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INVARIANTS OF THE HEAT EQUATION

HOWARD D. FEGAN AND PETER GILKEY

Let M be a compact Riemannian manifold without boundary and let
P: C°°V-* C°°F be a self-adjoint elliptic differential operator with
positive definite leading symbol. The asymptotics of the heat equation
Tr(exp( — tP)) as t -* 0 + are spectral invariants given by local formulas
in the jets of the total symbol of P. Let A(x) and B(x) be polynomials
where the degree of B is positive and the leading coefficient is positive.
The asymptotics of Tr(Λ(P)exp(- ίB(P))) can be expressed linearly in
terms of the asymptotics of Tr(exp(-tP)). Thus no new spectral infor-
mation is contained in these more general expressions. We also show the
asymptotics of the heat equation are genetically non-zero. If one relaxes
the condition that the leading symbol of P be definite, the asymptotics of
Tr(exp(-ίP2)) and Tr(Pexp(-ίP 2)) form a spanning set of invariants.
These are related to the zeta and eta functions using the Mellin trans-
form, and a similar non-vanishing result holds except for the single
invariant giving the residue of eta at s — 0 which vanishes identically.

1. Introduction. Let M be a compact Riemannian manifold of
dimension m without boundary. Let P: C°°( V) -> C^iV) be a self-adjoint
elliptic differential operator of order u > 0. Let p(x, ξ) be the leading
symbol of P for x e M and ξ e T*MX. We suppose p{x, ξ) is a positive
definite matrix for £ Φ 0; this implies u is even. Let (λ,,, θv)™z=ι be a
spectral resolution of P into a complete orthonormal basis θv for L2(M) of
eigensections so Pθv = \βv. The spectrum of P is bounded from below
and the eigenvalues tend towards oo as v -> oc. Order the eigenvalues so
λ 1 < λ 2 < . I f / > 0 , exp(-tP) is an infinitely smoothing operator
with smooth kernel

K(xy y,exp(-tP)) = Σ cxp(-tλv)θv(x) β θv(y)
V

where θv{x) <8> θv{y) is regarded as an endomorphism from the fiber of the
bundle at y to the fiber at x.

On the diagonal, there is an asymptotic expansion of the form:

t -> O+

where en = 0 if n is odd. In the literature, this sum is often reindexed since
ex = e3 = = e2n+ι — 0. We shall not adopt this convention as it
would lead to difficulties in what follows when considering more general
invariants.
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The en(x, exp(-tP)) are smooth invariants which are endomorphism
valued. The somewhat surprising fact is that they can be computed locally
in terms of the jets of the total symbol of the operator P. They do not
depend upon the global behavior of the operator P. Lei

an(exp(-tP)) = / an(x,exp(-tP)) dvol(x)

where dvol(x) is the Riemannian measure on M. The local fiber trace
an(x, exp( — tP)) is a scalar invariant of P which is sometimes denoted by
an(x, P) in the literatire.

Exp( — tP) is an operator of trace class which is easy to compute:
00

TrL2exp(-/P) = £ t{n~m)/uan(cxp - tP) as t -» 0 \

The invariants an(txp(-tP)) are spectral invariants of the operator which
can be computed by integrating local invariants in the symbol of P.

Let Δ^ = (dd* + d*d)p on CQO(KP(M)) be the Laplacian acting on
the space of smooth /7-forms. This operator is self-adjoint, elliptic, with
positive definite leading symbol. A wide literature exists which relates the
spectrum of the Laplacian to the geometry of the manifold M. Much of
this literature uses the asymptotic invariants α^(exp( — ίΔ )) to derive
information about the spectral geometry. We only mention a few such
results to give the flavor which is involved. Let spec(Δ/7) = {λ^} be the
spectrum of the Laplacian where each eigenvalue is repeated according to
the multiplicity with which it appears. Then:

THEOREM 1.1 (Patodi). Let Mλ and M2 be Riemannian manifolds with
s p e c ^ , Mx) = specίΔ^, M2)forp = 0,1,2. Then:

(a) dimiMJ = dim(M2) and vol(Mx) = vol(Af2).
(b) If Mλ has constant scalar curvature c, then so does M2.
(b) If Mx is Einstein, then so is M2.
(c) If Mλ has constant sectional curvature c, then so does M2.
(d) If Mλ is isometric to the standard sphere of radius 1 in i?w + 1, then so

is M2 (see [14]).

THEOREM 1.2 (Sakai). Let Mt be Einstein manifolds of dimension 6 with
the same Euler characteristic and assume spec(Δ0, Mx) = spec(Δ0, M2).
Then if'Mλ is a local symmetric space, so is m2 (see (15]).
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THEOREM 1.3 (Berger). Let sρec(Δ0, Mλ) = spec(Δ0, M2). //dim(M)
< 4 and if Mλ is isometric to the standard sphere of radius 1 in Rm+1 then so

is M2 (see [6]).

In the special case where M is a simply connected semisimple Lie
group, specίΔ^) can be calculated completely and the asymptotic expan-
sion of the heat equation obtained see [7, 8]. There is a vast literature of
such results and we refer to the excellent bibliography of Berard-Berger [5]
for more examples.

In a sense, all these results can be made sharper since they only rely
on knowledge of the invariants an for n = 0,2,4,6 which is asymptotic
knowledge of the spectrum. It has been an open question for a number of
years as to whether by studying other natural operators constructed from
the Laplacian it is possible to obtain spectral invariants which are given
by different local formulas in the jets of the symbol of the operator. Such
new invariants would, of course, enable one to improve many of these
results and to obtain new results in spectral geometry.

In addition to results in spectral geometry, the asymptotics of the heat
equation can be used to prove the Atiyah-Singer index theorem [1]. For
the DeRham, signature, and spin complexes, the asymptotics given by the
heat equation yield a direct proof of the Gauss-Bonnet theorem, the
Hirzebruch signature formula, and the A formula for the spin-index. For
the Dolbeault complex, however, the local invariants for a non-Kaehler
metric are not the formula of the Riemann-Roch theorem. Consequently,
it is natural to look for new invariants which will permit a direct heat
equation proof of the Riemann-Roch theorem for non-Kaehler metrics.
This is given particular force since such an approach might permit one to
study the Lefschetz fixed point formulas in the holomorphic context
directly using the heat equation; so far the only approach known is that of
Toledo-Tong [17] using entirely different methods.

Thus from a variety of vantage points, it is natural to look for new
spectral invariants. The basic asymptotic convergence result needed is the
following:

THEOREM 1.4 (Seeley). Let P be a self-adjoint elliptic differential

operator of order u > 0 with positive definite leading symbol. Let Q be an

auxiliary differential operator of order a. Then βexp( — tP) is an infinitely

smoothing operator of trace class given by a kernel operator
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K(x, y, βexp(~/P)) for t > 0. On the diagonal, there is an asymptotic
series:

K{x, x, Qexp(-tP)) - f t^'m'a^uen(x9 Qexp(-tP)).

The en(x, Q exp( — tP)) are local invariants which can be computed functori-
ally in terms of the derivatives of the total symbol of Q and P.

This asymptotic result is implicit in the work of Seeley [16]. Although
Seeley was working with the zeta function rather than with the heat
equation, the two are formally equivalent using the Mellin transform as
we shall see later. We refer to Gilkey-Smith [13] where a proof of this
result is given in the case of manifolds with boundary.

In fact, more can be said about the local invariants involved. Decom-
pose the total symbol of P = p and of Q = q into homogeneous parts:
p = p0 4- ••••+•/?„ and q = q0 + -I- qa. Introduce local coordinates
x = (xv... ,xm) and let d" be the standard notation for partial derivatives
in terms of the multi-index α. The /?'s and #'s are matrices and we
introduce formal variables qf and p*/a for the components of the matrices
qt and jets of the matrices pj/a. We define:

o r d e r l y ) = a — i and oτdQΐ(pj/a) = u — j>' + \a\.
Then:

THEOREM 1.5. Let en(x,Qexp(-tP)) be as defined in Theorem 1.4,
en = Qifn + ais odd. Ifn + a is even, then en can be computed functorially
in terms of the variables {#*, pf/a). It is a polynomial in the variables with
u — j + \a\ Φ 0 which is homogeneous of order n with coefficients which
depend smoothly on the components of the leading symbol pu en is linear in
the qt variables.

This is proved using dimensional analysis. Since the methods are by
now completely standard, we omit the details. We apply Theorems 1.4 and
1.5 to the following special case:

LEMMA 1.6. Let A(r) and B(r) be constant coefficient polynomials in an
indeterminate r. Let a be the order of A and b be the order of B. We suppose
b > 0 and the leading coefficient of B is positive. Let P be a self-adjoint
elliptic differential operator of order u > 0 with positive leading order
symbol. Then B(P) is another such operator of order bu. Expand

K{x,x,A(P)exp(-tB{P)))

- £ t<n-m-auVbuen(x9A(P)eκp(-tB(P))).
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The en(x, A(P)exp(- tB(P))) are local invariants which can be computed
functorially in terms of the derivatives of the total symbol of P. If we let

an(A(P)exp(-tB(P)))= ί Ύien{x,A(P)aφ(-tB(P))j)dvol(x),
JM

then these are spectral invariants of the operator P.

The question we will treat in this paper is whether or not we have
actually constructed new invariants in this manner. Some previous results
suggest this is not the case. If B(t) = tb and A(t) = 1 then it was proved
in [10] that

where Γ is the classical Gamma function

ts-ιexp(-t)dt.

Thus no new information results and some can be lost if we study
exp( — tPb) instead of exp(-tP) since the coefficients involved can be
zero. Similarly, if we let B(x) = x - c then exp(-/(P - c» =
exp(*c)exp( — tP) and comparison of the powers of t in the asymptotic
expansion yields the formula:

In this case, the spectral information is rearranged, but none is lost.
In this paper, we will answer the question of obtaining new spectral

information using the invariants en(x, A(P) exp( — tB(P))) in the negative
by showing:

THEOREM 1.7. Let P be a self-adjoint elliptic partial differential operator
of order u > 0 with positive definite leading symbol. Let A(r) and B(r) be
constant coefficient polynomials of orders a and b. Let b > 0 and let the
leading coefficient of B be positive. Then there exist constants ck =
ck(n, m, w, A, B) which are non-zero for only a finite number ofk so that

The zeta function is linked closely with the heat equation by the
Mellin transform and similar statements can be made about invariants
arising from generalized zeta functions. This strongly suggests that the
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answer to the general question of finding new invariants is no, but of
course one must first make precise the context in which one is working to
make such a question well posed mathematically.

If we drop the assumption that the leading symbol of P is positive
definite, then u need no longer be even. The spectrum of P can contain
infinitely many positive and negative values tending towards ±00. It is
still possible to obtain asymptotic information about the spectrum using
the heat equation but there are some new phenomena involved. This is
closely related to the measure of spectral asymmetry of the eta invariant
discussed in the Atiyah-Patodi-Singer index theorem [2, 3, 4].

This paper is divided into two sections. In the first section, we will
give the formal arguments necessary to derive Theorem 1.7 from Lemma
1.6. We will then use some standard asymptotic results to justify the
convergence of the various series appearing in these formal arguments. We
have separated the convergence results from the formal procedures to
avoid cluttering the formal arguments which contain new conceptual ideas
from the arguments in analysis which are by now standard.

In the second section, we will discuss the invariants which arise if the
operator is not assumed to have positive definite leading symbol. This will
lead us to a discussion of both the zeta and the eta functions. We will also
discuss the extent to which the invariants we will define are generically
non-zero and actually give asymptotic information about the spectrum. In
particular this gives a counterexample to the theorem of Wodzicki [18]
who had claimed previously the vanishing of certain residues at certain
poles of the eta function in general.

The second author would like to thank the University of New Mexico
for making it possible for him to visit there during Fall 1982 where much
of the work on this paper was done. Both authors would like to thank the
wide variety of people who independently suggested this problem as one
of interest.

2. Invariants of operators with positive definite leading symbol. In
this section, we will assume P is a self-adjoint elliptic differential operator
of order u > 0 with positive definite leading symbol. Let c be a large
positive constant and let Pc = P + c. Suppose we could prove Theorem
1.7 for the operator Pc whenever c is sufficiently large. Since
en(x, A(Pc)exp(-tPc)) depends polynomially on the constant c by Theo-
rem 1.5, we can use analytic continuation to assert the identity of
Theorem 1.7 for all constants c and in particular for c = 0. If we let c be
large, we ensure that the spectrum of Pc is positive since the spectrum of P
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is bounded from below. Thus we may assume the spectrum of P is positive
to prove Theorem 1.7. In this section, we will also derive a number of
other identities among the invariants en under the assumption P is
positive: these identities continue to hold in the general case.

If c is a positive constant, then exp( — tB(P)) = exp( — tc~~ι(cB(F)))
from which it follows immediately that:

We have assumed that leading coefficient of B is positive. To prove
Theorem 1.7 we may assume without loss of generality that B is monic
since the relevant invariants are rescaled. Since these invariants are linear
in A, we may assume A(r) = ra for some a.

The basic technical result we shall need is a fairly weak estimate of
the growth of the eigenvalues and eigensections. A proof of this estimate
using the Sobolev estimates and Garding's inequality is to be found on [9].

LEMMA 2.1. Let P: C°°(V) -> C°°(F) be a self-adjoint elliptic differen-

tial operator of order u > 0 with positive definite leading symbol. Let

{ λ^, θv}fmtl be a spectral resolution of P with 0 < λλ < λ 2 < -> oo.

(a) There exists ε > 0 and a constant C > 0 so that vE < Cλv for

^ = 1,2

(b) There exists a > 0 and a constant C > 0 so that \θv(x)\ < Cλa

vfor

all x and for v — 1,2,

We first consider the special case A(r) = ra and B(r) = rb. We
define:

/β>6(ί) = K(x, x, P«exp(-tP»)) = IXexp(-ίλtH(x) ® θv{x)

where we suppress dependence upon x and upon P for notational conveni-
ence. By Lemma 2.1, this series converges absolutely for / > 0. We also
define the generalized zeta function

This converges absolutely for Re(x) » 0.
By Lemma 2.1, fah(t) decays exponentially as / -> oo. The Mellin

transform links the heat equation and the zeta function. We compute

1 Γ Σt'-1Kaφ{-t\b,)θ,(x) 9 θ,(x) dt.
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We interchange the order of integration and summation and make a
change of variables replacing t by r = tλb

v to write:

x) 0 θp(x)

This proves

LEMMA 2.2. Let P be a positive definite self-adjoint elliptic differential
operator of order u > 0 with positive definite leading symbol. If fab{t)
and ζ{s) are as above, then the Mellin transform is given by Mfa b(s) =

- a).

Decompose:

Because /β b decays exponentially at oo this second integral defines an
entire function of s. We use Theorem 1.4 to express

N

f (A = V t(n-m-au)/bu , / ^
Ja,b\l) L l en,a,b + εN,a,b\l)

n = Q

where e^>e>6 = O{t{N-m'au)/bu). Therefore,

This second integral defines a function of s which is holomorphic for
Re(s) > (m + au — N)/bu. We evaluate the first integrals to express
finally:

where χ ^ β ^ is holomorphic for Re(^) > (m 4- au - N)/bu. We combine
this with Lemma 2.2 to see

- a) = nsy
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We change variables to let s = bs - a or s = (s + a)/b to express

ζ(S) = Γ((ί + a)

where χ is holomoφhic on the half-plane Re(ί) > (m — N)/u. We re-
place s by s for notational convenience.

T(s) has meromoφhic extension to C with isolated simple poles at
s = 0, — 1, — 2,... and non-vanishing residues. It is non-zero on the real
axis minus the non-positive integers. The formula given above shows:

LEMMA 2.3. ξ has a meromorphic extension to C with isolated simple
poles at s = (m — n)/u, n = 0,2,4,

(a) If (s 4- a)/b is not a non-positive integer, then ζ has a simple pole
with residue T((s 4- a)/b)~ι b en(x, Pacxp(-tPb)) at s = (m - n)/u.

(b) If(s + a)/b is a non-positive integer, then f is regular and the value
is {Resz_sT((z + a)/b)}~ιb en(x9 Paexp(-tPb)) ats = (m - n)/u.

This shows that the asymptotics of the heat equation are reflected in
the behavior of the zeta function. Since the zeta function does not depend
upon the choice of {a, b) we can use this lemma to compare enah for
different values of (a, b) and thereby show:

THEOREM 2.4. Let P be a positive definite elliptic self-adjoint differential
operator of order u > 0 with positive definite leading symbol. Let a, b G. Z
with a > 0 andb > 1. Then:

en{x,Paexp(-tPb))

= b-ι{Γ((s + a)/b)T(sy1}s=(m_n)/uen(x,cxp(-tP)).

Proof. Suppose first s = (m - ή)/u is not a non-positive integer so Γ
is regular at both s and (s + a)/b. Then this result follows from Lemma
2.3(a) by comparing the residue at this value for ξ for the pairs (0,1) and
(a, b). Next suppose s = (m — n)/u is a non-positive integer and that
(s 4- a)/b is not. By using a = 0, b = 1 in Lemma 2.3, we conclude ξ is
regular at this value. Since the coefficient in Lemma 2.3 is non-zero for
the pair (a, b) we see en ab = 0. The coefficient of Theorem 2.4 vanishes
in this case which completes the proof. Finally, we suppose s = (m — n)/u
and (s + a)/b are both non-positive integers. The result follows by (b) of
Lemma 2.3. We note that Theorem 2.4 continues to be valid even if we
drop the assumption that P is not positive definite by analytic continua-
tion.
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This result establishes Theorem 1.7 for A(r) = ra and B(r) = rh. As
already remarked, we may assume B is monic so B has the form:

We proceed formally for the moment and expand

Paexp(-tB(P)) = Pa[Y

To avoid formidable notational complexities, we suppose only one of the
c's is different from zero; the general case uses exactly the same argu-
ments. Therefore we shall suppose B(x) = xb + cxj for somey < b. Then
the kernel satisfies the identity:

K(x, x, Paexp(-t(Pb + cPJ)))

W = Σ {-tc)μ/μ\K{x, x, Pβ + l*exp(-ίP*)).
μ = 0

We shall show that this series converges with uniformity in the
parameter t. It is therefore permissible to expand each
K(x, x9 P

a + ιμQxp( — tPh)) in an asymptotic expansion in t to conclude:

K(x, x, Pqzxp{-t{Ph 4- cPJ)))

By hypothesis, i < b and therefore iμ/b < μ. The power of t is μ(l — i/b)
+ (m — n)/bu and consequently only a finite number of terms in this
double sum contain any given power of t. We rearrange this series to
express the invariants en(x, Pa(-t(Ph + cP1))) in terms of the invariants
ekaβ. These in turn can be expressed in terms of the invariants
ek(x9 exp( — tP)). This will complete the proof of Theorem 1.7.

In what follows, we shall let C denote a generic constant which is
allowed to change from inequality to inequality. It can depend upon other
parameters, but is always to be independent of /, x, and of the subscript
for the particular eigenvalue being considered. The following calculus
lemma is helpful in various estimates:

LEMMA 2.5. Let t,b9r> 0. Then r^exp(-ίr) < Γbbbexp(-b).

Proof. Let f(r) = tbexp(-tr). This is continuous on (0, oc) and
vanishes on both endpoints. It must have an interior maximum where
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f'(r) = rh~ι(b — tr)exp(-tr) = 0. The maximum value is attained at
r = b/t so f(b/t) = t~hbhexp( — b) is the maximum value.

We use Lemma 2.1 and 2.5 to obtain an asymptotic estimate for the
tail in equation (*) which is uniform in t. We define

Πμo)= Σ Σ(-tcr/μlK+lμexp{-tKWx)®βΛx)
μ>μ0 v

as the kernel of the tail in the series. We must show T(μ0) vanishes to
arbitrarily high order in t as μ0 -» oo to complete the proof of Theorem
1.7.

By Lemma 2.1 we estimate \θv(x) ® θv{x)\ < C|λ,|2 α so

\T(μo)\<CΣ Σ\tcΐ/μ\K+lμ+2a*M-tK).
μ<μQ v

We save half the exponential for later use and use Lemma 2.5 to estimate

exp(-/λt/2) - (λt)(α

< (t/2y(a+>μ+2a)/h{(a + iμ + 2a)/bγa+ιμ+2a)/h

Xexp(-(α + iμ + 2a)/b).

Since exp( — (a + iμ + 2a)/b) < 1 we can ignore this term. Since i < b,
for large values of μ we have (a + iμ + 2a)/b < μ. We can estimate
{(a + iμ + 2a)/b}(a+lll+2a)/h < μμ which shows:

We set c[ = 2c and estimate:

\Πμo)\<C Σ Σ (c1ty*' + "t+2")/bμVμ
μ>μ0 v

We are interested in the behavior of this sum for small values of /.
The series Σ μμrμ/μ\ converges for \r e\ < 1 and consequently we can
replace μμ/μ\ by eμ. By changing the value of cx appropriately, we can
estimate the tail by

\T(μo)\<C Σ Σ (c 1 /) f l ( α + ' μ + 2 α ) / / 'exp(- ί /2λt).
μ>μ0 v

By hypothesis we have (1 - i/b) > 0 so the sum in μ is behaving like a
convergent geometric series in t and for t small, we can estimate

bΣ exp(-ί/2λ*J.
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We use Lemma 2.1 to estimate λv > C vε for some ε > 0. We choose
β so εβ > 1 and apply Lemma 2.5:

exp(-*/2λ*) = λ

where C = C(β). Therefore

This estimates the tail uniformly by

\T(μ )\<

Since i/b < 1, the exponent tends towards oo as μ0 -> oo which yields the
desired uniformity in /. This completes the proof of Theorem 1.7.

3. Invariants of operators with indefinite leading symbol. In section

two, we assumed the leading symbol of P was positive definite. This
implied that the spectrum was essentially positive. In this section, we relax
that assumption and shall assume for the remainder of this paper that P is
a self-adjoint elliptic differential operator of order u > 0 but make no
assumption on the leading symbol of P. We shall assume for technical
reasons that 0 is not an eigenvalue of P. This can always be arranged by
replacing P by P + ε for ε-small. As before, any identities proved using
this assumption continue to hold true in the general case by analytic
continuation. This assumption is invariant under small perturbations of P.
In addition to the zeta function, there is a new invariant called the eta
invariant. As before let {λ^, ΘV}™=1 be a spectral resolution of P. The
\λv\ -> oo but there may be an infinite number of both positive and
negative eigenvalues. The order u is not necessarily even.

We define:

£(*, x, P) = ΣPU'XW β θw(x) for Ms) » 0
V

η(s, x, P) = Σsign(λJ \λv\~'θ,(x) ® θy{x) for Re(j) » 0
V

fatb(t, x, P) = ΣKvφ{-*K)0Λx) ® *,(*) ϊoTbeven and / > 0

where a > 0, b > 0 are integers. The operator P2 has positive definite
leading symbol so the estimates of Lemma 2.1 apply to show these series
all converge.

If P is positive definite, then the zeta and eta functions agree with the
zeta function for P2 when we replace s by s/2. If, on the other hand, P is
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not positive definite, then the eta invariant is a new invariant not present
previously. We shall show that both ξ and η admit meromorphic exten-
sions to C with isolated simple poles. It is a deep theorem that s = 0 is a
regular value of η(s, P) = /MTr η(s, x, P) dvol(x) since s = 0 is not in
general a regular value of η(s, x, P). The value η(P) = η(0, P) is a
measure of the spectral asymmetry of P and plays an important role in the
Atiyah-Patodi-Singer Index theorem for manifolds with boundary [2, 3, 4].
It is a non-local invariant of the operator P which also plays a role in the
R mod Z index theorem with coefficients in a unitary representation of
the fundamental group.

From the point of view taken in this paper, the importance of eta is
that together with the zeta function, the residues at the poles (and
occasionally the values) provide a complete list of invariants in the same
sense that the zeta function provided in the positive definite case.

We must first generalize Lemma 2.3 to relate these invariants to the
invariants of the heat equation. We suppress dependence upon (x, P) for
notational convenience and just write ζ(s), η(s), and fah(t). These are the
kernel functions evaluated on the diagonal x = y corresponding to the
operators ( P 2 ) ~ 5 / 2 , p(p 2 )~^ - 1 )/ 2

9 and Pacxp( — tPh). To ensure conver-
gence, we let b be even so Ph is positive.

These are related by the Mellin transform. As in the proof of 2.3 we
compute

00

ts-λfah{t)dt
o

•A*) dt • θv(x) ® θv(x)

= ns)~lΣK\K\'bS Γ T^expί- r) dτ • θ,(x) ® θv{x)
V u

f ζ(bs — a) if a is even

\η(bs — a) if a is odd.

We use the asymptotic expansion:

/v
f (t\ — V f{n~m-au)/bu

Ja,b\1' ) ~ JLi ι ^n,a,b
« = 0

where e n a h = en(x, Pa exp( — tPh)) to conclude:

Mf^b(s) = τ(sy
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where χNtθ9b(s) is holomorphic on the half-plane

Re(s) > (m + au - n)/bu.

After making a change of variables to replace bs — a by s, we generalize

Lemma 2.3 to be:

LEMMA 3.1. Let P be a self-adjoint elliptic differential operator of order

u > 0 without O spectrum and let f, η be as defined previously. Both have

meromorphic extensions to C with isolated simple poles at s = (m — n)/u.

Let a, b ^ Z with a > 0 and b > 0 ez efl. 77*eAΓ.

(a) If a is even, ζ has a simple pole at s = (m — n)/u with residue

T((s + a)/b)'1 b ^n(x, Paexp(-tPb)). If((s + α)/6) w a non-positive

integer, then ξ is regular at this value and the value is

b en(x, Paexp(-tPb))/{RcsT((z + a

en = Qifn is odd.

(b) If a is odd, η has a simple pole at s = (m — ή)/u with residue

T((s + a)/by1 • b en(x, P°exp(-/P*)). If((s + a)/b) is a non-positive

integer, then η is regular at this value and the value is:

b en{x, Paexp(-tPb))/ResT((Z + a)/b).
Z = S

en = 0ifu + nis odd.

This lemma implies

THEOREM 3.2. Let P be a self-adjoint elliptic differential operator of

order u > 0 without O spectrum. Let a, b & Z with a > 0 and b > 0 even.

(a) If a is even then

<•„(*, ί

(m-n)/uen

(b) If a is odd then

en{x,Paexp(-tPb))

Proof. This theorem follows from Lemma 3.1 in exactly the same way

that Theorem 2.4 follows from Lemma 2.3 and we therefore omit the

proof.



INVARIANTS OF THE HEAT EQUATION 247

We use this result and argue exactly as in the proof of Theorem 1.7 to
prove:

THEOREM 3.3. Let P be a self-adjoint elliptic differential operator of
order u > 0. Let A(r) be a polynomial and let B(r) be a polynomial of even
degree with positive leading coefficient. There exist constants ck =
ck(n9 m, u, A, B) and dk = dk(n, m, w, A, B) which are non-zero for only a
finite number of values k such that

en(x,A(P)exp(-tB(P)))

tP2)) + dkel:(x, Pexp(-rP 2 )) .

Theorem 1.7 shows that the invariants {en(x,exp(tP))} span the
space of all invariants arising from the heat equation if the leading symbol
of P is positive definite. Theorem 3.3 shows that the invariants
{en(x,exp(-/P2)), en(x, Pexp(-tP2))} span the corresponding space if
the leading symbol of P is indefinite. We form the spectral invariants

an(exp(-tP)) = [ Tτen(x,exp(-tP))dvol(x)

and similarly an(exp(-tP2)) and an{Pexp(-tP2)). It is a natural ques-
tion to ask to what extent these are linearly independent. For the case of
positive definite leading symbols, the local question and the global ques-
tion are the same, but for indefinite leading symbols, the local and the
global question turn out to have quite different answers.

We first assume the leading symbol of P is positive definite. From the
asymptotic series given in Lemma 1.6 it follows that:

en(x,ap(-tcP)) = c^-"Vuen(x,cxp(-tP))

and similarly for the global integrated invariants. Consequently, if the
invariants are non-zero, they are linearly independent. By Lemma 1.6, we
know en(x,exp( — tP)) = 0 if n is odd and we restrict henceforth to n
even.

THEOREM 3.4. Fix an order u > 0 and a dimension m. The invariants
{an(exp( — tP))} for n even are linearly independent: i.e., given any finite
sequence of nonzero constants ck there exists a self-adjoint positive definite
differential operator P of order u so Σkcka2k(exp( — tP)) Φ 0. The odd
invariants vanish: a2k+1 = e2n+ι — 0.

Of course, since the integrated invariants are linearly independent, the
local invariants must also be so. Before beginning the proof, we will need
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a result concerning e0. It follows directly from Seeley's work and we shall

omit the proof:

LEMMA 3.5. Let P be a self-adjoint elliptic differential operator with

positive definite leading symbolpu. Then

eo(x,exp(-tP)) = (2<*ymj exp(-/>M(x, £)) di Φ 0

Λ ( x , £)) dξdvol(x) Φ 0.

We now begin the proof of Theorem 3.4. Assume first that u = 2. We

must show #2A:(exp( - tP)) Φ 0 for some P. For any operator P, ao(P) Φ 0

by Lemma 3.5. Let c be a constant, then

exp(-/(P - c)) = exρ(/c)exρ(-/P).

By comparing powers of t in the resulting asymptotic expansion, we

conclude that

an{P-c)= Σ ak(P)cVJ\.
kJr2j = n

We assume n is even so that an(P — c) = ao(P)cn/2/(%)\ + lower order

terms and hence an(P — c) Φ 0 for arbitrarily small values of c. This

proves Theorem 3.4 if u = 2.

Next, let u = 2b for b > 0. Let P have order 2, Theorem 2.4 implies:

an(exp(-tP»)) = b

We have shown we can choose P so an(exp( — tP)) Φ 0 which proves

<2M(exp( — tPh)) Φ 0 if (m - «)/2 is not a non-positive integer. Since n is

even, this completes the proof if m is odd.

To study the case m even, we need the following product formula:

LEMMA 3.6. Let Mi be Riemannian manifolds and let P.: C°°(F)) ->

C°°(F)) Z>£ self-adjoint elliptic differential operators of order u > 0 w/YΛ

positive definite leading symbol Let P = Pλ ® 1 + 1 ® P 2 0« C°°(Fί 0 F2).

P w β selfadjoint elliptic differential operator of order u > 0 wz/Λ positive

definite leading symbol. Then an(P) = ΣJ+k=naJ(P1)ak(P2).

Proof. We use the identity exp( — tP) = exp( — tPλ) <S> exp(-rP 2) and

collect corresponding terms in the asymptotic expansions.
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Let m be even and let M = Mx X Sι where the dimension of Mι = m
— 1 is odd. Sι is the unit circle with periodic parameter θ. We showed
that we can find Pλ of order u on Mλ so an{Px) Φ 0. Let P2 = (iβ/dθ)u.
By Lemma 3.5, ao(P2) Φ 0. Since P2 is a constant coefficient operator and
since en(x9 P2) is homogeneous of order n in the jets of P2, we conclude
en(χ> pi) = 0 for « > 0. This imphes an(P) = αM(P1)α0(P2) # 0 which
completes the proof of Theorem 3.5.

The situation is somewhat more complicated if we do not assume P is
positive definite. By Theorem 1.5, we know en(x, exp( — tP2)) = 0 if n is
odd and that en(x, Pexp(- tP1)) = 0 if n + u is odd. For the remainder
of this paper, let P be an elliptic self-adjoint partial differential operator
of order u > 0 where we do not necessarily assume the leading symbol of
P to be definite. The appropriate generalization of Theorem 3.4 is:

THEOREM 3.7. Fix an order u > 0 and a dimension m.
(a) If u is odd, the invariants

{ ( ) ( / P 2 ) ) } " / = 0 forll+lΦm

are linearly independent. The remaining invariants vanish identically.
(b) If u is even, the invariants

{a2k(exp(-tP2)),a2l(Pexp(-tP2))}Z=0 forllΦm

are linearly independent. The remaining invariants vanish identically.

This theorem is somewhat different in flavor from Theorem 3.4. In
particular, there is the assertion that the invariant an(Pexp( — tP2)) = 0 if
n = m. This is nothing but the assertion that the global integrated ζ
function is regular at s = 0 by Lemma 3.1. This is proved for m odd in
Atiyah et al. [3] and for m even by the second author [12]. It was also
proved by Wodzicki [18]. We also remark that if m > 2 and if m — u is
even, then the local invariant am{x, Pcxp( — tP2)) does not vanish identi-
cally (even though it integrates to 0). We refer to [11] for suitable
examples. Since an(Pcxp( — tP2)) changes sign if we replace P by — P
while an(cxp( — tP2)) does not, it suffices to prove each collection of
invariants is linearly independent separately. Using the homogeneity
argument used in the proof of Theorem 3.4, it suffices to establish that the
relevant invariants do not vanish identically.

Before completing the proof of Theorem 3.7, we must establish some
recursion relationships. Let c be a constant and replace P by P + c. We
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differentiate and set c = 0 to establish the identities:

j-c{{P + c)exp(-ί(P + c ) 2 ) } ^ = exp(-tf>2) - 2tP2exp(-tP2)

We substitute the asymptotic series of Lemma 1.6 to conclude:

= Σt("~m+u)/2u{-2en{x, Pexp(-tP2))}

= Σt(n-m)/2u{-23n_u(x,Pexp(-tP2))}

and

= (l + itj

We compare equal powers of t in these two asymptotic expansions to see

LEMMA 3.8.

(a)

φ( ) ) } c = o = -2en__uen(x,Pexp(-tP2)),

(b)

c)eχp(-r(i> + c ^

We now begin the proof of Theorem 3.7. There are a number of

special cases which must be considered and each involves a different

technical trick. Let u = 1. Let M = Tm = S1 X S1 be the flat torus

with periodic parameters {θl9...9θm}. Let {ε0,...,εm} be a collection of

Clifford matrices. These are self-adjoint matrices satisfying the commuta-

tion relations ε/y + εjΊ = 2δtJ where δ is the Kronecker index. For exam-
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pie, if m = 2, we could take

--(I - 0 •>-(! J)
More generally, such matrices arise from the spin representations. Let P
be the operator:

where c is a real constant. From the commutation relations,

P 2 = P0 + c2 where P 0 = " E ^ .

Therefore if n is even,

an(cxp(-tP2))= Σ at(aφ(-tP0))c2'/β
i +j = n

does not vanish identically since αo(exp( — tP0)) Φ 0. The recursion rela-
tion of Lemma 3.8b implies an+ι((P 4- c') exp( — ί(P + cr)2)) can't vanish
identically iίn + \ Φ m which completes the proof Theorem 3.7 if w = 1.

We wish to take powers and use Lemma 3.2 to pass from the first
order case to the general case. To do this, we must verify that certain
coefficients involving the Γ function do not vanish. This is true if either
n < m or if m is odd. Let Pλ be a first order operator so that
^(exp(-*P 2 )) Φ 0. Let P = Px". Theorem 3.2(a) implies:

If n < m, then s is positive so the coefficient T{s/2u)T(s/2)~λ is
non-zero. If m is odd then since n is even, s/2 and s/2u is not an integer
and again this coefficient must be non-zero.

We apply Theorem 3.2(b) to compute an(Puexp(-tP2u)) in terms of
invariants relating to Pλ:

an(PuQxp{-tP2u))

i t u i s o d d

If n < m, then {s, s + u, s + 1} are all positive and these coefficients are
all non-zero. Let m be odd and suppose first u is even. As n is even,
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m Φ n. Choose P{ so an(exp(-ϊP2)) Φ 0. Since m is odd, s =
m — n and s + u = m-n + u are odd integers so the coefficient

Γ((s + u)/2u)T(s/2)-[ is non-zero and an(Pu exp( - tP2u)) Φ 0.
Next we suppose u is odd so n is odd. Choose P{ so an(P{ exp( -tP2))
= 0 if n Φ m. Then s = m — n is an even integer so the coefficient
T((s + w)/2w)Γ((^ + \)/2yι is non-zero and again a,,(Puexp( -tP2u))
Φ 0. This completes the proof of Theorem 3.7 if the dimension m is odd,
or if n < m.

We now let m be even and assume n > m. We use twisted products to
handle this case. Let M = M{ X S1 where the dimension of Λ/j = m - 1
is odd. S[ is the unit circle with periodic parameter θ. Let j be given and
let n be even. Since (m — 1) is odd, we can find P{ of ordery on Mx so
^(expί-ίPj 2)) * 0. Let P2 = (/θ/30)w on S1 then ^(expC-//^2)) # 0
while a;( — tP2)) = 0 fory > 0. Over M we define:

o - U ' 2 ~ U 0/ \p2 -/»,

and compute immediately that:

so that P is elliptic and self-adjoint. Lemma 3.6 shows

α,,(exp(-tf>2)) = 2 Σ «,(exp(-/P1

2))a1(exp(-/P2

2))
/ +j = n

= 2α,,(exp(-ίP1

2))α()(exp(-ίP2

2)) # 0.

This completes the part of Theorem 3.7 which deals with the invariants
α,,(exp(-rF2)).

Before studying the invariants an(Pcxp( — tP2)) if m is even, we must
derive another recursion relationship. Let P be self-adjoint elliptic of
order u > 0 and let Q be self-adjoint of order j so that PQ = QP. Let
P(c) = P + CQΪOΪ c small and positive and compute:

dc

When the resulting asymptotic series are expanded, we conclude:
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We apply this relationship to the operators:

Then P and Q are self-adjoint and commute and

αn{Qcxp(-tP2)) = 2fl l l(P1exp(-/P1

2))α0(exp(-/P2

2)).

We suppose n Φ m. Since n > m,n Φ m — 1. Therefore, we can choose Px

on Mx so αn(P1Qxp( — tP2))Φ0 since m - 1 is odd. This shows
αn(P(c)exp( — tP(c)2)) does not vanish identically and completes the
proof of Theorem 3.8.

There are some obvious generalizations of these results. It is only
necessary to assume that the spectrum of the leading symbol p(x, £) is
contained in the cone Re(λ) > 0 for ξ Φ 0 to define exp( — tP). Similarly
to have exp( — tP2) be well defined, we need only assume that the
spectrum of the leading symbol lies in the cone |Im(λ)| < |Re(λ)| for
ξ Φ 0. The zeta and eta invariants are well defined under even weaker
hypothesis and the proofs go through without change.

By studying \{ζ ± η) we can construct invariants which are con-
centrated either on the positive or negative spectrum of P. Let k > 2 be a
positive integer and let P be an elliptic operator such that the spectrum of
the leading symbol/? is contained on the rays λk ^ R+ for ξ Φ 0. We can
construct invariants which are concentrated on the spectrum correspond-
ing to each of the k such distinct rays and express such invariants in terms
of Tr(P7exp( — tPk)), 0 <j < k. The theorems in this case are similar to
the cases already considered. As we know of no natural operators arising
in geometry corresponding to the case k > 2, we shall not bother to
discuss such generalizations in specific detail. We also refer to a recent
paper of Wodzicki [19].
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