ON SPECIAL PRIMES

Emma Lehmer

In fond memory of Ernst Straus

Abstract

A special prime q is a prime which divides the discriminant of a general period polynomial of degree e associated with the prime $p=e f$ +1 , but q is neither an e th power residue of p nor a divisor of any value of this polynomial.

These primes are very rare. Evans found some for the classical cyclotomic octic. There are none for lower degree cyclotomic polynomials. This paper finds special primes for the two quartics arising from the cyclotomy of Kloosterman sums for $e=8$ and shows that there are none for $e<8$.

Introduction. In two earlier papers on the cyclotomy of Kloosterman Sums [3, 4] we proved that for e a prime and $p=e f+1$ the Kloosterman equation is irreducible and represents numbers all of whose prime factors are e th power residues of p. However, when e is even the equation splits into two irreducible equations of degree $e / 2$. The question arises as to whether these two equations can have factors which are not $e / 2$ th power residues. Such factors are called exceptional and they have to divide the discriminant of the equations. Evans [2] raised the question of whether all the divisors of the discriminant of the cyclotomic period polynomials are e th power residues. He called the divisors of he discriminant which are not e th power residues semiexceptional and showed that for $e=8$ there exist semiexceptional divisors which are not exceptional. We studied the problem for $e=6$ in [5], where we called such semiexceptional divisors special, and showed that they do not exist for $e=6$. In [8] I studied a wider range of period equations of degree $2 e$, where e is a prime without finding any special primes. In what follows such primes will be found for the two Kloosterman quartics for $e=8$ together with the exceptional primes for the two cubics for $e=6$, as well as for the two quadratics found in [3] for $e=4$.

1. Kloosterman sums. The Kloosterman sum $S(h)$ is defined by

$$
S(h)=\sum_{x=1}^{p-1} \epsilon(x+h \bar{x}), \quad x \bar{x} \equiv 1(\bmod p)
$$

where

$$
\epsilon(\nu)=\exp (2 \pi i \nu / p), \quad p \text { a prime } .
$$

We write $p=e f+1$ and put the integers $h=1,2, \ldots, p-1$ into cosets C_{j} with respect to some primitive root g, where every h in C_{j} is such that $\operatorname{ind}_{g} h \equiv j(\bmod e)$. In [3] we defined

$$
\theta_{j}=\sum_{h \in C_{l}} S(h) \quad(j=0,1, \ldots, e-1)
$$

We showed that if e is a prime then the θ_{j} satisfy an irreducible equation of degree e, while for even e the $\theta_{2,}$, satisfy an irreducible equation of degree $e / 2$, while the $\theta_{2 j+1}$ satisfy a companion equation of the same degree. For $e=4$ we let $p=a^{2}+b^{2}, a \equiv 1(\bmod 4), y_{i}=4 \theta_{2 i}-1$ and $z_{i}=4 \theta_{2 t+1}-1$ and obtained the two equations

$$
F_{2}(y)=y^{2}-2 p y+p^{2}-4 p a^{2} \quad \text { and } \quad G_{2}(z)=z^{2}-2 p z+p^{2}-4 b^{2} p
$$ with discriminants $D\left(F_{2}\right)=4 p a^{2}$ and $D\left(G_{2}\right)=4 p b^{2}$.

We now let q be an odd prime. Obviously if $q \mid a$ then $F_{2}(y) \equiv(y-p)^{2}$ $(\bmod q)$, and if $q \mid b$ then $G_{2}(z) \equiv(z-p)^{2}(\bmod q)$ so that both equations have solutions modulo q.

The following facts are well known: (see [7] for example)
Lemma 1. All the divisors of b are quartic residues of p. If $q \mid a$, then q is a quartic residue of p if and only if $q=8 n \pm 1$.

This leads at once to the following:
Theorem 1. If $q \mid a$ then q is exceptional for $F_{2}(y)$ if and only if $q=8 n \pm 3$. There are no exceptional divisors for $G_{2}(z)$ and neither equation has special divisors.

It was shown in [3], formula (6.7) that the Kloosterman periods are linear combinations of the cyclotomic periods

$$
\eta_{t}=\sum_{\nu \in C_{t}} \epsilon(\nu) .
$$

For e even the formula reads

$$
\begin{equation*}
e \theta_{j}=\sum_{i=0}^{e-1} \psi_{e}\left(-4 g^{J-2 i}\right) \eta_{t}+(-1)^{J+(p-1) / 2}(p-1) \tag{1}
\end{equation*}
$$

where the coefficients Ψ_{e} are the Jacobstal sums

$$
\begin{equation*}
\psi_{e}(h)=\sum_{x=1}^{p-1} \chi\left(x^{e}+h\right) \tag{2}
\end{equation*}
$$

For $e=6[5]$ formula (48) gives for $p=A^{2}+3 B^{2}, 4 p=L^{2}+27 M^{2}$, $L \equiv A \equiv 1(\bmod 3)$

$$
\Psi_{6}\left(g^{r}\right)=\left\{\begin{array}{cl}
-2(2 A+1) & \text { if } r \equiv 0(\bmod 6) \tag{3}\\
2(A-1) & \text { if } r \equiv \pm 2(\bmod 6) \\
0 & \text { if } r \equiv 3(\bmod 6) \\
\pm B & \text { if } r \equiv \pm(\bmod 6)
\end{array}\right.
$$

where by a suitable choice of the primitive roots g we can match the signs of B and r.

For $e=8$ Theorem 4.7 of [1] can be restated in our notation to read with $p=a^{2}+b^{2}=c^{2}+2 d^{2}, a \equiv c \equiv 1(\bmod 4), f$ even

$$
\psi_{8}\left(g^{r}\right)=\left\{\begin{array}{cl}
-2(2 c+a+1) & \text { if } r \equiv 0(\bmod 8) \tag{4}\\
2(2 c-a-1) & \text { if } r \equiv 4(\bmod 8) \\
2(a-1) & \text { if } r \equiv \pm 2(\bmod 8) \\
2(b \pm d) & \text { otherwise }
\end{array}\right.
$$

We will also need to know that

$$
\begin{equation*}
\Psi(g)=-\Psi(\bar{g}) \tag{5}
\end{equation*}
$$

We are now ready to take up the special cases of $e=6$ and $e=8$.
2. The sextic case. We note that the coefficients of $\boldsymbol{\eta}_{i}$ and of $\boldsymbol{\eta}_{i+3}$ are equal in (1) and that $\eta_{i}+\eta_{i+3}=\eta_{i}^{\prime}$ is of order 3 , so that if we let $x_{i}=3 \eta_{i}^{\prime}+1$ then the x_{i} satisfy the reduced cubic

$$
f_{3}(x)=x^{3}-3 p x-p L \quad \text { with } D\left(f_{3}\right)=(27 p M)^{2}
$$

Substituting the values of ψ_{6} given in (3) into (1) we find that for f even and 2 a cubic residue

$$
3 \theta_{2 i}=-A x_{i}+(p+1) / 2
$$

Similarly if we let $\delta_{i}=\eta_{i}^{\prime}-\eta_{i+1}^{\prime}$ then

$$
3 \theta_{2 i+1}=B \delta_{i}-(p-1) / 2
$$

where the δ_{i} are the roots of the less familiar cubic

$$
g_{3}(x)=x^{3}-p x-p M \quad \text { with } D\left(g_{3}\right)=(p L)^{2}
$$

Therefore letting

$$
y_{i}=3 \theta_{2 i}-(p+1) / 2 \quad \text { and } \quad z_{i}=3 \theta_{2 i+1}+(p-1) / 2
$$

we see that the y_{i} and the z_{i} satisfy respectively

$$
F_{3}(x)=A^{3} f_{3}(-x / A) \quad \text { and } \quad G_{3}(x)=B^{3} g_{3}(x / B)
$$

with discriminants

$$
D\left(F_{3}\right)=\left(27 p M A^{3}\right)^{2} \quad \text { and } \quad D\left(G_{3}\right)=\left(p L B^{3}\right)^{2}
$$

If 2 is not a cubic residue then the roots simply permute and the equations remain unaltered. However if f is odd then the y_{l} satisfy G_{3}, while the x_{i} satisfy F_{3} so we obtain nothing new. In order to assertain whether F_{3} and G_{3} have any exceptional or special divisors we must examine the divisors of $A M$ for F_{3} and of $L B$ for G_{3}. We first recall some well known facts [see 5].

Lemma 2. All the divisors of L and M are cubic residues. If 2 is a cubic residue then all the divisors of A and B are also cubic residues. If 2 is not a cubic residue and if $q+3$ divides B then q is a cubic residue if and only if $q=18 n \pm 1$.

The last part of the lemma was obtained in [5] by using f_{3} together with the fact that all the divisors $q+3$ of $x^{3}-3 x-1$ are $q=18 n \pm 1$. Similarly we can use g_{3}, all of whose divisors $q+3$ are cubic residues, to prove

Lemma 3. If 2 is not a cubic residue of p and if $q \mid A$, then q is a cubic residue of p if and only if $q=18 n \pm 1$.

Proof. If 2 is not a cubie residue then $4 A=L+9 M$, so that since $q \mid A$, then $L \equiv-9 M(\bmod q)$. Putting this into

$$
g_{3}(3 M x) \equiv 27 M^{3}\left(x^{3}-3 x-1\right) \quad(\bmod q)
$$

we see that since $q+3 M, q=18 n \pm 1$. Conversely if $q=18 n \pm 1$, then it is a cubic residue and hence a divisor of $g_{3}(x)$.

This leads to the following theorem.
Theorem 2. If 2 is a cubic residue then neither F_{3} nor G_{3} have any exceptional or special primes. If 2 is not a cubic residue then 2 is exceptional for F_{3} if $p=12 n+7$ and for G_{3} if $p=12 n+1$. The primes $q=18 n \pm 5$ or $q=18 n \pm 7$ are exceptional for F_{3} if $q \mid A$ and for G_{3} if $q \mid B$.

Proof. Since $F_{3}(0) \equiv 0(\bmod A)$ and $G_{3}(0) \equiv 0(\bmod B)$ there are no special primes. If 2 is a cubic residue, then all the divisors of $A B$ are cubic residues. If 2 is not a cubie residue it is exceptional for F_{3} if it divides A in which case $p=12 n+7$, and for G_{3} if it divides B so that $p=12 n+1$. If
$q=3$ then q does not divide A and is a cubic residue if it divides B, so it is not exceptional. By Lemmas 2 and 3 the primes $q=18 n \pm 1$ are the only cubic residues that divide A or B. The remaining primes $q=18 n \pm 5$ and $q=18 n \pm 7$ are exceptional for F_{3} if they divide A and for G_{3} if they divide B. This completes the proof of the theorem.
2. The octic case. Let $p=8 f+1=a^{2}+b^{2}=c^{2}+2 d^{2}, a \equiv c \equiv$ $1(\bmod 4)$. As in the sextic case we make the transformation

$$
y_{i}=4 \theta_{2 i}-(p+1) / 2 \quad \text { and } \quad z_{i}=4 \theta_{2 \imath+1}+(p-1) / 2
$$

and calculate the $\theta_{2 i}$ and the $\theta_{2 i+1}$ by substituting the Jacobsthal sums (4) into (1). Taking (5) into account, we obtain

$$
\begin{align*}
y_{i} & =-(a+2 c) \eta_{l}+a \eta_{i+1}+(2 c-a) \eta_{l+2}+a \eta_{i+3} \tag{6}\\
& =-a \sqrt{p}-2 c\left(\eta_{i}-\eta_{i+2}\right)
\end{align*}
$$

so that

$$
y_{i}+y_{i+2}=-2 a \sqrt{p} \quad \text { and } \quad y_{i} y_{i+2}=\left(a^{2}-2 c^{2}\right) p+(-1)^{i} 2 a c^{2} \sqrt{p}
$$

This gives

$$
\begin{equation*}
F_{4}(y)=\left[y^{2}+p\left(a^{2}-2 c^{2}\right)\right]^{2}-4 a^{2} p\left(y+c^{2}\right)^{2} \tag{7}
\end{equation*}
$$

The discriminant $D\left(F_{4}\right)=P_{1}^{2}\left(F_{4}\right) P_{2}\left(F_{4}\right)$ where

$$
P_{k}\left(F_{4}\right)=\prod_{i=0}^{3}\left(y_{i}-y_{i+k}\right)
$$

We see from (6) that

$$
y_{0}-y_{2}=-4 c\left(\eta_{0}-\eta_{2}\right) \quad \text { and } \quad y_{1}-y_{3}=-4 c\left(\eta_{1}-\eta_{3}\right)
$$

so that

$$
P_{2}\left(F_{4}\right)=\left[16 c^{2}\left(\eta_{0}-\eta_{2}\right)\left(\eta_{1}-\eta_{3}\right)\right]^{2}=64 b^{2} c^{4} p
$$

Similarly

$$
\begin{aligned}
& y_{0}-y_{1}=-2 \sqrt{p} a-2 c\left(\eta_{0}-\eta_{1}-\eta_{2}+\eta_{3}\right) \\
& y_{2}-y_{3}=-2 p a+2 c\left(\eta_{0}-\eta_{1}-\eta_{2}+\eta_{3}\right)
\end{aligned}
$$

so that

$$
\begin{aligned}
\left(y_{0}-y_{1}\right)\left(y_{2}-y_{3}\right) & =4 p a^{2}-4 c^{2}\left(\eta_{0}-\eta_{1}-\eta_{2}+\eta_{3}\right)^{2} \\
& =4 p\left(a^{2}-c^{2}\right)-4 c^{2} b \sqrt{p}
\end{aligned}
$$

while

$$
\left(y_{1}-y_{2}\right)\left(y_{3}-y_{4}\right)=4 p\left(a^{2}-c^{2}\right)+4 c^{2} b \sqrt{p} .
$$

Therefore

$$
\begin{align*}
P_{1}\left(F_{4}\right) & =16 p\left[p\left(a^{2}-c^{2}\right)^{2}-b^{2} c^{4}\right]=16 p a^{2}\left(4 d^{4}-p b^{2}\right) \tag{8}\\
& =16 p a^{2}\left[p\left(a^{2}-2 c^{2}\right)+c^{4}\right] .
\end{align*}
$$

Therefore

$$
D\left(F_{4}\right)=2^{14} a^{4} b^{2} c^{4}\left(4 d^{4}-p b^{2}\right)^{2}
$$

Similarly we find that

$$
z_{i}=(b+2 d) \eta_{0}-(b+2 d) \eta_{1}+(b-2 d) \eta_{2}-(b-2 d) \eta_{3}
$$

so that

$$
z_{2 i}=b \sqrt{p} \pm 2 d\left(\eta_{0}-\eta_{1}-\eta_{2}+\eta_{3}\right)
$$

while

$$
z_{2 \iota+1}=-b \sqrt{p} \pm 2 d\left(\eta_{0}+\eta_{1}-\eta_{2}-\eta_{3}\right)
$$

This gives

$$
z_{i}+z_{i+2}= \pm 2 b \quad \text { and } \quad z_{i} z_{i+2}=p\left(b^{2}-4 d^{2}\right) \pm 4 b d^{2} \sqrt{p}
$$

so that

$$
\begin{equation*}
G_{4}(z)=\left[z^{2}+p\left(b^{2}-4 d^{2}\right)\right]^{2}-4 b^{2} p\left(z+2 d^{2}\right)^{2} \tag{9}
\end{equation*}
$$

To get the discriminant we note that

$$
P_{2}\left(G_{4}\right)=256 d^{4}\left[\left(\eta_{0}-\eta_{1}-\eta_{2}+\eta_{3}\right)\left(\eta_{0}+\eta_{1}-\eta_{2}-\eta_{3}\right)\right]^{2}=256 a^{2} d^{4} p
$$

while

$$
\begin{aligned}
P_{1} & =\left[4 p a^{2}-16 d^{2}\left(\eta_{0}-\eta_{2}\right)^{2}\right]\left[4 p a^{2}-16 d^{2}\left(\eta_{1}-\eta_{3}\right)^{2}\right] \\
& =\left[4 p a^{2}-8 d^{2}(p+\sqrt{p} a)\right]\left[4 p a^{2}-8 d^{2}(p-\sqrt{p} a)\right] \\
& =16 p\left[p\left(b^{2}-2 d^{2}\right)^{2}-4 a^{2} d^{4}\right]=16 p b^{2}\left[\left(b^{2}-4 d^{2}\right) p+4 d^{4}\right] \\
& =16 p b^{2}\left(c^{4}-p a^{2}\right)
\end{aligned}
$$

Therefore

$$
D\left(G_{4}\right)=2^{16} a^{2} b^{2} d^{4} p^{3}\left(c^{4}-p a^{2}\right)^{2}
$$

It is interesting to note that G_{4} can be obtained from F_{4} by interchanging a with b and c^{2} with $2 d^{2}$. This is of course also true of the discriminants, but this duality is not apparent from the roots of the equations.

We now turn our attention to the prime factors of the numbers represented by the two equations which divide the corresponding discriminants. The classical cyclotomic quartic for $p=8 f+1$ is

$$
f_{4}(x)=\left(x^{2}-p\right)^{2}-4 p(x-a)^{2} \quad \text { with } D\left(f_{4}\right)=p^{3} b^{6} / 4
$$

has no exceptional or special divisors. This is no longer true for our two quartics. In fact we have the following 2 theorems.

Theorem 3. Let q be an odd prime. If q divides both a and c it is exceptional for F_{4} if and only if $q=8 n \pm 3$. If $q \mid a$, but $q+c$, then q is special for F_{4} if and only if $q=8 n \pm 3$.

Proof. If $q \mid a$, then $q \mid D\left(F_{4}\right)$ and $p \equiv b^{2}(\bmod q)$ so that

$$
F_{4}(y) \equiv y^{2}-2 b^{2} c^{2}(\bmod q)
$$

By Lemma 1 we see that q is not a quartic residue of p if and only if $q=8 n \pm 3$ so in this case it is exceptional if $F_{4}(y) \equiv 0(\bmod q)$, but this is the case if and only if $c \equiv 0(\bmod q)$, since q cannot divide both a and b. If $c \neq 0(\bmod q)$, then q is special. This proves the theorem.

Theorem 4. If q divides a it is exceptional for G_{4} if and only if $q=8 n \pm 3$; it is never special.

Proof. As before, q is not a quartic residue by Lemma 1 and

$$
G_{4}\left(-b^{2}\right)=\left[b^{4}+b^{2}\left(b^{2}-4 d^{2}\right)\right]^{2}-4 b^{4}\left(-b^{2}+2 d^{2}\right)^{2} \equiv 0(\bmod q)
$$

Theorem 5. If $q \mid c$, but $q+a$, then q is exceptional with respect to F_{4} if and only if $q=8 n \pm 1$ is not a quartic residue of p. It is special for F_{4} if and only if $q=8 n \pm 3$.

Proof. Since $q \mid c$, we have $p \equiv 2 d^{2}(\bmod q)$ and $(p / q)=(q / p)=$ $(2 / q)$.

$$
F_{4}(y) \equiv\left(y^{2}-2 a^{2} d^{2}\right)(\bmod q)
$$

This congruence has a solution if and only if $q=8 n \pm 1$, in which case q is exceptional if q is not a quartic residue of p. If $q=8 n \pm 3$ then q is a
quadratic non-residue of p and the congruence has no solution so that q is special.

Theorem 6. If $q \mid d$, then q is exceptional for G_{4} if and only if q is not a quartic residue of p. It is never special.

Proof. In this case $p \equiv c^{2}(\bmod q)$ and

$$
G_{4}(z) \equiv\left(z^{2}-c^{2} b^{2}\right)^{2} \equiv 0(\bmod q)
$$

for $z=b c$. Since q divides the discriminant of $G_{4}(z)$ it is exceptional if it is not a quartic residue of p.

We will now suppose that $q+a c$ for F_{4} and that $q+a d$ for G_{4}, therefore $q+P_{2}\left(F_{4}\right)$ or $P_{2}\left(G_{4}\right)$. Moreover all the y_{i}, as well as all the z_{i} are incongruent modulo q in this case. Therefore the proof of Theorem 5.2 in [4] is valid so that all the divisors of $P_{1}\left(F_{4}\right)$, except possibly those of $a c$, and all the divisors of $P_{1}\left(G_{4}\right)$, except possibly those of $a d$ are quartic residues of p and hence are neither exceptional nor special. This gives us the following

Theorem 7. All the prime divisors of $c^{4}-p a^{2}$ and of $4 d^{4}-p b^{2}$ are quartic residues of p.

It would be of interest to find a direct proof of Theorem 7 and to characterize the divisors of c and d which are quartic residues of $p=c^{2}+$ $2 d^{2}$.

References

[1] Bruce C. Berndt and Ronald J. Evans, Sums of Gauss, Jacobi and Jacobsthal, J. Number Theory, 11 (1979), 385.
[2] Ronald J. Evans, Period polynomials for generalized cyclotomic periods, Manuscripta Math., 40 (1982), 217-283.
[3] D. H. and Emma Lehmer, The cyclotomy of Kloosterman sums, Acta Arithmetica, 12 (1967), 25-407.
[4] , The cyclotomy of hyper-Kloosterman sums, Acta Arithmetica, 14 (1968), 89-111.
[5] \qquad , The sextic period polynomial, Pacific J. Math., 111 (1984), 341-355.
[6] Emma Lehmer, On the number of solutions of $u^{k}+D=w^{2}(\bmod p)$, Pacific J. Math., 5 (1955), 103-118.
[7] _, Criteria for cubic and quartic residuacity, Mathematica, 5 (1958), 20-29.
[8] ___ Cyclotomies with degree twice a prime, to appear in the Rocky Mountain J.

Received June 6, 1984.

