F) since v is the

level of N(x). Write

y-1N(x)y = \au ad]

with a in Ex; u9 v in U}f9+ι)/2]; c in p£/2]-Ki+«<*/*•))>* ^ i n

pg/2]-«i-e(E/Fy)/2m W e n o w observe that since

v = vE((au — l)(αί; — 1) — α 2 α/)

is odd, a cannot have positive valuation (otherwise v = 0), a cannot have

negative valuation (otherwise v = 2ϊ>£(α)) and a cannot be a unit in

UE ~ U^v+1)/2] (otherwise vE(au — 1), vE{aυ — 1) < v and since vE(acd)

> v, det(N(x) — 1) would have valuation less than v). So a lies in

ί/j ("+ 1 ) / 2 ] and then y~1N(x)y lies in BV(L°E/F), which is a subset of

*»< W L £ / F ) > i . e . , . T ^ ( x ) ; ; lies in Bn(E/F)(L°E/F).

At this point we have then that, in any case, y λN(x)y lies in

By Corollary 4.8.10, we have that y~ιxy lies in

We observe that y~ιxyτ = (j?~1.s)0(<y~"1.yτ)> f r o m which
( Γ ^ ' ^ ' V ) lies in QE n H(φbfE/F). Thus, 7 " V lies in β ( / ) , /

(see Proposition 4.2.4). It follows that .y~V T lies in Bn(E/F)(L°E/F). This
completes the proof.

PROPOSITION 4.8.12. Let x be reduced. Then

xi:;F(τ,χ)= Σ
yeQFnK([L°F])zm,FK([L°F])/Qn>F

Proof. We observed in Proposition 4.8.11 that if y lies in

QE Π ^([L^lJ^fL^J/β^/^^
then j - V " = ( ^ " V X ^ ' V Ί and ^ ~ V T lies in β n ( £ / F W ^ By Proposi-

tion 4.3.8 there is an element a in Q^E/F),E/F
 a n ^ r *& QF

 su°h that

7 = ra. Thus, without loss of generality we may take y = r, i.e., we may

choose }> lying in G12(JF), whence y~ιxyτ = j " 1 * ^ Thus j> is F-rational

modulo Qn(<E/F\E/F s o tliat by Lemmas 4.3.2 and 4.3.5 zm lies in ZF and

we may replace the sum over QE Π K([Ll/F])zmK([L°E/F])/Qn(E/F)E/Fin

the formula in Proposition 4.8.11 by a sum over

QFnκ{[L%])zmK([L0

F])/QnfF.

We get
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LEMMA 4.8.13. Let w be an element of Bn{E/F)(L°E/F) such that N(w)
lies in G12(F). Then N(w) lies in Bn(L%) andψbE/F(w) = ψb(N(w)).

Proof. N(w) lies in Bn{E/F)(L°E/F) Π G12(F) so in Bn(L°F) by Corollary
2.1.5.

As for the second assertion, we have that \ph(N(w)) = ψbjE/F(w) if
and only if ψ(tr b(N(w) - 1)) = ψ(tr bTr(w - 1)) if and only if
ψ(trb(N(w) - 1 - Tr(w - 1))) = 1.

Set a = N(w) - 1 - Tr(w - 1). Then by Lemma 3.1.4

a = N(w - 1) + Σ Σ (w - l)(w τ - 1) (w^- l)

• ••(w'f-ή- -iw*1-1 -l).

We observe that a lies in ^(E/F^^E/F) ^ End F (F f ) which is, by Prop-
osition 2.1.3, equal to #ln{L0

F). Thus, iτba lies in PF, because b lies in
!?1_2n(L^), and then ψ(tr ba) = 1. Now the lemma follows.

LEMMA 4.8.14. Let x be an element of H(ψb E/F) such that N(x) lies in
G\2(F). Then N(x) lies in H(ψb) andpE/F(x) = p(N(x)).

Proof. Write x = tk with / in E[b]x and k in Bn(E/F){LQ

E/F). Then

N(X) = N(t)(r-ι'-1>rH'-2>r-1kr • • • r'-1)^"1' • • • r~2kτr2 • • • r"1)

Since N(t) Ues in G12(F) we have a = {N(t))~ιN{x) lies in G12(F) n
^ ( ϊ / η ί l i / , ) = Bn(L%), so that iV(x) Ues in # ( ψ t ) = F t ί , ] ^ ^ ^ ) .

On the other hand, by Lemma 2.3.3 of [K4] and Lemma 3.1.4, we get
that a - 1 - Ύτ(k - 1) lies in Bn{LF) and

a - 1 - Tr(A: - 1)

- Σ (Γ^Y^ f**Wx • • • t^) - Ίτ{k - 1)
( = 0

(modulo &ln(E/F)(LE/F)\ It follows that ψ(tr b(a - 1 - Tr(A: - 1))) = 1,
from which ψ6(o) = ψb,E/F(k). Finally,

= pE/F{tk) = pE/F(x).
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LEMMA 4.8.15. Let x be reduced. Then

y<zQFnK([L°F])zmK([LF])/Qn,F

Proof. We observe that if y lies in QF n K([L0

F])zmK([L°F])/QnF then

N(y~ιxy) = y~ιN(x)y. Now, the proposition follows from Proposition

4.8.12 and Lemma 4.8.13.

PROPOSITION 4.8.16. Let x be reduced. Then

Proof. We observe that the correspondence yQn^F »-» yH(ψb) estab-

lishes a bijection between

QFnκ([LF])zmK([LF])/Qn,F and K{[LF])zmK{[LF))/H^b).

Now, the result follows from Lemma 4.8.15.

In order to complete the comparison in the ramified elliptic case, it is

s only necessary

some preliminaries.

thus only necessary to compare χdε/F with χ σ . In order to do this we need

PROPOSITION 4.8.17. Let z be K({L?E/F\)-generic of level - o c . Then

E[z]xc E[b]xBn(E/F)(L0

E/F) if and only if z lies in E[b]xBn(E/F)(L°E/F).

Proof. If E[z]xc E[b]xBn{E/F)(L°E/F) then it is clear that z lies in

E[bΓBn{E/F)(L°E/F).
Conversely, if z lies in E[b]xBn(E/F)(L°E/F), let w be in E[z]x. Then

w = a + βz for some α, β in E. If a = 0 we clearly have that w lies in

E[b]xBn(E/F)(L°E/F). We then consider the case when a Φ 0. We have

w = α(l + a~ιβz\ so w lies in £ [ f t ] x ^ ( ^ / F ) ( ^ / F ) if and only if 1 +

a~ιβz lies in E[b]xBn(E/F)(L^/F). We observe now that a~ιβz is generic

(because z is generic), lies in E[b]xBn{E/F)(LPE/F), and does not lie in

ExBn(E/F)(L^/F)' Thus, we need only show that if z lies in

E[b]xBn{E/F)(L°E/F) - EXB(L°E/F) (so that z is generic) then 1 + z lies in

E[b]xBniE/F)(L°E/F).

Note that

- ExB(Ll/F) = ΠLo / F£

/i odd
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Suppose first that z lies in t'm(L°E/F) with m > 0. We have that z = tk with
t in E[b]x, k in Bn(E/F)(L°E/F). We observe then that / lies in ^(LE/F)

and

l + z = l + tk = {\ + /)(1 + 0 - 1 ( l + tk).

But 1 + t lies in £[/] x = £[6] x , so that is enough to prove that
(1 + ty\l + tk) lies in E[b]xBn(E/n(L°E/F).Ψήte

(1 + / ^ ( l + tk) = (1 + / Γ ^ l + / + /(* - 1))

= 1 + ( 1 + / ) ' ( * - ! ) .

It follows that (1 + t)~\l + tk) lies in E[b]xBn(E/F)(L°E/F) (because
t(k - 1) lies in *niE/F)+m(L°E/F) and 1 + t Ues in B(L°E/F)).

We suppose finally that z lies in &f

m(L\/F) with m < 0. Thus, z" 1 lies
in 4Lm(L%/F). Write 1 + z = z(l + z" 1). Then, by the above, (1 + z'1)
lies in E[b]xBn(E/F)(L°E/F). It follows that 1 + z lies in
E[b]xBn(E/F)(LE/F). This completes the proof.

COROLLARY 4.8.18. Let x be K([L°E/F]) generic of level - oo and
τ~K([L^/F]) generic of level — oo and such that N(x) lies in H(ψh). Then x
HesinH(ψhE/F).

Proof. Since H(\ph) c H(ψbE/F) we have that N(x) lies in H( φhE/F)
= E[b]xBn(E/F)(L°E/F) and E[N(x)] c £ [ 6 ] X ^ ( £ / F ) ( L ^ / F ) . Since
x-1iV(x)x = N(x) and JE'[iVr(jc)] is the centralizer of N(x)9 we have
E[x]x= E[N(x)]x. By Proposition 4.8.17 our result follows.

PROPOSITION 4.8.19. Let z be a B(LE/F)-generic element of level
r < n(E/F) (so that z does not lie in ExBn(E/F)(L°E/F)). Then £ [ z ] x c
E[b]xBn(E/F)_r(L°E/F) if and only ifz lies in E[b]xBn(E/F)(L°E/F).

Proof. We assume first that z lies in E[b]xBn(E/F)(L^/F). Write
w = z - 1 and z = tk with t in E[b]x and k in Bn(E/F)(L%/F)m Then w is

and

-Λ-i-C-iXi+ί'-iΓM*-!)).
Since ί - 1 lies in £[6]XΠ 4.(L£/F) and k - 1 lies in *H{E/F)(L%/F), it
follows that w lies in £[^]x5Π(£//r)_r(i'£/f). By Proposition 4.8.17 we
then have E[w]*= E[z]xcz E[b]xBn(E/F)_r(L°E/F).

Conversely, assume that E[z]x<z E[b]xBn(E/F)_r(LE/F). Then

w
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w = z — 1

lies in E[b]xBn{E/F)_r(L°E/F). Write w = tk with fc in Bn(E/F)_r(L°E/F)
and ί in £[&]x, ίf(L^/F)-generic of level r. Thus,

+(1 + t)'lt(k - 1))

]iesinE[b]xBn(E/F)(L0

E/F).

COROLLARY 4.8.20. If x is B(LE/F)-generic, τ-B(L?E/F) generic of level
r (i.e., both x andN(x) have level r) and N(x) lies in H(\pb). Then x lies in

Proof. We have E[N(x)]x^ E[b]xBn(E/F)_r(L°E/F), because N(x)
lies in H(ψhtE/F). Since E[x]x= E[N(x)]x it follows that E[x]xcz
E[b]xBn(E/F)_r(L°E/F). Now by Proposition 4.8.19 the result follows.

DEFINITION 4.8.21. Let CK([LOF])(X) be the set of conjugatesy'ιxy of x
as y ranges over K([L^]). Let C£([Lo ]}(x) be the set of τ-conjugates
y~ιxyT of x asy ranges over K([L°E/F\).

Suppose x is an element out of N~ι(ExBn{E/F)(L°E/F)), which is
generic, r-generic and such that N(x) is F-rational. Then, either

(a) CT

K{[LOE/F])(X) Π H(ψbfE/F) = 0 (it follows, by Corollaries 4.8.18
and 4.8.20 that in this case Q ( [ Lo ] }(^(x)) n H(ψb) = 0 ; thus,

^ / F

(b) there is an element y in K([L^/F]) such that w = y ιxyΎ lies in
H(φbtE/F), so that χ£>/F(τ, x) = χ<g/F(τ, w ) .

From this observation we may assume without loss of generality that
if x is out of N~\ExBn{E/F)(Ll/F)) and is generic, τ-generic, N(x) is
jp-rational, then x lies in H(ψbE/F).

PROPOSITION 4.8.22.
(a) Let zbe a K([L^/F])-generic element of level — oo ofH(\pbE/F) and

let y be in K([L^./F]). Theny~ιzy lies in H(ψbE/F) if and only ify lies in the
normalizer NK([LoE/F])(E[b]xBn(E/F)(L°E/F)) Of E[b]xBn{E/F)(L°E/F) in
K([Ll])l/F])

(b) Let z be a B{L°E/F)-generic element of level r < n(E/F) in
H(4>b,E/F) and let y be in K([L°E/F]). Then y~xzy lies in H(^bE/F) if and
only ify lies in NK(lLoE/F])(E[b]xBn(E/F)_r(LE/F)).

Proof. In order to prove (a), we observe that z = tk where t is in
E[b]x and k is in Bn(E/F)(L°E/F). Then t Ues in E[z]xBn(E/F)(L°E/F) and
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E[b]x = E[t]x. By Proposition 4.8.17

E[b]*-E[t]*CE[z]*Bn{E/n(L%/F).

Also, by the same proposition, E[z]xc E[b]xBn^E/F)(L°E/F). It follows

that

E[z]xBn{E/F)(L°E/F) = E[b]xBn(E/F)(L°E/F).

Thus, if y'λzy lies in H(\pbJS/F) = E[z]xBn(E/F)(L°E/F), then y lies in
Nκ«L%/F])(E[z]xBn(E/F)(L°E/F)) and conversely.

We now prove (b). Let us assume ihaty~ιzy lies in H(ψbE/F). Since

y~xzy is J?(L^/F)-generic of level r, from Proposition 4.8.19, we have

Ely-'zyΓc E[b]xBn(E/F)_r(L°E/F).

Also, y~ιzy = /A: for some t in £'[Z?]X and k in Bn{E/F)(L°E/F), we apply

Proposition 4.8.19 to get

so that

£ [ f t ] X ^ n ( £ / J P ) - r ( L V ) = E{y-ιzy\xBn{E/F)_r(LE/F).

Similarly, E[b]xBn{E/F)_r(L°E/F) = E[z]xBn(E/F)_r(L°E/F). It follows that

lies in

Conversely, we assume that j> lies in NK{[LoE/F])(E[b]xBn(E/F)_r(L°E/F)).

^ = y~ιίyk for some t in E[b]x and k in Bn(E/F)(L°E/F). Then /:

lies in H(ψbE/F). Thus, we may assume that z lies in E[b]x. Under these

circumstances, z - 1 is an element of E[b]x that lies in ^(L°E/F). Write

y~ι(z - 1)y = ί1A:1 where ίx lies in £'[Z>]X and is ίf(L^/F)-generic of level r

and kx is in Bn(^E/F)_r{L°E/F). We then have

j r V = 1 + txkλ = (1 + /Jfl +(1 + /J"1/^*! - 1)).

Thus, y~ιzy lies in E[b]xBn(E/F)(L°E/F) = H{ψbE/F). This completes the

proof.

PROPOSITION 4.8.23. Let x be α K([LE/F]) generic, τ-K([LE/F]) generic

element of H(ψb E/F) that does not lie in N~1(EXBn{E/F)(L°E/F)) and such

that N(x) is F-rational. Then χfE/F{r, x) =hen χf

Proof. We recall that

yinK([L0

E/F])/H(φhfE/F)
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Assume then that j> lies in K([L°E/F]) andy~ ιxyΎ lies in H(ψbE/F). Then

y~ιN(x)y lies in H(ψhE/F). We have that either x and N(x) are

^([L^ / F])-generic elements of level — oo, o r x and N(x) are B(LE/F)-

generic elements of level r < n. In the first case, Proposition 4.8.22(a) says

that y lies in NK([Lo^F])(E[b]xBn(E/F)(L°E/F)) and then y~ιxy lies in

H(ψbtE/F) (by Proposition 4.8.22, now applied to the generic element x).

By the same argument, Proposition 4.8.22(b) implies that y~ιxy lies in

H(\phE/F) if x and N(x) are B{LE/F)-generic. Thus, y~ιxy lies in

H(φbfE/F) if y lies in K([LE/F]) and y~ιxyT lies in H(ψb^E/F). It follows

that if j ; is in QE, y~ιyτ = ( j r x*~ V)( j ^ x j Λ ) lies in H(φhE/F) Π ρ £ =

Qn(E/F),E- Now we have by Proposition 4.3.8, since

QBnκ([L°E/F])/QEnH{4>btE/F)

and AΓ([L^/F])///(ψ6 £ / F ) are in natural bijection, that

Σ
y in QFnK([L°F])/Qn,F

Finally, Lemma 4.8.14 implies that

y in QFΠK([L°FWQn,F

4.9. For this section only we set

xίg,(τ,*)= Σ
y in Gl 2 (O £ )z m

where zm lies in ZE/F (see §4.3).

It should be observed that K^nr\L°E) = U^0Kr

unr'(LE), where

K?nr'(LE) consists of the ifo""r(L£)-generic elements of level r. It follows

that it is enough to restrict ourselves to τ-unramified generic elements in

PROPOSITION 4.9.1. Let x be α τ~Kunr([LE]) generic element. Then there

is an element h in G\2{OE) such that h~ιN(x)h is F-rationaL

Proof. Similar to the proof in Proposition 4.8.5.

It follows from above that we may assume without loss of generality

that if x is τ-Kunr{[LE}) generic then N(x) lies in G1 2 (F).
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PROPOSITION 4.9.2. Let x be a τ-Kgnr(Ll) generic element of level r

{i.e., N(x) has level r) such that N(x) is F-rational. Then there is a

K£nr(L°E)'generic element z of level r such that N(z) = N(x).

Proof. We recall once more that the restriction of the norm map N to

E[N(x)] is the norm of the field extension E[N(x)]/F[N(x)].

We prove the proposition when E/F is ramified. The unramified case

is proved similarly.

Suppose first that r = 0, i.e., N(x) lies in Uβ[N(x)] but not in UEUE[N(x)].

It follows that x lies in UE[N(x)] and cannot be an element of U£UE[N(x)]

(otherwise N(x) becomes an element of U£UE[N(x)], which is false). Also,

since x commutes with N(x) we have that E[x] = E[N(x)], so that x is

unramified generic of level zero.

We now suppose r > 1. Then N(x) lies in UE[N(x)] but not in

UEUE[N{X)Y I* follows that r = si for some s (because N(x) lies in £//[ΛΓ(jc)],

some s, so we may take s such that N(x) lies in UE[N(x)] — UE^(x)] from

which r = si). Thus, by properties of the norm (see [Se]), there is an

element z in UE[N{X)] — UE[%lx)] such that N(z) = N(x). It follows that z

lies in fact in UE[N(x)] - UEUE^(x)] (because if z is in UEUE^{x)] then N(z)

is in UEUE^x)], which is false). Also, given that x commutes with N(x),

we have that x is unramified generic. The level of x is r. This completes

the proof.

LEMMA 4.9.3. Let k be a quadratic extension of the finite field Έq of q

elements. Let I be an odd prime number and suppose that for c Φ 0, lying in

F^, there is β in k such that βι = c. Then there is an element γ in Έq such that

γ 7 = c.

Proof. Suppose first that / does not divide q - 1. Then the function

γ »-» γ 7 is an injective endomorphism of F^x, so that is an automorphism.

It follows that given c in F^x, there is γ in F^x such that γ 7 = c.

Consider now when / divides q — 1. Since βι = c lies in F^ we have

that βl{q-χ) = 1. Also, βq2~ι = 1. Thus, the order of β in kx divides

g.c.d.(#2 — 1, l(q — 1)) = q — 1 (because / does not divide q 4- 1, since

/ is odd). We then have βq~ι = 1. The uniqueness of the subgroup of a

given order in a cyclic group implies then that β lies in F^. This completes

the proof.

PROPOSITION 4.9.4. Let x be a τ-Kunr([L°E])-generic element such that

has F-rational norm. Then there is an element a in Ex and a τ-KQnr([L°E])

generic element g such that x is τ-conjugate with ag.



348 JOSέ E. PANTOJA

Proof. N(x) has the form βh where β lies in Ex and h is K™r(L0

E)-
generic of level r for some r > 0. So

βu βa

βc βv

where one of w, v, a or c is a unit. Suppose w is a unit. Set r = βu. Then r
lies in i 7 and r"W(jc) = r"1/^ is jF-rational. We have r~ιβh = u~ιh and if
we set hx = u~λh, it follows that hλ is ^"'"(L^-generic of level r. We
observe that N(x) = βh = rΛx so we may assume without loss of general-
ity that N(x) = βh where β Ues in F and A is i^0"

wr(L^)-generic.
Suppose E/F is unramified. By properties of the norm there is a

Kgnr(L°E)-geneήc element g such that N(g) = h. It follows that /? is a
£'[iVr(jc)]/i7[7V(x)]-norm, but we need to prove that β is an E/F-norm.
Since

NE/FE C ^E[N(x)]/F[N(x)]^l^\X)\ (^ F CZ F

and [i r X : NE/FE
X] = I (see proof of Proposition 4.8.7), it remains to

prove that this last inclusion is proper. The element πF has valuation two
in F[N(x)], so it is not in NE[N{x)]/F[NM]E[N(x)], because in th is last set
the elements have valuations which are multiples of /. From this the
proposition follows for E/F unramified.

Now suppose E/F is ramified. Set A = F[N(x)]. Then
vF(NE/FπE

F(<β)) = vF{β) so we may scale x by πE

p{β) and we may then

assume N(x) is in UA. Suppose first that N(x) lies in UA but does not lie
in UFUA. We have then that x is a KQHr(L^)-geneήc element lying in
UA - UFU}. Next, if N(x) Ues in V\ and β lies in U^ then β is an
E/F-norm (see [Se]). Thus, h is a AE/A-norm and by Proposition 4.9.2,
we are done in this case. Finally, suppose that N(x) lies in UFUA but not
in UA. Then N(x) = βh where h Ues in UA and β lies in UF. It follows that
h is an AE/A-norm, i.e., there is an element hλ in t /^ such that
N(hλ) = h. So β is an AE/A-norm and the proposition will be proved
once we prove that /? is, in fact, an E/F-norm. Denote by β the image of
β in kA (the residue field of A). Consider the diagram

k.VAE

β is an /th-power in kA and it lies in kF. Thus, β is an /th-power in kF (by
Lemma 4.9.3). It follows that β is an E/F-norm.
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From the above we see that we may assume that JC is τ-KQnr{L?E)
generic, ^"''(L^-generic, N(x) is irrational and level x = level Nx.

PROPOSITION 4.9.5. Let x be Kgnr-generic of level r and let y be in
Gl2(OE)zmK([L°E/F]). Then y~ιxy lies in Bn(L°E/F) if and only if
-m + r> [n/2] + (1 + e(E/F))/2.

Proof. Write

= 1 + r\a U]x πE[v d\

with w, v in UE and a, d in OE. Also, lety = hzmk where h lies in G\2(OE)
and k is in K([L°E/F]).

We have y~ιxy = k~ιz~1h~1xhzmk lies in Bn{L?E/F) if and only if
z~1h~1xhzm lies in Bn(L?E/F). But since x and h~ιxh are unramified
generic of the same level, it is enough to prove that z^n

1xzm lies in
Bn(L°E/F) if and only if -m + r > [n/2] + (1 + e(E/F))/2.

It follows that

ί m + r 1

m

Ues in Bn(L°E/F) if and only if -m + r > [n/2] + (1 + e(E/F))/2.

COROLLARY 4.9.6. Let x be K£nr(L°E)-generic and τ-K^nr{LE) generic,
level x = level N(x) and let N(x) be F-rational. Then y~ιN(x)y lies in
Bn(LE/F) if and only ify^xy lies in Bn(L°E/F).

PROPOSITION 4.9.7. Let x be K™r(LEygeneric andy be an element of
G\2(OE)zmK([L°E/F]). Ify-χxy lies in ExBn(L°E/F) then y^xy lies in
Bn{L%/F).

Proof. Write y~~ιxy = ac where a is in Ex and c = [c/y] lies in
Bn{L%/p).

Since for k in K([L°E/F]) we have that k~ιzk lies in ExBn(L°E/F) if
and only if z lies in ExBn(L?E/F), we may assume that y has the form
y = hzm with h in G12(O^).

Given that h~ιxh is unramified generic, we may write

where w, v are units. It follows that

Γ a
\πE
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We get 1 + mEa = acn. Since cn is a unit, it follows that vE(a) > 0. Also,

1 + e(E/F)-m + r = vE(a) + vE(c2l) > [y

The result now follows from Proposition 4.9.5.

PROPOSITION 4.9.8. Let x be as in 4.9.6. If y'ιxyΊ lies in H(ψbE/F)

theny~ιxy lies in Bn(E/F)(L°E/F).

Proof. Since y~ιxyτ lies in H(\phE/F), we have that y~τN(x)y lies in

H(ψhE/F). Also,^" 1 ^*)^ is unramified and

consists only of ramified generic elements, so that y~ιN(x)y lies in

ExBn(E/F)(L°E/F). By Proposition 4.9.7, y~ιN(x)y lies in Bn[E/F){L°E/F).

Finally, by Corollary 4.9.6, y~ιxy lies in Bn(E/F)(LE/F). This completes

the proof.

It follows from the above that thenjμ~1yτ lies in H(χpbE/F) and if y is

in QE, then, in fact, y~ιyτ lies in H(ψbfE/F) nQE= Qn{E/FχE/F. Now,

the analogs of Propositions 4.8.11 and 4.8.12 follow. Finally, with argu-

ments similar to ones made in §4.8 we get

PROPOSITION 4.9.9. Let x be as in 4.9.6. Then

4.10. We have at this point all the elements we need in order to

present our main result.

THEOREM 4.10.1. Let F be a p-field. Let E/F be a prime cyclic

extension of odd degree I such that p Φ I. Let π be an irreducible admissible

ramified supercuspidal representation ofG\2(F). Let tnE/F and Π be defined,

respectively\ as in 2.1.9 and 3.3.1. Then the representations ΊTE//F and Π of

G\2(E) are equivalent.
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