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NECESSARY AND SUFFICIENT CONDITIONS
FOR CERTAIN HOMOLOGY 3-SPHERES

TO HAVE SMOOTH Zp-ACTIONS

ERICA FLAP AN

We derive necessary and sufficient conditions for a broad class of
homology 3-spheres, obtained as the gluing of two knot complements, to
have Z^-actions.

We explore when a homology sphere, obtained as the gluing of two
knot complements has any smooth periodic diffeomorphisms.

Introduction. Myers [6] has given examples of homology spheres

with no P.L. involutions. He constructed these examples by gluing to-

gether particular types of knot complements. Initially, we construct differ-

ent types of periodic homology spheres out of different types of periodic

knots. One of our constructions yields homology spheres with orientation

reversing involutions in a simpler manner than that of Siebenmann and

Van Buskirk [8]. Next, we prove the necessity of our conditions and are

then able to construct infinitely many non-periodic homology spheres. In

addition, we establish conditions for such a homology sphere to be the

branched cyclic cover of a knot.

We shall use the following notation. Let Ko and Kλ be distinct knots

in S3. Let N(Kι) be a tubular neighborhood of K(. Let

Q( = S3-hit N(Kt).

Let /, c 8g. be an oriented longitude for Qt in the sense that /, bounds a

surface in Qr Let mι c dQι be an oriented meridian for Qt in the sense

that mι bounds a meridional disk in N(Ki). Let M(Kθ9 Kλ) be the

irreducible homology 3-sphere obtained by gluing each lt on Qi to a ray on

Q , i Φ j . Then Qo Π Qλ = T a torus. We work throughout in the smooth

category.

Our main result will be:

THEOREM 3. Let Ko and Kλ be distinct prime knots having Property P

and neither being a companion of the other. In addition suppose Ko is not a

torus knot or a cable knot. Let p be a prime number, and Nt a tubular

neighborhood of Kt.
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1. M(K09 Kt) has an orientation reversing Zp-action h iff Kt is strongly
positive amphericheiral and Kj is strongly negative amphicheiral.

2. M(K0, Kx) has an orientation preserving ΊLp-action h with fix(Λ) = S1

iff Kt and Kj are both strongly invertible.
3. M(KQ9 Kτ) has a free Zp-action iff Ko has a free Zp-action leaving a

(1, s) curve on dN0 invariant and Kx has a free Zp-action leaving an (s, 1)
curve on dNx invariant, for some s which is knot a multiple of p.

We begin with some definitions.

DEFINITION 1. A knot is strongly negative amphicheiral if there is a
smooth involution g of S3 which is orientation reversing and g takes K to
itself with opposite orientation.

DEFINITION 2. A knot is strongly positive amphicheiral if there is a
smooth involution g of S3 which is orientation reversing and g takes K to
itself with the same orientation.

DEFINITION 3. A knot is strongly invertible if there is an orientation
preserving involution g oί S3 and g takes K to itself with opposite
orientation.

REMARK. If h is an involution such that h{K) = — K then h fixes two
points on K.

DEFINITION 4. A knot K has a free Zp-action if there is an order p
diffeomorphism of S3, leaving K invariant yet which is fixed point free.

DEFINITION 5. A knot K has a symmetry if there is a periodic
diffeomorphism leaving K invariant yet fixing a simple closed curve
disjoint from K.

DEFINITION 6. A (p, q) curve on a torus is a curve wrapping around/?
times longitudinally and q times meridionally.

DEFINITION 7. fix(h) shall denote the fixed point set of h.

We begin to construct periodic homology spheres by understanding
the behavior of an action in a tubular neighborhood of the knot.

LEMMA 1. Let K be a knot in S3 with a tubular neighborhood N, and let
p be a prime number. Suppose K has an orientation preserving, order p,
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diffeomorphism h such that h{N) = N and h fixes some point of N. Then h
fixes A points ofdN andh is an involution with h(K) = — K.

Proof. Since fix(Λ) Φ 0 , by Smith Theory fix(Λ) is a circle. Assume
fix(A) c Int N. Now fix(Λ) is not knotted by the Smith Conjecture [13].
But K is knotted, so by Schubert [7] fix(h) must have order zero in N. Let
D be a meridional disk of N which misses fix(Λ). Let X be the orbit space
of N induced by h. Now apply Dehn's Lemma in X to modify D so that
h\D) Π D = 0 for all i < p. Let 5 be the component of N - \)fZoh\D)
which contains fix(λ). Let S be the 2-sphere bounding B. Now h(B) = B
so h(S) = S. Now fix(A) Π S = 0 so by Smith Theory for S2, h must be
orientation reversing. But this is not possible, since h is orientation
preserving. Thus fix(h) c Int N. So fix(Λ) Π dN Φ 0. Let r be the num-
ber of points in fix(Λ) Π 3iV. Let Y be the orbit space of dN induced by h.
Then dN is the/?-fold branched cover of y with r branch points. So by the
Riemann-Hurwitz formula pχ(Y) = r(p — 1). Now Y is an orientable
2-manifold and r(p — 1) > 0. So Y is a 2-sphere. Now 2/? = r(p — 1).
Thus (/? — 1) divides 2 or p. In other words p — 1 = 2 or/? — 1 = 1. If
/? = 3 then r = 3. But r is the number of times fix(Λ) crosses dN. Hence r
must be even, since dN separates. Therefore p = 2, so r = 4. Now Λ takes
a meridional disk of N to a meridional disk, and a Seifert surface to a
Seifert surface. Thus h(l) is isotopic to ±1, where / is a longitude. Let A
be an arc in Y connecting two branch points. Let c be the complete lift of
A to dN. Then c is a simple closed curve in dN such that h(c) = —c. Now
since h is orientation preserving Λ(/) must in fact be isotopic to —/.
Finally h(K) = -K since by hypothesis h(K)= ±K. D

LEMMA 2. Letf K be a knot in S3 with a tubular neighborhood N, and let
p be a prime number. Suppose h is a free Zp-action of K such that
h(N) = N. Then h(c) = c for some (r, 1) curve c, and h{cr) = c' for some
(1, s) curve c\ and rs = 1 (/?).

Proof. It follows from Hartley [3, Theorem 1.1 and the subsequent
sentence] that h leaves some (r, 1) curve c invariant.

Now by applying Dehn's Lemma in the orbit space of N we can find
a meridional disk D such that h'(D) Π D = 0 . Let m = 3Z>, and let A' be
one component of dN — ΌfZ$ti(m). Let af be an arc in ̂ 4' from some
point x r G w to hJ(x') such that α' goes less than once around Ar. Define
c' = UfJo1 h\af). Then c' is a (1, s) curve.
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The essential intersection of c and c' must consist of rs - 1 points.

Now h permutes these points since h(c) = c and h(c') = c''. Thus p

divides rs — 1. So rs = 1 (/?). D

THEOREM 1. Let Ko and Kγ be knots in S3, and let p be a prime number.

1. If Ko is strongly positive amphicheiral, Kλ is strongly negative

amphicheiral, and both knots are prime, then M(K0, Kτ) has an orientation

reversing involution h with fix( A) = S°.

2. If Ko and Kλ are both strongly invertible then M(K0, Kλ) has an

orientation preserving involution h with fix( A) = Sι.

3. If KQ has a free ϊ -action leaving a (1, s) curve invariant and Kλ has

a free Z-action leaving an (s,l) curve invariant, then M(K0, K^) has an

orientation preserving Ίjp-actίon h which is fixed point free.

Proof. 1. Let iV be a tubular neighborhood of Kt such that

where hι is an orientation reversing involution with ho(Ko) = +K0 and

/z1(ϋC1) = —Kv By Smith Theory, since the hι are orientation reversing,

fix(/zz) = S° or fix(/O = S2. Suppose fix(Af ) = S2. Then by Smith The-

ory for Ki9 ht fixes either zero or two points of Kέ. Now Kt cannot be

contained in one component of S3 — fix(/z/) since ht must trade these

components. Thus fix(/O Π Kt consists of two points. Hence Ki is com-

posite, contrary to hypothesis. So fix(/*7) = S° for both /. Now we can

assume we have picked Nt such that fix(/2z) Π 97VZ = 0 for both /. Thus

hι\dNi covers its induced orbit space, which must be a Klein bottle. So

Λo|9^o a n < ^ hι\dNι are equivalent actions. Let /, be a longitude and let mι

be a meridian for Nr Now ht takes a meridional disk to a meridional disk

and a Seifert surface to a Seifert surface. So A^mJ is isotopic to ±mι and

ht(lt) is isotopic to ±/ . Now since ho(Ko) = +K0 we must have ho(lo)

- + / 0 , and since hQ is orientation reversing ho(mo) ~ —mQ. Similarly

A1(JSΓ1) = — ̂ i m p l i e s that h^l^) - - / 1 ? and so h^m^ - +m Ί since Ax

is orientation reversing. Let Qι = S3 - Int(Λ^). Now we can glue β 0 to

ζ ^ along their boundaries longitude to meridian to obtain M(KQ9 Kλ);

and M(K09 Kλ) has an orientation reversing involution h where

h\Qι = hr By Smith Theory for homology 3-spheres, fix(/z) = S2 or

fix(Λ) = 5°. But fix(A) = fix(A0 |β0) U fix(h^QJ; thus fix(A) cannot be

S2. So fix(A) = S° as desired.

2. Suppose ίΓ0 and Kλ are strongly invertible. Let hi be an orientation

preserving involution of S 3 such that ht{K^) = — ^ and h^N^ = Λ̂  for

some tubular neighborhood iV2 of ^ 7 . Then hi fixes two points on Kι for

each /. Now by Lemma 1 ht fixes 4 points on 37V,, and so dNt is the
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two-fold branched cover of its orbit space, which is a 2-sphere. Now the
action induced by ht on dNέ is equivalent to reflecting both meridionally
and longitudinally. Let Qi = S3 — Int(Λ^). Now glue Qo to Qλ longitude
to meridian to obtain M(K09 Kλ)\ and M(K09 Kλ) will have an orienta-
tion preserving involution h where hi\Qi = h\Qt. Now by Smith Theory
for homology spheres fix(Λ) = S1 or fix(A) = 0 . Now fix(Λ) includes the
4 points fixed on dNi9 thus fix(A) Φ 0. So fix(Λ) = Sι.

3. Suppose each Ki has a smooth free Z^-action ht. Let JV) be a tubular
neighborhood of K( such that h^N;) = JV) and there is a (1, 5) curve c0,
and an (5,1) curve q on 3iV. such that h^c^ = c r Pick numbers r0 and rx

such that {hr;) is just a 2π/p rotation along c . Now glue the

Q, = S* - Int(ΛΓ)

together longitude to meridian attaching c0 to cv Now M(KQ9 Kλ) has an
orientation preserving Z^-action h where h\Qi = A^β,-. Also, Â  is fixed
point free since/? is a prime, so A is fixed point free as well. D

REMARKS. 1. The construction in the first case of Theorem 1 provides
a simpler method of obtaining an irreducible homology 3-sphere with an
orientation reversing involution than that of Siebenmann and Van Buskirk
[8].

2. We can find knots satisfying the conditions of case 3 of Theorem 1
by lifting knots in the appropriate lens spaces.

Now that we are able to construct homology spheres with Z^-actions
with different types of fixed point sets we want to know whether the
conditions on knot pairs in Theorem 1 are, in fact, necessary. That is, if
M(K09 Kλ) has a Z^-action in what sense do Ko and Kλ inherit the action?
We show that with a few added hypotheses our conditions are necessary.
The first hypothesis we will add is that one knot complement contains no
essential annulus. According to Simon [9, Lemmas 2.1 and 2.2] if the knot
is not a composite, torus or cable knot then its complement contains no
essential annulus.

LEMMA 3. Suppose Ko is a prime knot which is not a torus knot or a

cable knot, and suppose Kλ is any knot. Let Qt be the closed complement of

Kt. Then every incompressible torus in M(K0, Kλ) is ίsotopic to one disjoint

from T = 9β .

Proof. Let T be an incompressible torus in M. Isotop V so that T
and V meet transversely in a minimal number of components. Suppose
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some component J of T Π T' bounds a disk D' in T. Pick / to be
innermost, i.e. Dr Π T = dDr. Since T is incompressible, / also bounds a
disk D in Γ. Now since M(Kθ9 Kλ) is irreducible, DUD' bounds a 3-ball
B. By pushing Z>' across B we can remove / from T Π 7", thus contradict-
ing minimality. So there is no component of T Π T' which bounds a disk
in T'. Hence Γ π β o consists of properly embedded incompressible
annuli. But by Simon [9, Lemmas 2.1 and 2.2] any such annulus must be
boundary parallel in ζ?0. So again we could remove the boundaries of
this annulus by an isotopy of T\ and so contradict minimality. Thus
T Π T = 0. D

REMARK 3. Let A be a periodic diffeomorphism of a 3-manifold M,
then, as is well known, we can choose a Riemannian metric for M which
makes h an isometry. (Take the average of the /z-transforms of any
Riemannian metric.)

LEMMA 4. Let Ko be a prime knot other than a torus knot or a cable
knot, and let Kx be any knot. Let Qt be the closed complement of Kt. Let h
be a periodic diffeomorphism of M(K0, Kλ). Then T = dQt is isotopic to a
surface S such that either h(S) = S or h(S) Π S = 0 .

Proof. By Theorem 1.1 of Freedman, Hass and Scott [2] since
M(K09 Kλ) is P2-irreducible there is a least area immersion f:T->M
which is homotopic to the inclusion /: T -» M. Since / is incompressible
/ must also be incompressible. Now by Alexander duality, since
H1(M(K0, Kλ)) = 0 every closed surface in M(Kθ9 Kλ) is two-sided. By
[2, Theorem 5.1]/is an embedding. Hence/(Γ) is a two-sided least area
incompressible embedded torus. Since h is an isometry, h(f(T)) is also a
two-sided least area incompressible embedded torus.

Since T and f(T) are homotopic incompressible surfaces in an irre-
ducible 3-manifold, by Waldhausen [12, Corollary 5.5] T and f(T) are
ambient isotopic. Thus we can apply Lemma 3 to f(T) to conclude that
h(f(T)) can be isotoped disjoint from/(Γ). Now apply Theorem 6.2 of
[2] to conclude that either h(f(T)) = f{T) or h(f(T)) Πf(T) = 0 ; and
letS=f(T). D

DEFINITION 8. If h is a periodic diffeomorphism of M(K0, Kλ) and

HQt)
 = Qothen w e s ay h i s "good".

THEOREM 2. Suppose Ko and Kλ are distinct prime knots having
property P and neither is a companion of the other. In addition suppose KQ is
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not a torus knot or a cable knot. Then if M(K0, Kx) has a periodic
diffeomorphism h then M(K0, Kx) has a good diffeomorphism W which is
conjugate to h.

Proof. By the conditions on Ko and Kλ we can apply Lemma 4 to
get an isotopy ft of M(K0, Kx) such that f0 is the identity and either
A(/i(Ό)=Λ(3Γ) or Λ(/i(Ό)nΛ(Γ) = 0 . Let h'=f^ohofv Then
h' has the same order as h and either h\T) = T or h'{T) Π T = 0 .
Suppose h'{T) Π Γ = 0 . Recall, Qt is the closed complement of Kι

in S3. Assume h\T) c Int(β0). If h'(Q0) c Int(β 0) then

This contradiction implies that h'(Q0) $£ Int(ζ?0) and hence

h>{Qx) c Int(βo) £ S3>

since A ' ^ ) # β 0 by Property P. Now h\T) is essential in M(K09 Kλ) so
it is essential in Qo by Waldhausen [11, satz 1.9]. Let Fbe the component
of S3 - h'(T) containing Ko. Thus

VUh'(Qι) = S3 and VΠ h'(Qλ) = h'(T).

Hence V must be a solid torus. Let / be the core of V. Then / is isotopic
to Kλ, since Kx has Property P. Now since h\T) is essential in Qo, we
must have either Kλ is a companion of Ko or Kx is Ko itself. Either case
contradicts our hypotheses. We now use the same argument to show that
h\T) % I n t ^ ) . Thus h'{T) = T. Now since both knots have Property P,
h'(Qd = Qr •

REMARKS.

4. Since /z bounds a Seifert surface in Q0 h{lt) must also. So on T,
h(lt) is isotopic to +/,. But since the /,. are identified with the mp for
i Φ j , h(mj) is isotopic to ±mi.

5. By the above remark we can inteφret the conclusion of Theorem 2
as saying that if M(K0, Kλ) has a period/? diffeomorphism A, then KQ and
K± each have a period/? diffeomorphism ht.

LEMMA 5. Let K be a knot in S3 with a tubular neighborhood N and let p
be a prime number. Suppose h is a symmetry of K such that h(N) = N; and
that for some (r, s) curve c on dN9 r Φ 0, h(c) = c. Then s is a multiple of p.

Proof. By Edmonds and Livingston [1, Corollary 2.2] K bounds a
Seifert surface which is invariant under h. By intersecting this surface with
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dN we can find a longitude / such that h(l) = /. Now c and / must
intersect essentially in s points; and h permutes these essential intersec-
tions. Thus p must divide s. D

THEOREM 3. Let Ko and Kx be distinct prime knots having Property P

and neither being a companion of the other. In addition suppose KQ is not a

torus knot or a cable knot. Letp be a prime number. Then:

1. M(K0, Kλ) has an orientation reversing Zp-action h iff Ki is strongly

positive amphicheiral and Kj is strongly negative amphicheiral.

2. M(K0, Kλ) has an orientation preserving Zp-action h with ίix(h) = Sι

iff Ki and K- are both strongly invertible.

3. M(K0, Kx) has a free Z -action iff Ko has a free Z-action leaving a

(1, s) curve, on the boundary of a tubular neighborhood, invariant; and Kλ

has a free Z -action leaving an (s, 1) curve, on the boundary of a tubular

neighborhood, invariant, ands & 0 (p).

Proof. We have already established the sufficiency of the conditions
in Theorem 1. We now establish necessity. Let h be an order p diffeomor-
phism of M(K0, Kx). By Theorem 2 we can assume that h^Q^ = Qi9

where Qi is the closed complement of Kt. By Remarks 4 and 5 each Kt has
an order/? diffeomorphism hi such that hi\Qi = h\Qr

Case 1. If Λ is orientation reversing. Then since p is a prime, in fact
p = 2. By Remark 4 h(li) is isotopic to ± /, on T. Now /7 is identified with
my, where mj is a meridian for Qj. Since h is orientation reversing if /*(/•)
is isotopic to +/, then h{mt) is isotopic to —m(. Thus h(lj) is isotopic to
-lj. Hence h(Kt) = JtKi but h(Kj) = -Kj. So Ki is strongly positive
amphicheiral, whereas K} is strongly negative amphicheiral.

Case 2. Now suppose h is orientation preserving and fix(A) = Sι.
First, assume fix(Λ) Π 3βz = 0 . Then for some i, say / = 0, fix(Λ) c Q..
Thus fixih^QJ = 0 . Now if hλ fixed any point of Nλ = S3 - intiQJ
then by Lemma 1, h would fix points on dQv Hence fix(Λ1) = 0 . So hx is
a free Zp-action on Kv Now by Lemma 2 there is an (s, 1) curve c ondQ1

such that hλ(c) = c. Now c is also a (1, s) curve on 9β 0 and ho(c) = c.
But fix(Λ) c β 0 so Λo is a symmetry of Ko. Thus by Lemma 5 s is a
multiple oΐp. This is impossible, so fix(Λ) Π dQf Φ 0. Now by Lemma 1
h is an involution and both Kt are strongly invertible.

Case 3. Here h is a free Z^-action of M(K0, Kλ). So as in Case 2 we
can apply Lemma 1 to conclude that Λ; is a free Z^-action for both i. Now
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apply Lemma 2 to Λo, to get a (1, s) curve c on dQ0 which is invariant

under h0. Now c is also a (5,1) curve on 3 β 1 and is thus invariant under

h1\dQ1 = ho\dQo. Also by Lemma 1, s has a multiplicative inverse in

Z/pZsos m 0(p). Π

REMARK 6. Note, in case 1, that fix(Λ) & S2 since the knots are prime.

Hence by Smith Theory fix(Λ) s S ° ,

COROLLARY 1. Let Ko and Kλ be distinct prime knots having Property P

and neither being a companion of the other. In addition suppose KQ is not a

torus knot or a cable knot. If M(K0, Kx) is any finite cyclic branched cover

with branch set Sι

9 then both Ki are strongly invertible.

Proof. If M(K0, Kλ) were a finite cyclic branched cover of a knot

then M(K09 Kλ) has a covering translation/and fix(/) = S1. Let h b e /

raised to a power, if necessary, so that the order of h is a prime. Now /

was orientation preserving so h is orientation preserving. Now by Smith

Theory since fix(/) c fix(Λ) in fact fix(A) = Sι. Now apply Case 2 of

Theorem 3. D

DEFINITION 9. A knot is simple if its complement in S3 contains no

essential torus.

REMARK 7. A simple knot has no companions. So if the Ki are simple

non-torus knots, it is enough to assume Qo & Qx in the proof of Theorem

2, we do not actually need Property P. Hence also in Theorem 3.

COROLLARY 2. Let Ko and Kx be simple knots with non-homeomorphic

exteriors. Suppose at least one of the knots is non-amphicheiral, one is

non-invertible, and one has no free Zp-action. Then M(Kθ9 Kx) has no

periodic diffeomorphisms.

Proof. Observe that a torus knot has free Zp-actions. So if KQ is the

knot with no free Z^-actions then Ko is not a torus knot. Since the knots

are simple they are prime, neither is a companion of the other, and neither

is a cable knot. Hence we can apply Theorem 3. D

This corollary easily provides examples of irreducible homology 3-

spheres with no smooth Z^-actions. We show how to get an infinite

collection of such homology spheres. Let Ko be the 52 knot. Then Ko is
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2-bridge so it is simple by Kawauchi [5] and is non-amphicheiral. The
Alexander polynomial of Kois ΔKo(t) = -It2 + 3t - 2 so by Hartley [3]
Ko has no free Z^-actions. Now, if q, r and s are distinct odd numbers
bigger than one then the pretzel knot K(q,r,s) is non-invertible by
Trotter [10]. Since it is prime and 3-bridge, by Kawauchi it is simple. So
we let Kx = K(q, r, s). Now let n = qs + qr + rs, then K(q, r, s) has
Alexander Polynomial

By our conditions on 9, r, 5 we have n > 71 so Δ^ ¥= Δ^ and thus
g 0 =£ g1# Now for distinct n the knots K{q,r,s) will have distinct
Alexander polynomials and hence their complements are non-homeomor-
phic. Let M(K09 Kλ) be one such homology sphere and let M(K0, K[) be
another. Then since 52 and K(q,r,s) are simple M(K09 Kx) and
M(K09 K[) each have precisely one incompressible torus. Suppose
M(K09 K[) = M(K09 Kx), then there is a homeomorphism

h: M{KQ9 K[)-* M{KQ9 Kx)

taking the incompressible torus V to the incompressible torus T. Now
since Qo ^ Qλ we must have h(Q[) = Qx hence the n for ίΓ{ must be the
same as the n for Kv So for the infinite collection of distinct n we will get
infinitely many different non-periodic homology 3-spheres.
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