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A THEOREM OF J. L. WALSH, REVISITED

A. S. CAVARETTA, JR., A. SHARMA, AND R. S. VARGA

Dedicated to the memory of Ernst G. Straus

The well-known and beautiful result of J. L. Walsh, on the overcon-
vergence of sequences of differences of polynomials interpolating a
function f(z) analytic in \z\ < p (but having a singularity on \z\ = p),
where 1 < p < oo, has been recently extended in a new direction by
T. J. Rivlin. We give here three new extensions of Rivlin's result, which
include Hermite and Birkhoff interpolation.

1. Introduction. Let Ap denote the collection of functions analytic

in \z\ < p and having a singularity on the circle \z\ = p (where we assume

throughout that 1 < p < oo). For each f(z) = Σf=oakz
k in Ap and for

each positive integer n, let

(i i) *.(*;/):« Σ v *
A: = 0

be the nth partial sum of/(z), and let Ln(z; f) similarly denote the

unique Lagrange interpolation polynomial (of degree at most n) which

interpolates f(z) in the (n 4- l)-st roots of unity, i.e., if ω is a primitive

root of ωn+ι = 1,

(1.2) Ln(ωk;f)=f(ωk), for all k = 0,1,2,.. .,n.

Then, a well-known and beautiful result of J. L. Walsh [8, p. 153] can be

stated as

THEOREM A. ([8]). For eachf & Ap, there holds

(1.3) lim {LH(z;f)-sn(z;f)}=09 forall\z\<9\
n->oo

the convergence being uniform and geometric on any closed subset of\z\ < p2.

More precisely, for any τ with p < τ < oo, there holds

(1.4) ϊϊiϋ {max\Ln(z;f)-sn(z;f)\}l/n < \.
n-*oo \ \z\<τ ) pΔ

Further, the result of (1.3) is best possible in the sense that there is some

f ^ Ap and some z with \z\ — p 2 for which the sequence

{Ln(z;f)-sn(z;f)}:=ι

does not tend to zero as n -» oo.
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For general discussions of various extensions of Walsh's Theorem A,
see for example [2] and [7]. Recently, Rivlin [4] has obtained some
interesting new analogues of Walsh's Theorem. Here, we shall show that
one of Rivlin's results [4, Theorem 1] can be further generalized. In order
to describe these extensions, we introduce some needed notation.

First, let πk as usual denote the collection of all complex polynomials
of degree at most k. Next, consider all positive integers m of the form
m = qn + c where q and c are fixed positive integers, so that m > n + 1.
With ω a primitive mth root of unity, and with r a, fixed nonnegative
integer, we propose to find, for each/e Ap, the polynomial Prm+n(z; f)
in πrm+n which satisfies the Hermite interpolation conditions

(1.5) Pr<?+>^/)«/«(«**),
for all A: = 0,1,.. .,m - 1; v = 0 , l , . . . , r - 1, if r > 1,

and which also minimizes

over all polynomials in πrm+n which satisfy the interpolation conditions of
(1.5). (The existence and uniqueness of this polynomial Prm+n(z; / ) , while
a basic consequence of approximation theory, will follow from the explicit
representations of (2.4) and (2.8) in §2.)

In §2, we study the difference

in Theorem 1, and show that it tends to zero, as n -» oc in

thereby extending Rivlin's result [4, Theorem 1]. In §3, we state extensions
of Theorem 1 to Birkhoff interpolation, in which the Hermite interpola-
tion condition of (1.5) is replaced by more general Birkhoff interpolation
conditions (cf. (3.2)).

2. An Extension of Rivlin's Result. We first establish

THEOREM 1. For each f e Ap and for each nonnegative integer /% let the
polynomials Prm+n(z; f) and srm+n{z\ f) be defined as in (1.5)-(1.6) and
(1.1). With m = nq + c, where q and c are any fixed positive integers, there
holds

(2.1) lim {Prm+n{z; f) - srm+n(z; / ) } = 0, for all \z\ < p

1+<?/α+'-<7)
n—* oo



A THEOREM OF J. L. WALSH, REVISITED 315

the convergence being uniform and geometric on any closed subset of

\z\ < p1+<7/<1 + n7). More precisely, for any τ with p < r < oo, there holds

(2.2) lim m a x | P r m + n ( z ; / ) - srm+n(z; f)
n-+co V | z | < τ

Further, the result of (2.1) is best possible in the sense that there is some

f e Ap and some z with \z\ = p 1 + ^ 1 + r ^ ) for which the sequence

Uo,

We remark that as the special case r = 0 of Theorem 1 reduces to

Rivlin's result [4, Theorem 1], then the above result generalizes Rivlin's

result.

To begin, for e a c h / ^ y 4 p , let hrm_ι(z;f) be the unique Hermite

interpolation polynomial of f(z) in πrm_x which satisfies (1.5), i.e.,

(2.3) hγ^_1(ωk;f)=f^(^k),
for all Λ; = 0,1, . . .,m - 1, v = 0,1, ...,r - 1,

if r > l ; otherwise, ^ . , ( z ; / ) s f l if r = 0. Then, any Prm+n{z; / )

satisfying (1.5) necessarily has the form

(2.4) Prm+n{z; f) = Λ ^ ^ z ; /) -{zm - l)rQn(z),

where Qn e τrn. Since

(where (x)0 := 1 and where (x)^ := x(x — 1) ( c — k 4- 1) when fc is a

positive integer), it easily follows from (2.4) that the problem of minimiz-

ing (1.6) is equivalent to finding the polynomial Qn(z) in mn which solves

m—\ 2 m—1 2

(2.6) Σ \g("k) ~ QΛ«k)\ = min Σ |*(«*) ~Λ(ω*)| ,

where

(2.7) g(z):- i ^ W . ^ ; / ) - / ^ : ) } / [ ^ r!].

We next establish

LEMMA 1. The polynomial Qn(z) in mn which solves (2.6) is explicitly

given by

(2.8) β - W -

(,_,χ,._ir.
where Γ := { z: |z| = R} and where R is any number satisfying 1 < R < p.
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Proof. By Hermite's interpolation formula (cf. [2, p. 164]), we know
that the polynomials hrm_1(z; f) of (2.3) and srm+n(z\ f) of (1.1) can be
expressed as

(2.9)

f(t)[(tm-iy-(zm-iy]dt
{ t _ z ) { t , n _ i y

f(t)[trm+n+1 - z r m + " + 1 ] dt

, and

(t - z)t rm+n+ι

Thus, from Cauchy's integral formula, we can write

(2.10) * „ , _ ! ( * ; / ) - / ( * ) = - 1 r /(<)*('**)*

where

(2.11)

From (2.5), we see that

(2.12) zr£-K(t9Z)

K(t,z):= =
t - z

m r\ k = 0,1,.. .,m - 1.

Thus, on differentiating r times with respect to z in (2.10) and using (2.12),
it follows that the Lagrange polynomial interpolant Lm_1(z; g) of (1.2) of
g(z) (defined in (2.7)) in the points ωk, k = 0,1,... ,ra - 1, is just

dt

from which it follows (cf. (1.1)) that

(2.13) ^ ( z ; L m _ 1 ( z ; g ) ) = - - ^ 7

{t-z){Γ-\) r+i

But, Rivlin [4] has shown that the solution Qn(z) of (2.6) satisfies
Qn{z) = sn{z\ Lm_ι(z; g)), so that (2.13) gives the desired integral repre-
sentation for Qn(z) in (2.8). D

This brings us to the

Proof of Theorem 1. From (2.4), (2.8), and (2.9), we can write
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where

Next, set (cf. [2, p. 163])

(2.16) /?y(2")-/»,(*•»

+ m — n — l-n + l

" 1)*.

for ally = 1,2,...,

so that βj(zm) is in π ( r _ 1 ) m for each j > 1. Moreover, the following

identity holds (cf. [2]):

(
w _ i \ r rm (fm _ m\ oo n f z

 m ^
£ i __ £ v* z ) y Ps+\\Δ )

We note from (2.16) that

(2.18) | β y ( z m ) | < 2 ^ ' - 1 ( | z Γ + l ) " 1 for ally > 1 ,

so that the last sum in (2.17) converges absolutely for any t with \t\ > 1,

provided that m is sufficiently large. Inserting the identity of (2.17) in

(2.15), it readily follows that Kτ(t9 z) can be expressed as the sum

(2.19)

where

(2.20)

^t, z) = Tx{t, z) + T2(t, z) + T3(t, z),

y —_ -

f{r+l)m + n

n + l(fm _ m\ oo

5 = 0

Z)'
_

z

m\ oo
)

5 = 0

and where
5

so that ys(zm) is in π ( r _i ) m for all s > 0.

If maX|/[=/? | / (0 l ~:^R9 then f°Γ |*| = T > p and for |/| = R where
1 < i? < p, we have

1 r f{t)T2(t,

2πi JΓ t — 2

T " )

(T -

• (
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As \yo(zm)\ = |>81(zm)| < 2 r τ ( r - 1 ) m ( l + l/τm)r'1 from (2.21) and (2.18),
an easy calculation shows, after recalling that m = nq + c, that

(2.22) lim < max
/ 1 c f(t)T2(t,z)dt \
{ max - — : / >
\ \z\<τ 2πι Jτ t - z j

\/n
.rq+1

But, as the left side of (2.22) is independent of the choice of R with
1 < R < p, we see that

(2.23) lim ( max
z <r

1 r f(t)T2(t,z)dt
— f
277/ Jτ

t - Z

A similar calculation gives that

(2.24)

and

(2.25)

lim { max
f(t)T1(t9z)ΛJL r nt)τλ{ι

2πi Jτ t —

lim { max
f(t)T3(t,z)dtJ _ r f(t)T3{ι

2πi Jτ t —

\/n

\/n

\/n

Jίr+l)q+l ?

Since τ r y p ( r + 2 ) ^ ^ τ ^ + 1 / p ( r + 1 ) < 7 + 1

9 it follows from (2.14), (2.19), and
(2.23)-(2.25) that

lim lmax\Prm+n(z;f)-srm+n(z;f)
«-* oo V |zj < T

l /n

for any T with p < T < oo, which establishes both (2.1) and (2.2) of
Theorem 1.

Finally, to establish the sharpness of (2.1) in Theorem 1, it suffices to
take/(z) := (p — z)~ι and z = p1+?/<1+r4\ which was also in essence used
by Walsh [8, p. 154] to establish the shaφness of (1.3) of his Theorem A.
Omitting the calculations, we simply state that

lim
n—> oo

- srm+n(z:
P ~ P

^ o ,

where

α : = 1 +
1 + rq' H' 1 + rq'

which yields the desired shaφness of (2.1) of Theorem 1. D

To motivate our next result, consider any f(z) = Σ*L0 a-zj in Ap, and
set

(2.27) sΛj(z;f):= Σ ak+JiΛ+l)z
k

9 7 = 0 , 1 , . . . ,
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so that snJ(z; f) e πn for each j > 0. Moreover, we see from (1.1) that

sn(z; f) = sn0(z; / ) . The following known result gives Walsh's Theorem

A as the special case / = 1.

THEOREM B ([2]). For each f e Ap and for each positive integer /, there

holds

(2.28) JBm lLn(z;f)~ ΣsHj(z;f)\ = 0 forall\z\ < p / + 1 ,

the convergence being uniform and geometric on any closed subset of

\z\ < p / + 1 . More precisely, for any τ with p < τ < oo, there holds

i-ι \ ι / n

 τ

(2.29) lim max
\z\<τ

<
p

7+1

Further, the result of (2.28) is best possible in the sense that there is some

f e Ap and some z with \z\ = ρ / + 1 for which the sequence

/-i * -

7-0 / Λ « i

tend to zero as n ~> oo.

To deduce an analogue of Theorem B for Theorem 1, we take the sum

of the/?th terms corresponding to the summation index s = /? — 1 in each

of the three kernels in (2.2) to form the kernel

K it A- z r m ( ' " + 1 ~ z " + 1 ) i z"+1{tm " ^ V ^ 1

{ t m -

for all p = 1,2, This kernel is then used to define

(2.31) Srm+nJz;f):= j-j^ -' (/_'^ ^ for^ = 1,2,....

As Ύ^-i(^w) ^ 77(r_1)m, it is evident that Srm+np(z) e ττ r m + r t for each

/? = 1,2,..., and these polynomials 5 r m + r t / 7 (z) form the analogs of the

polynomials of (2.27). It is then convenient to set

(2.32) 5 rm+B,,(z;/):= srm+n(z; f) + Σ Srm+nJz;f),
p-l

1=1,2,...,
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with the convention that Σ ° = 1 = 0. With these polynomials, we state the

following result which gives Theorem 1 as the special case / = 1.

THEOREM 2. For eachf^ Ap, and for each nonnegatiυe integer r, let the

polynomials Prm+nJ(z; f) and Srm+nJ(z; f) be defined as in (1.5) and

(2.32). With m = nq + c, where q and c are any fixed positive integers, and

for each integer I, there holds

(2.33) lim {Prm+»(z;f)-Srm+nJ(z;f)}=0,
n> oo

the convergence being uniform and geometric on any closed subset of

\z\ < pι+v/(1+ri*\ More precisely, for any τ with p < Ί < oo, there holds

( 2 3 4 )

Further, the result of (2.33) is best possible in the sense that there is some
f e Ap and some z with \z\ = p 1 + ^ 1 + r^) for which the sequence

does not tend to zero as n -> oo.

We omit the proof of this theorem, as it follows along the lines of the

proof of Theorem 1.

We conclude this section with the following remarks. Now, Theorem

B makes no statement concerning the behavior of the sequence

(2.35) \Ln(z;f)-ΣsnJ(z',f)\

in \z\ > p / + 1 . To rectify this, Saff and Varga [5] have recently established

THEOREM C ([5]). For each f e Ap and for each positive integer I, the

sequence (2.35) can be bounded in at most I distinct points in \z\ > ρί+1. This

result is sharp in the sense that, given any I distinct points {vk}
l

k=i in

\z\ > ρί+1, there is anf* e Apfor which
p

(2.36) lim [Ln(ηk;f)-ΣsnJ(ηk-f))=O for all k = 1,2,..., /.

It is an open question if Theorem 2 admits a Theorem C-type

extension in \z\ >
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3. Birkhoff interpolation. It is natural to consider the following

more general form of Birkhoff interpolation to generalize the interpolation

of (1.5), thereby leading us to a generalization of Theorem 1.

To begin, consider any r fixed distinct positive integers {v)})^ι

satisfying

(3.1) ( ϋ o : = ) 0 < vλ < v2 < . - . < vr9

and let v denote the vector (0, ι;1,...,ι;/._1). For any f(z) in Ap9 let

ffjs/iv'y f) denote the class of polynomials, in πN where N:= rm + n,

which satisfy

(3.2) β#>(«*W< »(ω*),

for all k = 0 , 1 , . . . , m — 1 j = 0 , 1 , . . . , r — 1,

where ω is any primitive mth root of unity.

Now, the (weak) Pόlya condition:

(3.3) Vj<jm fo

is clearly satisfied for all positive integers m sufficiently large. Thus, as

condition (3.3) is both necessary and sufficient (cf. [1]) to find a poly-

nomial in πrm_ι satisfying (3.2), then the set πN(ϋ\ f) is evidently non-

empty for all m sufficiently large.

As before, consider all positive integers m of the form m = qn + c

where q and c are fixed positive integers. As the set πN(v\ f) is nonempty

for all n sufficiently large, let PN{z\ f) be that element of TΓ^S; / ) such

that

(3.4) mΣ\P^(ωk)-f^(2

m-\

= min Σ |G^(«*)-/ ( I V ) («*) | .

Again, the existence and uniqueness of PN{z\ f) is clear, and an explicit

integral representation for PN{z\ f) can be derived, as was the analogous

case in §2.

We state the following result which gives Theorem 1 as the special

case when the integers {vJ}jaal are chosen to be {j}j= 1.

THEOREM 3. For each / e Ap, and for any positive integers {Vj}jSsl

satisfying (3.1), let the polynomials PN(z; f) and sN(z; f) be as defined in
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(3.4) and (1.1). With m = nq 4- c, where q and c are any fixed positive

integers, there holds

(3.5) lim {PN(z;f)-sN(z;f)}=0, forall\z\<p1+^1+">\
n-* oo

the convergence being uniform and geometric on any closed subset of
\z\ < p1+£t/(1+r(i\ More precisely, for any τ with p < τ < oo, there holds

Further, the result of (3.5) is best possible in the sense that there is some

f e Ap and some z with \z\ = pι+q/(l+rg) for which the sequence

does not tend to zero as n -» oo.

The proof of Theorem 3, while depending on the results of

Riemenschneider and Sharma [3], and Saxena, Sharma, and Ziegler [6],

follows along the lines of the proof of Theorem 1, and is omitted.

As further open questions, we finally ask if there are Theorem B-type

and Theorem C-type extensions of Theorem 3.
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