
PACIFIC JOURNAL OF MATHEMATICS

Vol. 118, No. 1,1985

NOT EVERY LODATO PROXIMITY IS COVERED

K. C. CHATTOPADHYAY

In a recent paper Reed wrote, "In fact it may be that all Lodato
proximities are covered. I was unable to find a counterexample". (Re-
mark 1.10)

The purpose of this note is to show that, in general, Lodato
proximities are not covered.

1. Preliminaries. A closed filter &on a topological space (X, c) is a
proper filter (that is, a filter which does not contain the empty set) which
has a base consisting of only closed sets. Maximal (with respect to set
inclusion) closed filters are all called ultraclosed filters. For more informa-
tion on the concept of ultraclosed filters see Thron [3].

Ultrafilters are maximal proper filters on a set and grills are exactly
the unions of ultrafilters. For a detailed discussion on ultrafilters and
grills, see Thron [2].

A basic proximity π o n a set X is a symmetric binary relation on the
power set &*( X) of X satisfying the conditions:

(A, B U C) e π <=> (A, B) €Ξ π or (A, C) e π9

A Π B Φ 0 => (A,B) <Ξ 7r,

The pair (X, TΓ) is called a basic proximity space provided π is a basic
proximity on X.

For a basic proximity π on X, we define

cv(A)= { χ € l : ( { j c } ^ ) G ί r } for allΛ C X.

It is easily verified that cn is a symmetric (Cech) closure operator. For a
basic proximity IT, cm need not be a Kuratowski closure operator.

A basic proximity π on X is called a Lodato proximity if the following
condition is saitsfied:

If 7r is a Lodato proximity on X then cm is a Kuratowski closure operator
on X and hence (X, cπ) is a topological space.

Let (X, π) be a basic proximity space and ^be a grill on X. Then
called a m-clan if

(A9B) <ΞTΓ foτaΆA9Bin9.

59



60 K. C. CHATTOPADHYAY

For more detailed information on the concepts discussed above, see Thron

[2].
Let 77 be a Lodato proximity on X. Following Reed [1] we define the

following concepts:
A Wallman π-clan is a π-clan which contains some ultraclosed filter.

The proximity π is said to be covered if for each (A, B) e 77 there exists a
Wallman 77-clan ^such that {A, B) c ^.

We conclude this section by proving the following results which will
be used to make the final conclusion.

1.1. PROPOSITION. Let °Ube an ultraclosed filter on (X, c) andstfa base
of tf/ consisting of closed sets. If F is a closed set and F Π A Φ 0 for all A in
s/then F e i

Proof. Let <% be the collection of all finite intersections of members of
the family s/ U {F}. Then 3& is a filter base consisting of closed sets. Let
^ 0 be the filter generated by 3S as a base. Then ^ 0 is a closed filter and
% D <2f U {F}. By the maximality of <%'\i follows that F e i

1.2. COROLLARY. Let °Ube an ultraclosed filter on (X, c) and V an open
set such that V Π F Φ 0 for all F in <%. Then V e 91.

Proof. If possible suppose that K ί Φ . Let si be a base of Ql
consisting of closed sets. Then V 2 A for all A^s/. Thus (X - V) Π A
Φ 0 for all A e J / . Since Jf — K is closed, by the above result it follows
that X - V G ^and hence K Π ( Z - F ) # 0—a contradiction.

1.3. PROPOSITION. On a compact topological space (Xy c) every ultra-
closed filter converges.

Proof. Let °ll be an ultraclosed filter on (X, c). Since the space is
compact if follows that there exists an x in X such that x e c(F) for all
F G ̂ . Let F be an open neighbourhood of x. Then K Π i 7 ^ 0 for all
F e ^ . Thus by the above corollary, K e Φ . Hence ̂ converges to JC.

1.4. PROPOSITION. On a Tλ-space (X, c), every convergent ultraclosed
filter has the form °il(x), for some x e X, where °lί{x) = {A a X: x ^ A}.

Proof. Let °ll be an ultraclosed filter on (X, c) such that it converges
to a point x e X. Obviously x ^ c(F) for all F ^ °ll. Hence, in particular,
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x belongs to each member of a base of °U consisting of closed sets. Since

{x} is a closed set it follows by Proposition 1.1, that {JC} e all. Thus

1.5. THEOREM. Let (X, c) be a compact Tλ-space such that it has two

infinite components. Then

π = { ( £ , F): c(E) Π c(F) Φ 0 or E andFare both infinite)

is a Lodato proximity on X such that cm = c and π is not covered.

Proof. It is easy to verify that π is indeed a Lodato proximity on X

such that cπ = c.

Let A, B be two infinite components of (X, c). Obviously (A, B) e π.

However, no Wallman ττ-clan can contain both A and B. For suppose ^ i s

such a Wallman τr-clan. Let °lί be an ultraclosed filter such that ^ c ^ .

Then since (X, c) is a compact ΓΓspace it follows, by Propositions 1.3 and

1.4, that ^ = <%(x) for some x e X. Thus {x}, ^ and 5 are all in ^ .

From this it follows that

x e <rw(Λ) Π ^ ( U ) = c(A) Π c(Λ) = i n ί = 0 .

Clearly this is impossible.

2, Many examples of compact ΓΓspaces with two infinite compo-

nents can easily be constructed. Two such examples are given below.

2.1. EXAMPLE. Let X be the union of closed intervals [1,2] and [3,4].

Then X with the topology induced by the usual topology of real line is an

example of a compact T^-space with two infinite components.

2.2. EXAMPLE. Let X = A u B such that A, B are both infinite sets

and,4 Π B = 0 . Define c: &>(X) -> ^(ΛΓ) by

c(D) = D if D is a finite subset of X,

= A U D ifAΠDis infinite and ΰ n ΰ i s finite,

= B U D iΐB Π Dis infinite and A Π D is finite,

= X otherwise.

Then (X, c) is a 7\-topological space with two infinite components A

and J5.

Set

s/λ == {A - F: Fis a finite subset of A},

J / 2 = {J8 - F: Fis a finite subset of J?},

j / 3 = {X - F: F is a finite subset of X}.
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T h e n ^ U J ^ U J / 3 is the collection of all nonempty open sets in (X9 c).
Let stf be an open cover of X. If s/Γ)s/3 Φ 0 then obviously si has a
finite subcover. If s/Πs/3 = 0 then, since J/covers X,s#C\sέλΦ 0 and
s/Πs/2 Φ 0 and hence in this case also J / has a finite subcover. Thus the
space is compact.

2.3. REMARK. By Theorem 1.5 and Examples 2.1 and 2.2 it follows
that there are Lodato proximities which are not covered.
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