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REDUCING THE ORDER OF THE LAGRANGEAN
FOR A CLASSICAL FIELD IN CURVED SPACE-TIME

RICHARD ARENS

We show how the Lagrangean L can be replaced by another, L*,
having the same extremals, but having only first order derivatives and
being in fact a first degree polynomial in these derivatives.

1. Introduction. Whittaker [4] showed how to reduce the order and
degree of a Lagrangean to 1 in the case of one-dimensional "space-time".
As he points out, this leads instantly to Hamilton's canonical formalism.
Rodrigues [3] showed how to do this without using coordinates in the
configuration space. "Reducing the order" is not an adequate description
of the construction since when the order is 1 (as it usually is) it still takes
some work to make it of the first degree.

In [1] we treated the case of true (several dimensional) space-time.
However, we took it to be R4, and we used coordinates in the field space.

Such a theorem is not usable when several coordinate systems must be
used in space-time M. This is because the L* doing the desired things is
not unique.

Our construction of L* here depends on the choice of an affine
connection Γ and a volume element ω in M. The result is not independent
of the Γ and ω chosen, but it is independent of coordinates.

2. 7r-manifolds. In this paper, a suitable order N of differentiability
is assumed.

Let M be a manifold which we will call space-time. Let P be another
manifold. We will call it a 7r-manifold if there is defined on it a regular
map π: P -» M.

If P and Q are two ττ-manifolds, let F(P9Q) be the class of all maps/
of open sets in P into Q for which

(2.1) *{f(p)) = *{p)

whenever f(p) is defined. Let p be a point of P and let / , g e F(P9 Q).
Say / Ξ g at p if / and g agree up to the Nth order at p. Let JN( P, Q) be
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the set of equivalence classes. An element C of JN(P, Q) may be repre-
sented by a pair (/?,/) where C is an equivalence at p and / e C. Define
τr(C) = π(p) = π(f(p)). Then JN(P, Q) is also a ττ-space.

Let X1,..., jcm, j 1 , . . . ,yn be coordinates in P and β respectively. Then
(yΊx-v shall be the function defined in JN(P9 Q) be saying that

(2.2) {y%...Λc)-*ky°f\{p).
ox dx

Here k must not exceed N.
A particularly useful kind of coordinates x1,...,xm are coordinates

exponential at a point p. For this one must select an affine connection Γ
for P. Let Tι(P)p be the tangent space to P at p. Select a /meαr coordinate
system in Tι(P)p and transfer these to P using the exponential map
defined by Γ (see [2].)

3. Lagrangeans. In classical mechanics, a Lagrangean is a function
defined on R X Tι(Q), the latter being the tangent bundle of configura-
tion space. Now R X Tι(Q) is naturally isomorphic with Jι(M, M X Q)
where M = R, and M X Q has the projection on M. Since we want to use
2.1 we define Lagrangeans in this milieu.

Let M be a manifold of dimension m. Let S be a 7r-manifold. If
coordinates tι

9...9t
m are chosen for M, then tι ° π,. ..,tm ° π are (indepen-

dent, by the regularity of π) variables in S. We will abbreviate them to
A tm

A Lagrangean (of order at most N) is an m-form Λ defined on
JN(M9 S) such that in terms of coordinates t1,..., tm in M,

(3.1) Λ = Ldt1 A - Adtm.

Let the class of these Lagrangeans be called£?N(S).

3.2. THEOREM. Let M and S be as above. Let Γ be an affine connection
for M. Let ω be a volume element for M. Let K be the cotangent bundle of
JN(M, S). Then Γ, ω define a mapping

(3.3) &N(S) -> &ι(K)9 A -> Λ*.

This mapping is linear and 1:1
3.4. L* is a polynomial of the first degree in the derivatives (necessarily

only of the first order), and
3.5. Λ* has the same extremals as A.

The precise (and natural) meaning of 3.5 is given in §5 below,
together with the proof of 3.2.
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Property 3.4 is useful for the following construction.
Let x1,... ,JCΠ (plus those f1,... ,/w) be coordinates in S. Λ* = L* dt1

Λ Λ dtm and by 3.4, L* is a sum of a term -H depending only on
the x' and tλ

9 and a sum of terms like <z(xθλ Thus Λ* is a sum of
-Hdt1 Λ Λ dtm and of terms like a(x')x dt1 Λ Λ dί"2. This latter
term is congruent modulo dxι — (xι)λ dtλ to a dt1 Λ Λ dx* Λ dtm,
dx' being in the λth place. Thus Λ* is congruent to an m-form involving
only the x' and tλ, that is, an m-form on S.

4. A vector field Uτ on JN(M, S).

4.1. THEOREM. Let Γ be an affine connection for M. Using Γ one can

construct a vector field Uτ on JN(M, 5) . Let A e JN(M9 S) and let

tι,...9t
m be exponential coordinates at π(A) in M. Use tι,...,tm together

with some further coordinates x 1,... ,xn as coordinates in S. Then at A,

(4 2)

a
+N(xi)k...v

A sum is intended in 4.2. For example, by

where there are k indices, we mean the sum over all sets of k indices such
that l < λ < < μ < m.

We now prove 4.1. Let A = (a, f) be a point of JN(M, S). Express/
in terms of tι,...,tm:

For sufficiently small real s and \tx\9 fs can be defined by

Define the "moving" point As in JN(M, S) as (α, fs). We define Uτ at A
to be the tangent to the curve s -» As for s = 0.
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We must show that its (xι)\...μ component is correctly represented in
4.2. Now

ί = 0

= eks

dtλ • • • dtμ[*'•/] = eks(x%...μ(A).
f - 0

Then we take d/ds of this for 5 = 0, obtaining

k(x')χ...μ

as 4.2 asserts. The construction of As is clearly independent of the
coordinates.

4.3. COROLLARY. Let K be the cotangent bundle Tλ(J) ofJ = JN(M, S).
Then Γ defines a real-valued function on K whose expression in terms of
coordinates is

(4.4)
Λ

λ (* ' )λ+ 2Λ

λ"(x +

Here/?* μ is the "momentum" coordinate dual to the configuration
coordinate (xi)x...μ>υiJ.

To prove 4.3, we need only show that 4.4 is independent of the
coordinate representation. A point B is a pair (A, g) where A is a point of
/ as before, and g is a map from a neighborhood of A into R, where
g(A) = 0. The value oίpf'"μ at B is

The value of (x')λ μ at 5 is just (x')λ-μ(^) Here the latter is defined in
/, and the former is the coordinate defined in TX(J) as obtained from the
latter and the projection p

7ί(/) = K
1

, S)
(4.5)

Hence the value of 4.4 at B is £/Γ[g], the result of applying the operator
Uτ to g, and is thus independent of coordinates.



REDUCING THE ORDER OF THE LAGRANGEAN 213

4.6. COROLLARY. Let J and K be as in 4.3. Let P = Jι(M9 K). Then Γ

defines a real-valued function on P whose value at C = (c, h) is

(4.7) pλZi + pλμZ' + + pλ'vZi

where Z'λ.. is the sum of all

(4.8) ((x'')λ -*-Jσ

Several explanations are needed.

4.81. In forming the sum Zι

λ...μ we select each index appearing in

λ μ, form 4.8, and add the results, σ means delete 'σ ' from the string

λ μ. _

4.82. The p)"'* is pf"μ ° ξ where ξ is the projection of P = / ^ M , AT)

-* AT. Hence, for an element C = (c, A) of i*, wherein A maps a neighbor-

hood of c e M into K,

(4.83) />,λ '"μ(C)=/> l

λ""μ(ft(c))

which is

3(* ' )λ . . . M

ifA(c) = (Λ,g),Λ ε i .

4.84. The bar on the (x')λ...μ means that (see 4.5)

For any real variable z (and thus for (x') λ . . .) on A', 2.2 with JV = 1 gives

sense to zσ for 1 < σ < m.

To begin the proof of 4.6, we evaluate at C = (c, Λ) of P. By 2.2, the

answer is

Let us write dσ for 3/3/σ. So

We need a somewhat more abstract version of 2.2. Let ^ ( C ) =/?,

7Γ2(C) = Λ in 2.2. Replace xλ by /λ and y' by x'9 since that is the notation

for the present instance. Then 2.2 says
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Accordingly,

We assert that mι ° p ° h is the identity map. First of all πλ is the map π
for the π-space /. Then p (4.5) is a π-space morphism, for that is the way
in which K is made into a π-space. So πx ° p = π. But /* has to satisfy 2.1,
so 7r ° Λ = 7Γ. But the TΓ for M itself is the identity (on some neighborhood).
Therefore

where A: is the length of the string λ μ with nothing deleted. So

since Λ(c) = (i4, g). Combine this with 4.83 and obtain that this Z term
contributes

to the sum 4.7. This sum is evidently UΓ[g] evaluated at A. Thus 4.7 is
independent of the coordinates. Thus it defines the function for which 4.6
holds.

5. Proof of Theorem 3.2. Let Λ be given. Choose coordinates in M.
Then 3.1 defines L, a function defined on JN(M, S). We have projections

J\M,K) = P

a
K=T1(J)

(5-1) Pi
J = JN(M, S)

i
S

Hence L defines a function on Jι{M, K), which we denote by L also, for
simplicity. Using ξ, we can lift the function 4.4 up to a function φ on P.
The function defined by 4.6 may be called ψ.

Let

(5.2) ω = λdtι A ••• Λ dtm,

λ Φ 0, be the volume element postulated in 3.2.
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We define

L* = L + λ(ψ - φ) = L - λψ + λψ,

and

Λ * = L * d t ι A ••• Λ dtm.

We consider assertion 3.4. 4.8 is a derivative of first order. The
coefficients in 4.7 are mere coordinates, and the Z's are linear in the
derivatives 4.8. Hence 3.4 holds.

To show 3.5 we mention first that L* has the form

where P (\ P,λ /\... are λ (see 5.2) times the pf,p^μ,... lifted up to
/ ^ M , K) by the projections 5.1. It follows from [1, 3.4] that L* has the
"same" extremals as /. The meaning of same is as follows. An extremal for
L* gives us expressions

(5.3) xl=f(t\...,tm),

(5-4) (*<)λ = "λ(> 1 , , ' m )

{x')xμ = u'λμ{t\...,tm)

P{ = g'λ(t\...,tm)

If we abandon 5.4 and those following it, thfen 5.3 gives an extremal
for L in the usual sense. It is shown in [1] that

Uλ = x >

and so forth.

6. Correction to [1].
(a) Delete 6.5. (Prop. 6.6. remains true, with the φ of 6.7.)
(b) Delete 6.9. (Better results are in the author's "The dynamic

differential forms of the Klein-Gordon field and the conformal group",
Jour. Geometry and Physics, Vol. 1, 1983.)
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