A HYPERBOLIC PROBLEM

A. El Kohen

We consider the following problem: let $x \in R^{n}, t \in R^{+}$, and let σ : $R^{n} \rightarrow R^{+}$be a given lipschitz continuous surface with lipschitz constant 1:

$$
\begin{equation*}
|\nabla \sigma(x)| \leq 1, \quad \text { a.e. on } R^{n} \tag{1}
\end{equation*}
$$

Let $f \in H_{\mathrm{loc}}^{1}\left(R^{n}\right)$ and $g \in L_{\mathrm{loc}}^{2}\left(R^{n}\right)$; then we prove that there exists a unique solution of the following system of equations:

$$
\begin{align*}
& \text { Supp } \square u \subset\{(x, t): t=\sigma(x), t>0\} \tag{2}\\
& \begin{aligned}
& u(x, 0)=f(x) ; \quad u_{t}(x, 0)=g(x) \\
& \frac{\partial u}{\partial t}(x, \sigma(x)+0)=-\frac{\partial u}{\partial t}(x, \sigma(x)-0) \\
& \text { on }\{x: \sigma(x)>0 \&|\nabla \sigma(x)| \leq 1\},
\end{aligned} \tag{3}
\end{align*}
$$

where $\square=\partial^{2} / \partial t^{2}-\Delta$ is the wave operator in $\mathbf{R}^{n} \times R^{+}$. The onedimensional case has been studied by M. Schatzman, who used it in the problem of a string compelled to remain above an obstacle.

The difficulty in solving the problem lies in the fact that as $\sigma 2$ may be characteristic, one has to show that (4) makes sense. More generally, we show that, if u is a solution of finite energy of the wave equation, one may take traces of $\partial u / \partial t$ on either side of the non-characteristic parts of a non-time-like surface. We make use of techniques from harmonic analysis, such as maximal functions on thin sets, and Fourier integral operators.

Once this is done, we show that if v is the solution of the free wave equation

$$
\begin{equation*}
\square v=0, \quad v(x, 0)=f(x), \quad v_{t}(x, 0)=g(x) \tag{5}
\end{equation*}
$$

and if a measure $\mu(v)$ is defined on test functions by

$$
\begin{align*}
& \langle\mu(v), \psi\rangle \tag{6}\\
& \quad=-2 \int_{x: \sigma(x)>0} \psi(x, \sigma(x)) v_{t}(x, \sigma(x))\left(1-|\nabla \sigma(x)|^{2}\right) d x,
\end{align*}
$$

then the unique solution of (2)-(4) is given by

$$
\begin{equation*}
u=v+\mathscr{E} * \mu(v) \tag{7}
\end{equation*}
$$

where \mathscr{E} is the elementary solution supported in $t>|x|$ of the wave equation in $\mathbf{R}^{n} \times R^{+}$.

Our result represents a trend towards some kind of "hyperbolic capacity" theory; it is known that one take traces of solutions of the Laplace and heat equations on sets of elliptic (respectively, parabolic) positive Λ hyperbolic capacity. If one defines a characteristic surface as a set of zero hyperbolic capacity, then we have proved that one can take traces on subsets of positive hyperbolic capacity of time-like surfaces.

1. For a general space-like and sufficiently smooth hypersurface S in \mathbf{R}^{n+1}, the solution to the Cauchy problem

$$
\square u=0,\left.\quad u\right|_{S}=f,\left.\quad \frac{\partial u}{\partial n}\right|_{S}=g
$$

where $\square=\partial^{2} / \partial t^{2}-\partial^{2} / \partial x_{1}^{2}-\cdots-\partial^{2} / \partial x_{n}^{2}$ and $\partial / \partial n$ is the normal derivative to S, is given by the integral representation

$$
\begin{align*}
u(P)=\frac{1}{H_{n}(\alpha)} \int_{S^{P}}(g(Q)[P & -Q]^{(\alpha-n-1) / 2} \tag{*}\\
& \left.-f(Q) \frac{\partial}{\partial n}[P-Q]^{(\alpha-n-1) / 2}\right) d s
\end{align*}
$$

for $\alpha=2$ in the sense of the analytic continuation of the integral as a function of α, and

$$
\begin{gathered}
{[P]=t^{2}-x_{1}^{2}-\cdots-x_{n}^{2}, \quad P=\left(t, x_{1}, \ldots, x_{n}\right)} \\
H_{n}(\alpha)=\pi^{(n-1) / 2} 2^{\alpha-1} \Gamma\left(\frac{\alpha}{2}\right) \Gamma\left(\frac{\alpha+1-n}{2}\right) \\
S^{P}=\{Q \in S:[P-Q] \geq 0,(P-Q) \cdot \mathbf{1} \leq 0\} \\
\mathbf{1}=(1,0, \ldots, 0) \in \mathbf{R}^{n+1}
\end{gathered}
$$

Formula (*) is an application of Green's theorem with respect to the Lorentz metric (for details, see [3]). In the sequel we need the following:

Lemma 1. For $S=\left\{\left(t, x_{1}, \ldots, x_{n}\right): t=0\right\}$,

$$
\begin{equation*}
g \mapsto M_{1} g(x)=\sup _{t>0}\left|\frac{t^{1-\alpha}}{H_{n}(\alpha)} \int_{\mathbf{R}^{n}} g(y)\left[t^{2}-|x-y|^{2}\right]^{(\alpha-n-1) / 2} d y\right| \tag{i}
\end{equation*}
$$

is a bounded operator from $L^{2}\left(\mathbf{R}^{n}\right)$ to $L^{2}\left(\mathbf{R}^{n}\right)$ for all $\alpha>1$, and
(ii)

$$
f \mapsto M_{2} f(x)=\sup _{t>2}\left|\frac{t^{2-\alpha}}{H_{n}(\alpha)} \int_{\mathbf{R}^{n}} f(y) \frac{\partial}{\partial t}\left[t^{2}-|x-y|^{2}\right]^{(\alpha-n-1) / 2} d y\right|
$$

is a bounded operator from $H^{1}\left(\mathbf{R}^{n}\right)$ to $L^{2}\left(\mathbf{R}^{n}\right)$ for all $\alpha>1$.
Proof. (ii) is an easy consequence of (i) via the Fourier transform, and (i) is a result of Stein [5].

We now let $t=\sigma(x)$ be a Lipschitz continuous function with Lipschitz constant 1, i.e., the graph of $\sigma(x)$ is a non-time-like hypersurface and T is
the following operator:

$$
T f(x)=\int_{\mathbf{R}^{n}} e^{i(x \cdot \xi+\sigma(x)|\xi|)} \hat{f}(\xi) d \xi
$$

For this operator we have the following estimate:
LEMMA 2. $T: L_{\text {comp }}^{2}\left(\mathbf{R}^{n}\right) \rightarrow L_{\text {loc }}^{2}(\Omega)$, where $\Omega=\left\{x \in \mathbf{R}^{n},|\nabla \sigma(x)|<\right.$ $1\}$.

Proof. Let K be a compact set contained in Ω and φ a non-negative smooth function with compact support in Ω, where $\varphi \equiv 1$ on K. Then

$$
\begin{aligned}
\int_{K}|T f(x)|^{2} d x & \leq \int_{\mathbf{R}^{n}}|T f(x)|^{2} \varphi(x) d x \\
& =\iint \hat{f}(\xi) \overline{f(\eta)} d \xi d \eta \int e^{i x(\xi-\eta)} e^{i \sigma(x)(|\xi|-|\eta|)} \varphi(x) d x
\end{aligned}
$$

We now let

$$
\phi(\xi, \eta)=\int e^{i x(\xi-\eta)} e^{i \sigma(x)(|\xi|-|\eta|)} \varphi(x) d x
$$

Using the change of variable

$$
u=x+\sigma(x) \frac{\xi-\eta}{|\xi-\eta|^{2}}(|\xi|-|\eta|)
$$

and integrating by parts, one sees easily that

$$
|\varphi(\xi, \eta)| \leq C_{N} /\left(1+|\xi-\eta|^{N}\right)
$$

We use the Cauchy-Schwarz inequality to finish the proof.
Lemma 3. We let S be a space-like hypersurface in \mathbf{R}^{n+1},

$$
\begin{aligned}
& v_{1}^{\alpha}(P)=\frac{1}{H_{n}(\alpha)} \int_{S^{P}} g(Q)[P-Q]^{(\alpha-n-1) / 2} d S \\
& v_{2}^{\alpha}(P)=\frac{1}{H_{n}(\alpha)} \int_{S^{P}} f(Q) \frac{\partial}{\partial n}[P-Q]^{(\alpha-n-1) / 2} d S
\end{aligned}
$$

and $P=R+\nu N$, where $R \in S$ and N is the normal to S at R. Then

$$
\begin{equation*}
g \rightarrow M_{1}^{\alpha} g(R)=\sup _{k \geq 0} 2^{k(\alpha-1)}\left|v_{1}^{\alpha}\left(R+2^{-k} N\right)\right| \tag{i}
\end{equation*}
$$

is a bounded operator from $L_{\text {comp }}^{2}$ to L_{loc}^{2} for all $\alpha>1$ and

$$
\begin{equation*}
f \rightarrow M_{2}^{\alpha} f(R)=\sup _{k \geq 0} 2^{k(\alpha-2)}\left|v_{2}^{\alpha}\left(R+2^{-k} N\right)\right| \tag{ii}
\end{equation*}
$$

is a bounded operator from $H_{\text {comp }}^{1}$ to $L_{\text {loc }}^{2}$ for all $\alpha>1$.

Proof. This result is essentially known and has been proved in collaboration with other authors (see On operators of harmonic analysis which are not convolution by R. R. Coifman in [7].) The proof is lengthy but straightforward. We omit the details.

An immediate consequence is the following:
Corollary. Let $\sigma(x)$ be a Lipschitz continuous function with Lipschitz constant 1 and $S=\{(t, x): t=\sigma(x)\}$ (S is a non-time-like hypersurface in $\left.\mathbf{R}^{n+1}\right)$, then for every compact $K \subset\{(t, x): \sigma(x)>0, t=\sigma(x)$ and $|\nabla \sigma(x)|<1\}$ there exists an integer $l=l(K)$ such that the conclusions of Lemma 3 hold for the maximal functions

$$
\begin{aligned}
& M_{1}^{l, \alpha} g(R)=\sup _{k \geq l} 2^{k(\alpha-1)}\left|v_{1}^{\alpha}\left(R+2^{-k} N\right)\right| \\
& M_{2}^{l, \alpha} f(R)=\sup _{k \geq l} 2^{k(\alpha-2)}\left|v_{2}^{\alpha}\left(R+2^{-k} N\right)\right|
\end{aligned}
$$

on K.
From this corollary we deduce that

$$
g(R)=\left.\lim _{k \rightarrow \infty} \frac{1}{2^{-k}} v_{1}^{\alpha}\left(R+2^{-k} N\right)\right|_{\alpha=2}
$$

and

$$
f(R)=\left.\lim _{k \rightarrow \infty} v_{2}^{\alpha}\left(R+2^{-k} N\right)\right|_{\alpha=2}
$$

a.e. on the noncharacteristic part of S.
2. We now state our main result.

Theorem. The initial value problem
(i)

$$
u \in W_{\mathrm{loc}}^{1, \infty}\left(\mathbf{R}^{+} ;\left(\mathbf{R}^{+} ; L_{\mathrm{loc}}^{2}\left(\mathbf{R}^{n}\right)\right)\right) \cap L_{\mathrm{loc}}^{\infty}\left(\mathbf{R}^{+}, H_{\mathrm{loc}}^{1}\left(\mathbf{R}^{n}\right)\right)
$$

(ii)

$$
\operatorname{Supp} \square u \subset\{(t, x): t=\sigma(x), t>0\}
$$

(iii)

$$
\begin{array}{ll}
u(0, x)=f(x), & f \in H_{\mathrm{loc}}^{1}\left(\mathbf{R}^{n}\right) \\
u_{t}(0, x)=g(x), & g \in L_{\mathrm{loc}}^{2}\left(\mathbf{R}^{n}\right)
\end{array}
$$

(iv)

$$
u_{t}^{+}(\sigma(x), x)=-u_{t}^{-}(\sigma(x), x) \quad \text { on }\{x: \sigma(x)>0,|\nabla \sigma(x)|<1\}
$$

has a unique solution given by $u=v+\mathscr{E} * \mu(v)$, where v is the free solution to the wave equation with initial data f and g, \mathscr{E} is the elementary solution to the wave equation, and $\mu(v)$ is the measure given by

$$
\langle\psi, \mu(v)\rangle=-2 \int_{x: \sigma(x)>0} \psi(\sigma(x), x) v_{t}(\sigma(x), x)\left(1-|\nabla \sigma(x)|^{2}\right) d x
$$

The proof of this theorem will be a consequence of the following lemmas. We let $S=\{(t, x): t=\sigma(x)\}$.

Lemma. For u satisfying conditions (i)-(iii) of Theorem $1,\left.u_{t}^{+}\right|_{S}$ and $\left.u_{t}^{-}\right|_{S}$ are defined a.e. on the set $\{x: \sigma(x)>0,|\nabla \sigma(x)|<1\}$.

Proof. For $0<t<\sigma(x)$,

$$
u(t, x)=v(t, x)=\int_{\mathbf{R}^{n}} e^{i x \cdot \xi} \cos t|\xi| \hat{f}(\xi) d \xi+\int_{\mathbf{R}^{n}} e^{i x \cdot \xi} \frac{\sin t|\xi|}{|\xi|} \hat{g}(\xi) d \xi
$$

and

$$
u_{t}(x, x)=-\int_{\mathbf{R}^{n}} e^{i x \cdot \xi} \sin t|\xi||\xi| \hat{f}(\xi) d \xi+\int_{\mathbf{R}^{n}} e^{i x \cdot \xi} \cos t|\xi| \hat{g}(\xi) d \xi
$$

which shows that $u_{t}^{-}(\sigma(x), x)$ is a linear combination of integrals similar to the one given in Lemma 2. Using Lemma 2, we then have the desired conclusion for $\left.u_{t}^{-}\right|_{S}$. To show the same conclusion for $\left.u^{+} t\right|_{S}$, we write

$$
u_{t}^{+}=u_{t}^{-}+\left(\frac{\partial^{+} u}{\partial n}-\frac{\partial^{-} u}{\partial n}\right)\left(1-|\nabla \sigma|^{2}\right)^{-1 / 2} \quad \text { on } S
$$

(see the proof of Lemma 5). The proof is then reduced to showing the existence a.e. of $\partial^{+} n / \partial n$ and $\partial^{-} n / \partial n$ on the same set. It is easily seen that $\partial^{-} u / \partial n \mid s$ is a linear combination of integrals similar to the one given in Lemma 2. We thus have the desired conclusion in this case. For $\partial^{+} u / \partial n$ we use condition (i), the integral representation of u, and the corollary to Lemma 3(i) to obtain the desired boundary values. We notice that in this case we have a Fatour type theorem. Other results of this type can be found in [2], [6].

Lemma 5. For u as in Theorem 1, $\square u=\mu(v)$ is a measure given by

$$
\langle\psi, \mu(v)\rangle=-2 \int_{x: \sigma(x)>0} \psi(\sigma(x), x) v_{t}(\sigma(x), x)\left(1-|\nabla \sigma(x)|^{2}\right) d x .
$$

Proof. We first recall the following Green formula: for D a domain in $\mathbf{R} \times \mathbf{R}^{n}$, we have

$$
\int_{D}(\psi \square \varphi-\varphi \square \psi) d t d x=-\int_{\partial D}\left(\psi \frac{\partial \varphi}{\partial n}-\varphi \frac{\partial \psi}{\partial n}\right) d S,
$$

where n (resp. $d S$) is the inner normal to ∂D (resp. the area element) with respect to the Lorentz metric. The proof of this formula is given in [3].

We now let D be a component of $\{(t, x): 0<t<\sigma(x)\}, \psi$ a C^{∞} function with compact support in the upper half-space $t>0, \eta$ a C^{∞} function equal to 1 near the set $\{(\sigma(x), x):(\sigma(x), x) \in \partial D\}$ and equal to zero outside a tubular neighborhood of the same set, and ρ_{ε} an approximation of unity. Then

$$
\begin{aligned}
\iint_{D} \psi \square u & =\lim _{\varepsilon \rightarrow 0} \iint_{D} \psi \square\left(u \eta * \rho_{\varepsilon}\right) \\
& =\lim _{\varepsilon \rightarrow 0} u \eta * \rho_{\varepsilon} \square \psi-\lim _{\varepsilon \rightarrow 0} \int_{\partial D} \psi \frac{\partial u \eta}{\partial n} * \rho_{\varepsilon}-u \eta * \rho_{\varepsilon} \frac{\partial \psi}{\partial n} \\
& =\lim _{\eta} \iint_{D} u \eta \square \psi-\lim _{\eta} \psi \frac{\partial u \eta}{\partial n}-u \frac{\partial \psi}{\partial n} .
\end{aligned}
$$

But

$$
\frac{\partial u \eta}{\partial n}=\frac{\partial u}{\partial n} \eta=\frac{\partial u}{\partial n} \quad \text { on }\{(\sigma(x), x):(\sigma(x), x) \in \partial D\}
$$

Therefore:

$$
\iint_{D} \psi \square u=-\int_{\partial D}\left(\psi \frac{\partial^{-} u}{\partial n}-\frac{\partial \psi}{\partial n}\right) d S
$$

By summing over all the components we have

$$
\iint_{i>0} \psi \square u=\int_{\sigma(x)>0} \psi\left(\frac{\partial^{+} u}{\partial n}-\frac{\partial^{-} u}{\partial n}\right) d S
$$

Now, for any function w,

$$
\frac{\partial w}{\partial n}=\frac{1}{\left(1-|\nabla \sigma|^{2}\right)^{1 / 2}}\left(w_{t}+\nabla_{x} w \cdot \nabla \sigma\right)
$$

and

$$
\left(\left.\nabla w\right|_{S}\right) \cdot \nabla \sigma=w_{t}|\nabla \sigma|^{2}+\nabla_{x} w \cdot \nabla \sigma \quad \text { on } S .
$$

For $w=u-v,\left.w\right|_{S}=0$; thus

$$
w_{t}|\nabla \sigma|^{2}+\nabla_{x} w \cdot \nabla \sigma=0 \quad \text { on } S .
$$

Hence, on S,

$$
\begin{aligned}
\frac{\partial^{+} u}{\partial n}-\frac{\partial^{-} u}{\partial n} & =\frac{\partial^{+} u}{\partial n}-\frac{\partial u}{\partial n}=\frac{1}{\left(1-|\nabla \sigma|^{2}\right)^{1 / 2}}\left[\left(u_{t}^{+}-v_{t}\right)-\left(u_{t}^{+}-v_{t}\right)|\nabla \sigma|^{2}\right] \\
& =\left(u_{t}^{+}-v_{t}\right)\left(1-|\nabla \sigma|^{2}\right)^{1 / 2}=-2 v_{t}\left(1-|\nabla \sigma|^{2}\right)^{1 / 2}
\end{aligned}
$$

by condition (iv) of Theorem 1. This establishes the desired formula. Notice that $d S=\left(1-|\nabla \sigma(x)|^{2}\right)^{1 / 2} d x$. To finish the proof of Lemma 5,
we need to show that the distribution

$$
\mu(v): \psi \rightarrow-2 \int_{x: \sigma(x)>0} \psi(\sigma(x), x) v_{t}(\sigma(x), x)\left(1-|\nabla \sigma(x)|^{2}\right) d x
$$

extends to a measure. It is then enough to show that $v_{t}\left(1-|\nabla \sigma|^{2}\right)$ is locally integrable. By Lemma $2, v_{t}\left(1-|\nabla \sigma|^{2}\right)^{1 / 2}$ is locally square integrable on the set $\{x:|\nabla \sigma(x)|<1\}$, which implies that $v_{t}\left(1-|\nabla \sigma|^{2}\right)$ is locally integrable on the same set.

Lemma 6. For $u=v+\mathscr{E} * \nu(v)$, u_{t}^{+}exists a.e. on the set $\{x: \sigma(x)>$ $0,|\nabla \sigma(x)|<1\}$, and, for $\sigma(x)>0, u_{t}^{+}(\sigma(x), x)=-v_{t}(\sigma(x), x)$.

Proof. For (t, x) sufficiently close to the set $\{(\sigma(y), y): \sigma(y)>$ $0,|\nabla \sigma(y)|<1\}$, we may write

$$
\begin{aligned}
u= & v-\frac{2}{H_{n}(\alpha)} \int_{\sigma(y)>0}\left[(t-\sigma(y))^{2}-|x-y|^{2}\right]_{+}^{(\alpha-n-1) / 2} \\
& \cdot v_{t}(\sigma(y), y)\left(1-|\nabla \sigma(y)|^{2}\right) d y
\end{aligned}
$$

for $\alpha=2$ in the sense of the analytic continuation of the integral as a function of α. We let $P=(t, x), Q=(\sigma(y), y), w(Q)=$ $\left(1-|\nabla \sigma(y)|^{2}\right)^{1 / 2}$, and $r_{P Q}^{+}=\left[(t-\sigma(y))^{2}-|x-y|^{2}\right]_{+}$. We then have

$$
u=v-\left.\frac{2}{H_{n}(\alpha)} \int r_{P Q}^{+(\alpha-n-1) / 2} v_{t} w d S\right|_{\alpha=2}
$$

The distribution

$$
\lambda(P, d S)=\frac{1}{H_{n}(\alpha)} r_{P Q}^{+(\alpha-n-1) / 2} d S
$$

in the sense of the analytic continuation as a function of α, for $\alpha=2$, is supported by S^{P}, and as a function of P its restriction to S is zero. We then have

$$
\frac{\partial \lambda}{\partial n}=\frac{\partial \lambda}{\partial t}\left(1-|\nabla \sigma|^{2}\right)^{1 / 2} \quad \text { on } S
$$

Thus

$$
\begin{aligned}
u_{t}^{+}-v_{t} & =-\frac{2}{H_{n}(\alpha)} \int \frac{\partial}{\partial t} r_{P Q}^{+}(\alpha-n-1) / 2 v_{t} w d S \\
& =-2 \frac{1}{H_{n}(\alpha)} \int \frac{\partial}{\partial n_{P}} r_{P Q}^{+(\alpha-n-1) / 2} v_{t} d S \\
& =2 \frac{1}{H_{n}(\alpha)} \int \frac{\partial}{\partial n_{Q}} r_{P Q}^{+(\alpha-n-) / 2} v_{t} d S
\end{aligned}
$$

By the construction of the solution to the Cauchy problem (see §1), the restriction of the integral

$$
\frac{1}{H_{n}(\alpha)} \int \frac{\partial}{\partial n} r_{P Q}^{+(\alpha-n-1) / 2} v_{t} d S
$$

to the part of S corresponding to the set $\{x: \sigma(x)>0,|\nabla \sigma(x)|<1\}$ is equal to $-v_{t}(\sigma(x), x)$, which shows that $u_{t}^{+}(\sigma(x), x)=-v_{t}(\sigma(x), x)$ on the same set. To finish the proof of Lemma 6 we need to show that such a restriction defines $-v_{t}(\sigma(x), x)$ a.e. But this is an immediate consequence of the corollary to Lemma 3.

Lemma 7. (The energy condition.) For $S_{u}=\left(\left|\nabla_{x} u\right|^{2}+u_{t}^{2}\right.$, $\left.-2 u_{x_{1}} u_{t}, \ldots,-2 u_{x_{n}} u_{t}\right)$ we have $\operatorname{div} S_{u}=2 u_{t} \square u=0$ in the sense of distributions.

Proof. For ψ a test function,

$$
\int \psi u_{t} \square u=\int \psi\left(v_{t}+\mathscr{E}_{t} * \mu(v)\right) \square u=\int \psi v_{t} \square u+\int \psi \mathscr{E}_{t} * \mu(v) \square u .
$$

By Lemma 5

$$
\int \psi v_{t} \square u=-2 \int_{x: \sigma(x)>0} \psi(\sigma(x), x) v_{t}^{2}(\sigma(x), x)\left(1-|\nabla \sigma(x)|^{2}\right) d x
$$

Also, in the proof of Lemma 6, we showed that $\mathscr{E}_{t} * \mu(v)$ has a restriction to the part of S corresponding to the set $\{x: \sigma(x)>0,|\nabla \sigma(x)|<1\}$ equals to $-v_{t}(\sigma(x), x)$ a.e.. Thus
$\int \psi \mathscr{E}_{t} * \mu(v) \square u=2 \int_{x: \sigma(x)>0} \psi(\sigma(x), x) v_{t}^{2}(\sigma(x), x)\left(1-|\nabla \sigma(x)|^{2}\right) d x$, which finishes the proof of Lemma 7.

By a standard argument, one deduces the following estimate from the energy condition:

$$
\int_{\left|x-x_{0}\right| \leq t_{0}-T}\left(\left|\nabla_{x} u\right|^{2}+\left|u_{t}\right|^{2}\right)_{t=T} d x \leq \int_{\left|x-x_{0}\right| \leq t_{0}}\left(\left|\nabla_{x} u\right|^{2}+\left|u_{t}\right|^{2}\right)_{t=0} d x
$$

(for details see [1]), which implies condition (i) and the uniqueness part of the theorem.
3. A refinement of Lemma 2 is given by the following estimate:

Theorem 2. With the same notation as before, we have

$$
\begin{equation*}
\int_{\mathbf{R}^{n}}|T f(x)|^{2}\left(1-|\nabla \sigma(x)|^{2}\right) d x \leq C \int_{\mathbf{R}^{n}}|f(x)|^{2} d x \tag{**}
\end{equation*}
$$

where C is an absolute constant.

Proof. To show (**) we let

$$
\begin{aligned}
& T_{1} f(x)=\int_{\mathbf{R}^{n}} e^{i x \cdot \xi} \cos \sigma(x)|\xi| \hat{f}(\xi) d \xi \\
& T_{2} f(x)=\int_{\mathbf{R}^{n}} e^{i x \cdot \xi} \sin \sigma(x)|\xi| \hat{f}(\xi) d \xi
\end{aligned}
$$

and show ($* *$) separable for T_{1}, T_{2}.
Let $v(t, x)$ be the solution to the initial value problem:

$$
\begin{aligned}
\square v & =0 \\
v(0) & =0 \\
v_{t}(0) & =f
\end{aligned}
$$

and let $S_{v}=\left(\left|\nabla_{x} v\right|^{2}+\left|v_{t}\right|^{2},-2 v_{x_{1}} v_{t}, \ldots,-2 v_{x_{n}} v_{t}\right)$. We then have $\operatorname{div} S_{v}=0$, and, by Gauss' theorem (given in [3]),

$$
\int_{\partial D} S_{v} \cdot n d S=0
$$

where D is any bounded domain in the half-space $t>0$, and n (resp. $d S$) is the outer normal to ∂D (resp. the area element) with respect to the Lorentz metric. If, for D, we take a lens-shaped domain bounded below by the hyperplane $t=0$ and above by S, then

$$
\left(S_{v} \cdot n\right) d S=\left\{\begin{array}{l}
-\left|v_{t}(0, x)\right|^{2} d x \quad \text { on } \partial D \cap\{(t, x), t=0\} \\
\left(\left|\nabla_{x} v\right|^{2}+\left|v_{t}\right|^{2}-2 \nabla_{x} v \cdot \nabla \omega v_{t}\right) d x \quad \text { otherwise }
\end{array}\right.
$$

where ω is a defining function for $\partial D ; \omega \equiv 0$ for $\partial D \cap\{(t, x) ; t=0\}$, $\omega=\sigma$ for $\partial D \cap S$, and $\omega=t_{0}-\left|x-x_{0}\right|$ for the remaining part of ∂D, where $\left(t_{0}, x_{0}\right)$ is some point in the upper half-space $t>0$.

Since

$$
\left|\nabla_{x} v\right|^{2}+\left|v_{t}\right|^{2}-2 \nabla_{x} v \cdot \nabla \omega v_{t}=\left|\nabla_{x} v-v_{t} \nabla \omega\right|^{2}+\left(1-|\nabla \omega|^{2}\right) v_{t}^{2}
$$

we have

$$
\begin{aligned}
\int_{\partial D} S_{v} \cdot n d S= & -\int_{\left|x-x_{0}\right| \leq t_{0}} v_{t_{\mid=0}}^{2} d x+\int_{t_{0}-\sigma(x) \geq\left|x-x_{0}\right|}\left|\nabla_{x} v-v_{t} \nabla \boldsymbol{\sigma}\right|^{2} d x \\
& +\int_{t_{0}-\sigma(x) \geq\left|x-x_{0}\right|} v_{t_{\mid k=o(x)}^{2}}^{2}\left(1-|\nabla \sigma|^{2}\right) d x \\
& +\int_{t_{0}-\sigma(x) \leq\left|x-x_{0}\right| \leq t_{0}}\left|\nabla_{x} v+v_{t} \nabla_{x}\right| x-x_{0}| |^{2} d x
\end{aligned}
$$

which shows that

$$
-\int_{\left|x-x_{0}\right| \leq t_{0}} v_{t_{\mid l=0}}^{2} d x+\int_{\left|x-x_{0}\right| \leq t_{0}-\sigma(x)} v_{t_{t=\sigma(x)}}^{2}\left(1-|\nabla \sigma|^{2}\right) d x \leq 0
$$

But

$$
v(t, x)=\int_{\mathbf{R}^{n}} e^{i x \cdot \xi} \frac{\sin t|\xi|}{|\xi|} \hat{f}(\xi) d \xi
$$

Hence $v_{t}(0, x)=f(x)$ and $v_{t}(\xi(x), x)=T_{1} f(x)$.Therefore,

$$
\int_{\left|x-x_{0}\right| \leq t_{0}-\sigma(x)}\left|T_{1} f(x)\right|^{2}\left(1-|\nabla \sigma(x)|^{2}\right) d x \leq \int_{\left|x-x_{0}\right| \leq t_{0}}|f(x)|^{2} d x
$$

from which one easily deduces $(* *)$ for T_{1}.
To show the same estimate for T_{2}, we consider the following initial value problem:

$$
\begin{aligned}
\square w & =0 \\
w(0) & =f \\
w_{t}(0) & =0
\end{aligned}
$$

where f is a smooth and rapidly decreasing function such that $\hat{f}(\xi) \equiv 0$ for $|\xi| \leq 1$ (a simple application of the Cauchy-Schwarz inequality shows that we can always reduce the problem to this case). We then can write $\hat{f}(\xi)=\hat{g}(\xi) /|\xi| ; g$ then has the same properties as f.

By using the same energy condition and the same domain as before, we have

$$
\int_{\left|x-x_{0}\right| \leq t_{0}-\sigma(x)}\left|w_{t}\right|_{t=\sigma(x)}^{2}\left(1-|\nabla \boldsymbol{\sigma}|^{2}\right) d x \leq \int_{\left|x-x_{0}\right| \leq t_{0}}\left|\nabla_{x} w\right|_{t=0}^{2} d x
$$

But

$$
\begin{aligned}
w(t, x) & =\int_{\mathbf{R}^{n}} e^{i x \cdot \xi} \cos t|\xi| \hat{f}(\xi) d \xi \\
w_{t}(0, x) & =0 \\
w_{t}(\sigma(x), x) & =T_{2} g(x)
\end{aligned}
$$

and

$$
\left|\nabla_{x} w\right|^{2}(0, x)=\sum_{j=1}^{n}\left|R_{j}(g)\right|^{2}
$$

where for each $j=1,2, \ldots, n, R_{J}$ is the Riesz transform $R_{j}(g)^{\wedge}(\xi)=$ $\left(\xi_{j} /|\xi|\right) \cdot \hat{g}(\xi)$. Since R_{j} is bounded on $L^{2}\left(\mathbf{R}^{n}\right)$ with norm 1 , for each
$j=1,2, \ldots, n$ we have

$$
\int_{\left|x-x_{0}\right| \leq t_{0}-\sigma(x)}\left|T_{2} g(x)\right|^{2}\left(1-|\nabla \sigma(x)|^{2}\right) d x \leq n \int_{\mathbf{R}^{n}}|g(x)|^{2} d x
$$

The estimate ($* *$) for T_{2} is now an easy consequence.
As a final remark, we notice that T is a Fourier integral operator (Egorov's operator) with a degenerate phase function: $\phi(x, \xi)=x \cdot \xi+$ $\sigma(x)|\xi|$. It is then desirable to have a direct proof for $(* *)$. For $n=1$ such a proof is immediate. In this case it is easily seen that, up to a constant, the kernel of T is

$$
K(x, x-y)=\frac{1}{\sigma(x)-(x-y)}-\frac{1}{\sigma(x)+(x-y)}
$$

and, hence, up to a constant, we have

$$
T f(x)=H f(x-\sigma(x))-H f(x+\sigma(x))
$$

where H is the Hilbert transform

$$
H f(x)=\text { p.v. } \int_{-\infty}^{\infty} f(x-y) \frac{d y}{y}
$$

Thus

$$
\begin{aligned}
\int_{-\infty}^{\infty}|T f(x)|^{2}\left(1-\sigma^{\prime}(x)^{2}\right) d x \leq & 2 \int_{-\infty}^{\infty}|H f(x-\sigma(x))|^{2}\left(1-\sigma^{\prime}(x)^{2}\right) d x \\
& +2 \int_{-\infty}^{\infty}|H f(x+\sigma(x))|^{2}\left(1-\sigma^{\prime}(x)^{2}\right) d x \\
\leq & 4 \int_{-\infty}|H f(x-\sigma(x))|^{2}\left(1-\sigma^{\prime}(x)\right) d x \\
& +4 \int_{-\infty}^{\infty}|H f(x+\sigma(x))|^{2}\left(1+\sigma^{\prime}(x)\right) d x
\end{aligned}
$$

The obvious changes of variables and the well-known estimate for H show the desired estimate for T. This case shows also that $(* *)$ is the best possible. In the case $n=1 \mathrm{we}$, in fact, have

$$
\int_{-\infty}^{\infty}|T f(x)|^{p}\left(1-\sigma^{\prime}(x)^{2}\right) d x \leq C_{p} \int_{-\infty}^{\infty}|f(x)|^{p} d x
$$

for all $1<p<\infty$. This suggests that we might have some L^{p}-estimate ($p \neq 2$) in the general case.

References

[1] R. Courant and D. Hilbert, Methods of Mathematical Physics, Interscience 1962.
[2] A. El Kohen, Maximal operators on hyperboloids, J. Operator Theory, 3 (1980).
[3] M. Riesz, L'intégrale de Rieman-Liouville et le problème de Cauchy, Acta Math., 81 (1949), 1-223.
[4] M. Schatzman, A hyperbolic problem of second order with unilateral constraints: the vibrating string with a concave obstacle, Pub. Univ. Pierre et Marie Curie, Enr. no. 78031.
[5] E. M. Stein, Maximal functions: spherical means. Part I, Proc. Nat. Acad. Sci. U.S.A., 73 (1976), 2174-2175.
[6] E. M. Stein and S. Wainger, Problems in harmonic analysis related to curvature, Bull. Amer. Math. Soc., 6, 84 (1978), 1239-1295.
[7] G. Weiss and S. Wainger, (Ed.) Harmonic analysis in euclidean spaces, Pub. Amer. Math. Soc., 1979.

Received August 25, 1983.
The University of Wisconsin
Madison, WI 53706

