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A PROBLEM ON CONTINUOUS AND PERIODIC
FUNCTIONS

J. S. HWANG

Let f(x) be continuous and of period one on the real line. If dj,
j = 1,2,... ,Λ, are n numbers such that each dj — dλ is rational, then
there are two rational numbers r and r' for which

f(r)nf(r+dj) and f(r') >/(/•' + </,), y - l , 2 , . . . , π .

This problem was communicated to the author by K. L. Chung and P.
Erdόs.

1. Introduction. Let f(x) be a real valued function. We say that
/( JC) is of period one if

f(x + 1) = f(x) for -oo < x < oo.

A problem (communicated by Chung and Erdόs) asks that if f(x) is
continuous and of period one, and if dj9j = 1,2,...,«, are n numbers, can
one find a rational number r such that

In this note, we present the following partial solution.

THEOREM 1. Let f(x) be continuous and of period one. If dj, j =
1,2,...,«, are n numbers such that each dj — dx is rational, then there are
two rational numbers r and rr for which

(1) f(r)<f(r + dj) and f{r') > f(r' + dj), 7 = 1,2,...,*.

2. Uniform distribution. Let x be a positive number and let [JC] be
the largest integer less or equal to x. By a theorem of Hardy and Wright
[1, Theorem 445], we know that if θ is irrational then the points (nθ) = nθ
— [nθ] are uniformly distributed in (0,1). In particular, the points (nθ)
are dense in (0,1). Based on this theorem, we shall prove the following
result.
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LEMMA 1. Let dx be irrational and let dj — dx be rational,] = 2,3,...,«.

If Ij{k)J = 1,2,...,«, are non-negative integral valued functions such that

(2) Σlj{k) = k, for each k = 1,2,...,

y=i

then the points (ak) are dense in (0,1), where

<>k= Σlj(k)dp fork = 1,2,....
7 = 1

Proof. According to the first hypothesis, we may write

dj = dλ 4- Pj/qj, for some integers/^ and #

This together with the second hypothesis (2) yields that

dj = kdx + έ
7 = 1 7 = 1

Multiplying the product Π" #7 on both sides, we obtain the assertion from

Hardy and Wright's theorem.

3. Proof of Theorem 1. Let/(;c) be continuous and of period one.

We shall prove the first set of inequalities in (1). For this, we let m be the

minimum of f(x) and let Sm be the set of all minimum points in (0,1), i.e.

Sm= {*:/(*) = m , 0 < x < l } .

We then have two cases to be considered: either there is a point y e Sm

such that

(3) f(y)<f(y + dj), for ally = 1,2,...,«;

or for each x e 5m, there is ay = y'(jc) such that

(4) f(x)=f(x + dj), l<j<n.

If the first case occurs, then there is a δ > 0 such that (3) holds for

each z in \z — y\ < 8. By choosing a rational number r in \r — y\ < 8 we

obtain the desired result. Therefore only the second case needs to be

settled in the sequel. In this case, by applying (4) successively, we obtain a

sequence of points in Sm as follows:

(5) x, x + dh, x 4- dh + dhy....

Clearly, this sequence (5) can be represented by

(6) xk = x+ Σlj{k)dj = x + ak9 fc = l , 2 , . . . ,
7 = 1

where Ij(k) and ak are defined in Lemma 1. If dx is irrational, then by

Lemma 1 the points (xk) are dense in (0,1). It follows from the continuity
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of f(x) that the function f(x) = m for each x e (0,1). This clearly yields
the assertion.

It remains to consider the case that d1 is rational. Let xk be a number
of the form defined in (6) and let Sx be the set of all points (xk) in (0,1),
k = 1,2, Clearly, this set Sx is a subset of Sm. As before, we write

n

dj=Pj/qj9 7 = 1,2,...,/!, and β =

Then the set Sx contains at most Q points.
We now begin with the first minimum

fid ) = min fid ), for some 1 <j\ < n.
l<j<n

If this minimum point r = dh satisfies (1) we are done, otherwise, we
consider the second minimum

Again, if r = dΛ + dh satisfies (1), we are done, otherwise, we consider the
third minimum

f(dλ + dJi + dj = ™&j{dh + dj2 + d,) < f(dΛ + dj2) < f(dA).

Since the set Sx contains at most Q points, there are two positive integers
M < N < Q such that

f ( d , + '- + d . ) = f i d ; + ••• + < / , ) < • • • < f i d , + ••• + </, ) ,
J V J\ JM ' J V ji j N / J \ J\ JM / '

which is absurd. This proves the first set of inequalities in (1).
Similarly, by replacing minimum by maximum, we obtain the second

set of inequalities in (1). This completes the proof.

4. Finite set of extreme points. In view of Theorem 1, we may ask
the question as to whether the condition that each dj — dλ be rational can
be replaced by some suitable conditions on the set of minimum or
maximum points. For this, we prove the following

THEOREM 2. Let f(x) be continuous and of period one, and let dp

j = 1,2,... ,n be n numbers. If the set of minimum and maximum points of
f(x) in (0,1) is finite, then there are two rational numbers r and r' satisfying
(1).

Proof. As before, we let m be the minimum of f{x) and let Sm be the
set of all minimum points in (0,1). Then by the hypothesis the cardinality
\Sm\ of Sm is finite. As before, we have two cases described in (3) and (4).
The first case gives the assertion immediately while the second case
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implies a sequence of points in Sm defined in (5). It follows that there are
two positive integers M < N < \Sm\ such that

(7) f{x + dh+ ... + dJ-f(x + dΛ+ - + dj.

We now let δ be the minimum distance between any two points in Sm.
We then consider a point j> e Sm and a rational number rλ with j> < rλ < y
+ δ. If this number rx satisfies (1), we are done, otherwise, we have

f(rι) > firι + djX f o r s o m e 1 ^Λ ^ n

By the continuity of /(*) , there is a 0 < δλ < 8/2 such that

(8) f(x) > f(x + dA), for each x in |JC - rx\ < 8λ.

Choose a rational number r2 with \r2 — rλ — d^ < 8λ/2. If r2 satisfies
(1), we are done again, otherwise, we have

f(r2) > f{r + dh)9 for some 1 <j2 < n.

Again, there is a 0 < δ2 < δx/2 such that

(9) f(z) >f(z + dh), for each z in \z - r2\< δ2.

We now write

z = (z - d:) + d: = x 4- d,.

Then we have

\* ~ rl\ = \Z - r2 + r2 - rl ~ d

h\ < δ l

It follows from (8) and (9) that

f(x)>f{x + dh)>f{x + dk + dh).

Continuing this process, we finally obtain

f(x)>f{x + dA)> >f(χ + dA+ " + dJ

> • • • >f(x + dλ+ ••• + djM+ '• + dJ,

which contradicts (7). This concludes the existence of a rational number r
satisfying the first set of inequalities in (1). By the same argument, we
obtain another rational number r' satisfying the second set of inequalities
in (1). This completes the proof.

5. Problem. In closing this note, let us pose the following

Problem. If dλ and d2 are two independent numbers, and if Iλ{k) and
I2(k) are non-decreasing, is it true that the points

(ak), where ak = I1(k)d1 + I2(k)d2,

are dense in a subinterval of (0,1).
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Note that the monotonicity of Iλ(k) and I2(k) in the above problem
is simply meant that we take either dx or d2 after each term in the
sequence ak. However, if this hypothesis is omitted then there does exist a
sequence (ak) which tends to any prescribed number 0 < 8 < 1. The
following construction is due to Komlos:

For each positive integer k, we choose a positive integer ik < k such
that

εk=\(ikd+ kd2- δ)\ = min \(id+ kd2-8)\
l<i<k

where d = dx — d2. Since dx and d2 are independent, the difference d is an
irrational number and hence the sequence (id) forms an ε-net in the sense
that for any x there is a positive integer / for which \(id — x)\ < ε. In
particular, when x = 8 — kd2 there is an integer /(ε) such that for each
k > I(ε) there exists an ik < k satisfying \(ikd — x)\ < ε. This in turn
implies that εk < ε and therefore εk -> 0 as k -> oo. We now let Iλ(k) = ik

and I2(k) = k — ik. Then we obtain

ak = Iι(k)d1 + I2(k)d2 = ikd + kd2 = 8 ± εk -> δ,

which is the desired result.
Also note that this example shows that the condition that dj — dx be

rational is essential in Lemma 1.
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