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THE GENERALIZED SCHWARZ LEMMA FOR THE
BERGMAN METRIC

MASAAKI SUZUKI

The function-theoretic criterion for the Bergman metric to be
dominated by the Kobayashi metric on the domain in C" is given. For
this, we use the distinguished family of plurisubharmonic functions and
P-metric of N. Sibony.

1. Introduction. Let D be a hyperbolic domain in Cn (cf. Kobayashi

[7]). On D we can define some intrinsic metrics: the Caratheodory metric

CD, the Kobayashi metric KD, and the Bergman metric BD. It is known

that CD < KD and CD < BD. In this paper we investigate when the

Bergman metric is dominated by the Kobayashi metric. Using N. Sibony's

P-metric we give a function-theoretic criterion for the following condition

( # ) to hold:

( # ) BD < cKD on the tangent bundle of D, c > 0 constant.

Under ( # ) every holomorphic mapping F: U -> D satisfies F*BD <

2~~ι/2cBu, where Uis the unit disc in C with the Bergman metric Bυ. This

theorem is called the generalized Schwarz lemma for the Bergman metric.

According to N. Sibony [10], we introduce the family of functions

Sp(D) = {u: D -> [0,1); u(p) = 0, C2-class in a neighborhood

of p and log u is plurisubharmonic in D}.

Taking a Bergman kernel k(z, w) of a domain D, we construct a function

φw for a fixed point w in D as follows;

where α is a positive constant chosen for D. It is clear that 0 < φw < 1

and Φw(w) = 0. Our main results are stated as follows.

(I) Let D be a Bergman domain. If there is a constant a > 0 such

that φw = φwa belongs to SW(D) for each w in D, then BD < a~ι/2KD;

hence BD satisfies the generalized Schwarz lemma.
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(II) If the Bergman metric BD of a domain D satisfies the following
condition; there exists a positive constant a such that, for each w in Z>,

(*) φw(z)B2

D(z,ξ)>a\dξlogv(z)\2 forall£eC«

andz G {z e D\ 0 < y(z) < 1},

then 2?D < a~ι/2KD; therefore, BD satisfies the generalized Schwarz lemma.
In §2 we give some properties of the family Sp(D). In §3 we arrange

the basic properties of the intrinsic metrics, especially of the P*-metric. In
§4 we prove the main results.

In §5, for the classical domains, we construct the function φw and
directly verify that each φw belongs to SW(D). Hence, we have the
generalized Schwarz lemma for the classical domains (cf. Kobayashi [7,
8]).

The author is grateful to K. Azukawa for helpful discussions of this
material.

2. The family Sp(D). Though our argument is available on a com-
plex manifold, we work mainly on a domain in C" (n > 1).

Let p be a fixed point of D and

Sp(D) = [u:D -± [0,1); u(p) = 0, C2-classin a

neighborhood of p and log u is plurisubharmonic in D},

Ap(D) = {u H / | 2 ; / G Hol(Z>, U)J(p) = θ},

where U is the unit disc in C and Hol(Z>, U) denotes the family of all
holomorphic mappings/: D -> U. It is clear that Sp(D) D Ap(D).

A nonnegative plurisubharmonic function u such that log u is also
plurisubharmonic (logO = — oo) is called a logarithmically plurisub-
harmonic function. Hereafter we abbreviate them p.s.h. and log.p.s.h.
Sp(D) is a special family of log.p.s.h. functions on D. We give some
lemmas about the family Sp(D).

LEMMA 2.1. (1) Ifuv u2 belong to Sp(D), then ruλ + (1 - r)u2 e Sp(D)
for any real number r with 0 < r < 1.

(2) If fj (j = I9...9k) are holomorphic in D and vanish at p and
u(z) = Σ | / / z ) | 2 <lonD, then u e Sp(D).

Proof. (1) It is sufficient to prove that if log Uj (j = 1,2) is sub-
harmonic in an open set G in C, then log(r1w1 + r2u2) is subharmonic in
G for r} > 0, with rλ + r2 = 1. As in the book of Hδrmander [4], we take a
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disc G* c G and a polynomial P(t) (t e C) such that log u < ReP on
3G*, where u = r1w1 -f r2w2. Then u < exp(ReP) on 3(5*. Since log wy -
ReP is subharmonic in G*, r/ι/y |exp(-P)| is also subharmonic in G*.
Hence ( r ^ + r2w2)|exp(-P)| = w|exp( —P)| is subharmonic in G*. From
w|exp( —P)| < 1 on 3G* and the maximum principle for the subharmonic
function, we have w|exp(-P)| < 1 on G*, that is, log u < ReP in G*.
Since G* is an arbitrary disc in G, log u is subharmonic in G.

(2) follows directly from (1). D

The following lemma will be used in §4.

LEMMA 2.2. Let v(z) be a c^2-function on a domain D with 0 < υ < 1.
(1) l/v(z) is log.p.s.h. if and only if

f - VΣV.MJ > 0 for alii e C",

where vf = dv/dzt, υj = dv/dZj and vtj = d^/dzfiz .
(2) The function φ(z) = 1 — υ(z)β (β is a positive constant) is

log.p.s.h. if and only if

(2-3) φ[|Σ>,ί,|2 - »Σ»,ji£j] * β\Σvέ,\2 far all ξ e C".

Proof. We show (2) only. It is clear that (log φ) - = (φυφ - φ
We have

φ, = -βυβ-\ and φl} = βυ^2{(l - β)υivJ - w,j).

Therefore,

ΦijΦ ~ ΦiΦj = βvβ~2[(φ ~ β)vιυJ -

Hence (2.3) is equivalent to the fact that the matrix [(log φ)/y] is positive
semidefinite. D

3. The intrinsic metrics. Let M be a complex manifold and TM its
holomorphic tangent bundle. According to Kobayashi [8], we call a
function X = XM(p, £) on TM a complex Finsler metric on M when it
satisfies the following conditions;

(i) XM(p, ^) is an upper semicontinuous positive function on TM,
( i i ) X M ( p , λ ξ ) = \ λ \ X M ( p , ξ) f o r a n y λ e C

The intrinsic metric is the biholomorphic invaraiant complex Finsler
metric which is determined only by the complex analytic structure of the
complex manifold. As examples of intrinsic metrics, there are the
Caratheodory, the Kobayashi, and the Bergman metrics. In this section we
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give the basic properties of them and introduce a new intrinsic metric, that
is, the P*-metric (cf. [10] and [14]).

When M is a domain in C1, since TD = D X C"9 we may assume a
tangent vector ξ G C " . Let (z 1 ?... ,zn) be the canonical coordinates of Cn

9

and let (p, £) denote a pair of ΓZλ
The Caratheodory metric (C-metric) CD of a domain Z) is given by

CD(p9 ξ) = sup{|3^/(^)|;/G Hol(Z), l/),/(/>) = θ}

where a€/(/O = Σ,a//az,(/>)«,••
The Kobayashi metric (K-metric) KD of D is defined by

KD(p, ξ) = inf{l/r; F e Hol(ί/, D), F(0) = p9 F'(0) = rξ,r>0}.

Though they are not always positive, we mainly work on hyperbolic
domains. The following theorem is well known.

THEOREM 3.1 [7, 8]. Let D be a hyperbolic domain in Cn.
(1) The C-metric is continuous on TD and the K-metric is upper

semicontinuous on TD.
(2) The C and K-metrics are decreasing for any holomorphic mappings:

for F <= Hol(A E)(D,Eare domains),

CE(F(p)9F'(p)ξ)£CD(p,ξ)9

N. Sibony [10] introduced the P-metric as follows:

PD(p, ξ) = sup{L(«; p, £) 1 / 2 ; u e Sp(D)},

where

is the Levi form of u. PD is locally integrable, but its upper semicontinuity
is unknown yet. We define

P*{p, ξ) = l i m s u p P ^ , ζ) as (q9 ξ) - (p9 ξ).

Then P£ is upper semicontinuous and PD < Pβ and P *(0,1) = 1 for the
unit disc U in C. Pg is called the P *-metric of D.

LEMMA 3.2 (cf. [10], [14]). The P*-metric is an intrinsic metric having
the decreasing property for holomorphic mappings, and CD < P£ < KD on
TD.



THE GENERALIZED SCHWARZ LEMMA 433

Proof. The first half follows from the result of Sibony [10] (see also
[14]). We give a simple proof for the last half. Noting that Sp(D) D Ap{D)
and L(\f\2; p, ξ) = \dξf(p)\2, we have CD < P*. Taking a mapping F i n
Hol(t/, D) with F{ϋ) = p9 F'(0) = rξ (r > 0), from the decreasing prop-
erty for F9 we have

P*(p, rξ) = Pg(F(Q), F'(0)) < P£(0,l) = 1.

Therefore, P£(p, £) < l/r. Since the K-metric is the infimum of such
1/r, we obtain the inequality Pg < KD. D

Let XD(p, £) be one of the intrinsic metrics on a domain D. A point/?
in D is said to be an X-hyperbolic point if there is a neighborhood V of p
and a constant c > 0 such that XD(q9 ξ) > c\\ξ\\ for all ξ e C" at every
point g in F, where || || is the Euclidean norm of C". If each oint of D is
Jf-hyperbolic point, then D is said to be an X-hyperbolic domain.

4. The generalized Schwarz lemma. Let D be a domain in C". The
reproducing kernel k(z, w) of the Hubert space L2H(D) of ZΛholomor-
phic functions on D is called the Bergman kernel of D. It is holomorphic
in D X D (where D is the complex conjugate of D.) Defining

*l(*> 0 = Σ ( 9 ^ - log k(z,

we have the Bergman metric BD of D provided that the right side of the
above is positive for all ξ Φ 0. The Bergman metric is a Kahler metric and
an intrinsic metric, but does not always have the decreasing property for
holomorphic mappings.

We call a domain D with BDΦ 0 the Bergman domain.
For the upper semicontinuous Finsler metric, the holomorphic curva-

ture is defined (cf. [12]) and coincides with the holomorphic sectional
curvature if the metric is C2-hermitian. Let U be the unit disc in C with
the canonical metric (1 — \t\2)~2\dt\2. The following lemma is a generali-
zation of the Schwarz lemma (cf. [7, III, Theorem 2.1]) to the upper
semicontinuous case.

LEMMA 4.1 (cf. [14].) Let XM(p, £) be a complex Finsler metric on a
K-hyperbolic manifold M. If its holomorphic curvature is bounded from above
by a negative constant —c2 (c > 0), then XM < 2c~ιKM, and for any
holomorphic mapping F: U -> M, XM{F{t), F\t)) < 2c~ιKυ(t, 1).

Since the holomorphic curvature coincides with the holomorphic
sectional curvature for the Bergman metric, we have the following lemma.
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LEMMA 4.2. Let D be a Bergman domain. If the holomorphic sectional

curvature of the Bergman metric BD of D is bounded from above by a

negative constant —k9 then BD< 2k~1/2KD, and for every holomorphic

mapping F: U -> D,

(*) BD{F(ή,F'(t)) < {2/kγ^B^tΛ), / e l / .

Proof. The first half follows from Lemma 4.1. For any holomorphic

mapping F: U -> D, we have

BD(F(t), F'(t)) < 2k

since ]/2Kυ = Bυ. D

From the proof of this lemma, we see that if the Bergman metric is

dominated by the Kobayashi metric, then any F e Hol(t/, D) is decreas-

ing with respect to the Bergman metric (i.e. (*) holds).

For a domain D in C", we consider the following condition:

( # ) BD < cKD on TD for some constant c > 0.

(A) If D is a bounded homogeneous domain, then Q>, KD, Pg and BD are

all equivalent metrics because of their biholomorphic invariantness and

the homogeneity of D. Especially, ( # ) is satisfied.

(B) If the Bergman metric of D has strictly negative holomorphic sectional

curvature, then by Lemma 4.2, ( # ) is satisfied.

Here we shall give a function-theoretic criterion for ( # ) . Let D denote

the Bergman domain in Cn with the Bergman kernel k(z, w). For a fixed

point w in D, we construct a function on D by

where a is a positive constant properly chosen for D. When a = 1/2, this is a

square of the invariant distance pD(z, w) of Skwarczynski (cf. [11]).

LEMMA 4.3. With the above notations, the following hold.

(1)0 < φw< landφw(w) = 0.

(2) Ifk(z, w) Φ 0, then L(φw; w, ξ) = *B2

D(w, ξ).

(3) φw is biholomorphically invariant, i.e. for any biholomorphic auto-

morphism g ofD, Φg(w)(g(z)) = φw(z).

Proof. (1) is clear. (3) follows from the fact that

k{g(z),g(w))jg(z)J(w) =
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where Jg is the Jacobian determinant of g. It remains to show (2). By
simple calculations we have

d^/dzfizjiw) = ak(w,w)~2{kij(w9w)k(w,w) - kt(w, w)kj(w, w)}

= a{d2logk/dzidzJ)(w).

Hence, L(φw; w, {) = aB2(w, ξ). Ώ

A domain D in C is called a Lu Qi-keng domain if k(z, w) Φ 0 for
all z, w in D.

THEOREM 4.4. Le£ D be a Bergman domain in Cn. If there is positive
constant a such that φw = φw^a belongs to SW(D) for each w in D, then D is a
Lu Qi-keng domain and

BD{w, ξ) < a-ι/2P*(w, ξ) < a~^2KD{w, ξ) on TD.

Proof. When φw belongs to SW(D) for each w in D, φw is a p.s.h.
function. Hence, by the maximum principle, 0 < φw < 1 in Z), that is,
k(z, w) Φ 0 for all z, w in D. So D is a Lu Qi-keng domain. From the
definition of P*-metric and Lemma 4.3(2), we have

a^2BD <P* <KD on TD. D

Using Lemma 2.2 we can rewrite the condition that φw belongs to
SW(D) for each w in D. For a fixed point w in Z>, let v(z) =
\k(z,w)\2/k(z, z)k(w,w). We remark that k(z,w) is holomorphic in
zGβ.We set

Aw= { z G ΰ ; φ ) = 0} = {zeD;*(z,Hθ = 0},

Ew={ze D; v(z) = 1} = {z e /); φ jz) = 0},

Then 4̂ w is an analytic set in D, and £ w contains at least w.

PROPOSITION 4.5. For fixed w in D, φw = I - va is log.p.s.h. if and
only if the following inequality holds:

(4.6) φw(

for alii e Cn - {0} at allz e /)w.

Proof. Since 0 < y < 1 on Z)w, we may verify that (2.3) in Lemma 2.2
is equivalent to (4.6) (we set β = a). Assume that this was proved. Then
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log φw is p.s.h. in Dw. For z in Ew9 we set log φw(z) = — oo. Hence log φw

is p.s.h. in D\AW. Remarking that logφ w is negative in D and Aw is the

analytic set in Z>, we can extend log φw plurisubharmonically to D (by the

p.s.h. extension theorem of Grauert and Remmert). Thus it remains to

show that (2.3) is equivalent to (4.6) for each w in D. For a fixed w in D,

we write φ = φw, k = k(z, z), h = k(z, w), a = k(w, w). Then υ = lih/ak,

φ = 1 — (hh/ak)a. By partial differentiation we have the following:

v. = h{h.k- hkM)/ak2,

υtJ = { V * ; £ 2

Substituting these in

we get

A =

Therefore (2.3) holds if and only if (4.6) holds because of 0 < υ < 1 on

D w . •

THEOREM 4.7. // the Bergman metric BD of a Bergman domain D

satisfies the following condition: for each w in D there is a positive constant a

such that (4.6) holds, then BD < a~1/2KD. Hence every holomorphic map-

ping F: U -> D satisfies F*BD < (2ayι/2Bu.

Proof. By Proposition 4.5 we have φw e SW(D) for each w in d. From

Theorem 4.4 the conclusion is obtained.

Also, for any F e Hol(ί/? D).

BD{F{t),F'{t))<a-^KD{F{t),F'{t))

,O-oi^log v\2).

since Bυ = 2ι/2Kυ. D

REMARKS. (1) Ew is the polar set of log φw. If the coordinate functions

zl9...9zn are in L2H(D) and the volume of D is finite, then Ew = { w}.

(2) There exist the bounded homogeneous domains in Cn (n > 7) of

which the Bergman metrics have positive holomorphic sectional curva-

tures (cf. D'Atri [2]).
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(3) There is a bounded pseudoconvex domain in C3 with C°°-boundary,
which does not satisfy condition ( # ) (cf. Diederich-Fornaess [3]).

(4) The annulus i = {/eC; r < \t\ < 1} is not the Lu Qi-keng

domain. Therefore log φw is not p.s.h. for some w e A (cf. Skwarczynski

[11]).

5. The classical domains. In this section we construct the function
φw for the classical domains (the bounded symmetric domains of four
main type) R and directly verify that they belong to SW(R) for some
properly chosen α.

We begin with the unit ball.

EXAMPLE 5.1. Let D be the unit ball S Λ = ( Z G C " ; | |Z| | < 1}. Then
its Bergman kernel is k(z, w) = cn(l — z w)~n~ι, where cn = n\π~n. Let
0 be the origin of C\ Taking a = l/(n + 1) we have φo(z) = \\z\\2 for
w = 0. It is clear that φ0 e S0(Bn). For any other point w in Bn, taking an
automorphism g of Bn with g(0) = w9 we have φw(z) = Φo(g(z)) =
||g(z)| |2, which belongs to Sw(Bn)9 and

i - ( i - i k

The last formula is well known (cf. Rudin [9], p. 26).

The four classical domains Rv Rn, Rm, and i? I V, are given as follows
(M(m, n) denotes the set of all m X n matrices):

Λ,= { Z e M(m, n); In - Z*Z > 0},

i?π= {ZeM(n,«);Z' = Z, /„ - Z*Z > 0},

Rm= {ZeM(n,n);Z'= -Z, In - Z*Z > θ),

Λiv = {** C-; |Σ^,2Γ + 1 - 2 | r f > 0, |2>,2 | < l},

where In is the n X n unit matrix and Z ' is the transpose of Z and
Z * = Z r.

Let R or i?y denote one of these domains, and 0 be the zero matrix or
the origin of Cn.

PROPOSITION 5.2. (1) For i?I? choosing a = l/(m + n)n, we set

φo(Z) = l - ( d e t ( / w - Z * Z ) ) 1 A

9

(2) For Ru, choosing a = l/(n + ϊ)n, we set

= l-(det(/ n -Z*Z)) 1 A ,
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(3) For Rm, choosing a = l/(n — ϊ)[n/2], we set

φo(Z) = l-(det(/ n -Z*Z)) [ " / 2 1 ,

(4) For R1V, choosing a = l/2n, we set

Then each φ0 is log.p.s.h., hence it belongs to S0(R); alsoφw(Z) = φo(g(Z))

belongs to SW(R) for any point w in R, where g is an automorphism of R with

g(w) = 0.

We quote two lemmas to prove this proposition.

LEMMA 5.3 ([7], p. 34). Let B} be the Bergman metric of Rj (j = I, II,

III, IV). Then

B\{Z, ξ) = (m + n)Trace[(/n - Z*Z)'^(Im - ZZ ) ' 1 ^ ] ,

Bl(Z, ξ) = (n + l)Trace[(/π - Z*Zy

BJU(Z, | ) = ( « - l)Trace[(/n - Z*Z)

Bl(z, ξ) = 2nA-2ξ[A(ln - Iz'z) + 2(In - z'z)z*z(ln - z>

where

LEMMA 5.4 ([5]). (1) For Z e Rl9 there exists an element g of Go (the

isotropy subgroup of automorphism group ofRτ) such that

IK
0

0

o

1 > λx > > λn > 0, m > n.

(2) For Z e i ? π , there is a g e Go such that

gZ = d i a g o n a l [ λ 1 , . . . , λ n ] , 1 > λ 1 > • • • >λn>0.

(3) For Z e Ruι, there is a g e. Go such that

0
gZ = diagonal

where k = [ft/2], and the last term is Oifn is odd.

0 λk(

'•••' \-\k o
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(4) For z G i ? I V , there is a g G G O SWC/Z

gz = ( λ , / μ , 0 , . . . ,0 ) , λ, μ real numbers.

Proof of Proposition 5.2. Since

Φ0(z) = l -(|*(z,o)|2/(*(z, z)*(o,o)))α

and &(Z, 0) is a constant, each φ0 is as above. (For the Bergman kernel of
the classical domains, see, for example, [7, p. 34].) We directly verify (4.6)
for the domain Rι(m > n). Note that Rγ is a Lu Qi-keng domain; thus Ao

is the empty set and Eo is point 0 only. From the biholomorphic
invariantness of φ0 and Lemma 5.4, it is sufficient to show (4.6) at the
point

IK
0

0
(l > λx > o).

i/«

thus

From Lemma 5.3 we have

Bl(Z0, ξ) = (m + n)

By partial differentiation

3 - - ' - B _ Z * Z ) =

\/n

Σ Σ

at Z = Z o .

Hence,

m + n - z o * z o ) | 2

m + n Σ^(det(/fl-
μ,v

| de t (/ B -Z 0 *Z 0 ) | '

m + n Σ — — ξ



440 MASAAKI SUZUKI

Let T(Z0) be the difference of the left and right sides of (4.6) at Zo.
Then

Σ

m + n

\iijV
ΣΣ

n l - λ 2

Noting that Π(l - λ2j)1/n < 1 - (1/«)Σ λ2, we have

τ(z0) > ^

m + n o
by Schwarz' inequality.

It is the same for (2) and (3) as (1). For i? I V we may verify (2.3)
directly at (λ, iμ,0,... ,0). The proof is reduced to the following inequal-
ity;

(φ - l/2)[λ2(λ2 - μ2 - l)\f + μ2(λ

+ /λμ(λ2 - μ2 - l)(λ2 - μ2

-2φv[(2λ2 - 1)|^|2 +(2μ2 - I)\ξ2\
2 + 2iλμ(£1ί2 - ij

> 0

where υ = |λ2 - μ2 |2 + 1 - 2(λ2 + μ2) (0 < v < 1), φ = 1 - v1/2, and
|λ2 — μ2| < 1. Simple but long calculations show that the above inequality
holds. D

COROLLARY 5.5. B\ < (m + n)nKl, B2

t < (n + l)nKn,

2

U, B2

V < 2nK2

v.
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Proof. From Theorem 4.4 and Proposition 5.2, we have, for example,

B*(0, ξ)<(rn + n)nKf(09 ξ) for all£ e C\

Using the homogeneity of Rj and invariantness of the Bergman and
Kobayashi metrics, we have the conclusion. D

REMARKS. For the classical domains RJ9 C, P*, and K-metrics all
coincide. The K-metric Kτ(09 ξ) is given by

Kϊ(09ξ) = max {eigenvalues of ξ*ξ]

(cf. [13]). Hence,

K}(0, {) > H-^raceί ί = (m + * Γ V ^ O , ξ) = aB\(09 ξ).

On the other hand, the holomorphic sectional curvature K of B\
satisfies — 4/(m 4- n) < K < —4/(m + n)n, hence the constant k in
Lemma 4.2 is equal to 4 a and we have aB\ < K^. For i?π and ϋ I Π , we
can do similarly. With respect to i?IV,

^ 2

v (o , i) - uf+(u\\4 - \a\2)1/2 > mi2 = i/2«Bh(o, ξ),
and the holomorphic sectional curvature K oί B^w satisfies — A/n < K <
-2/n. Hence aB^γ < Kfw (a = l/2/i) (cf. [13].)
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