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The most basic notion of a solution of a differential equation is that
of a function that is differentiable enough to plug into it (without
demanding continuity of the derivatives of highest order) and that, of
course, makes the equation a true statement when you do plug it in. The
lack of continuity of the derivatives has posed many obstacles in treating
these solutions. In this paper we overcome several of these obstacles in
the case of algebraic differential equations by using the Darboux prop-
erty of derivatives.

1. Introduction. An algebraic differential equation (ADE) is one of
the form:

(1) P(x, ;μ(x) ,/(*) , . . . , / ">(*)) = 0,

where P is a polynomial in m + 2 variables. We often write (1) as
P(x, y) = 0. In our context, x is restricted to an open or closed interval /
of the real axis, and y: I -» R is a real-valued function. There is no real
difficulty in extending some of our results (i.e. Theorems 1, 3, 4, and 5) to
y: I -> C being a complex-valued function. An ADE in several dependent
variables yx{x),... ,yn(x) is similarly defined to (1), but we will mention
such equations only peripherally.

In discussing solutions u(x) to (1) or to a system Σ of such equations,
care must be taken to enunciate how smooth u is required to be—certain
qualitative assertions are true for one degree of smoothness and false for
another. This is the main theme of [RUB]. It is clear what we mean by
analytic or C00 solutions of a system Σ of ADE's. Let us say, for
convenience, that a function u(x) is a basic solution of Σ if it (a) is
differentiable enough to plug into every equation of Σ and (b) makes all
these equations true statements. Following these ideas, we prove a chain
of theorems with a common theme. If u(x) e Dm(I) (i.e. has derivatives
of order up to and including order m on the open interval /) then about
all that can be said about w(m)(x) is that it is a derivative. As such, it
might be discontinuous a.e. [BRU: p. 47]. It is true that it belongs to DBV
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i.e. has the Darboux (intermediate-value) property and is in the first class
of Baire. The Darboux property can be viewed at best as a very weak form
of continuity—suffice it to say that every function (even a non-measura-
ble one) is a sum of two Darboux functions. Functions in the first class of
Baire do possess a certain weak continuity property: each nonempty
perfect set contains a point of relative continuity. If, however, u is a Dm

solution of an ADE of order possibly less than m, then u (and therefore
w(m)), must be analytic on a dense open set (Theorem 3). This was proved
for Cm solutions in [RUB], where a converse result [Theorem IV.2] was
proved to show that the set of analyticity, for a certain fixed ADE of
order 3, could be any dense open set whatsoever.

Our main result is probably the "P-g " Theorem 4. It asserts that if u
is n times differentiable and is a basic solution of some ADE, then u will
also be a basic solution of any ADE of order n that it satisfies on a dense
set. This can be contrasted with the fact [BRU] that there exist noncon-
stant differentiable functions whose derivatives vanish on a dense open
set.

Our culminating result (Theorem 5) centers around a corollary of the
Ritt-Raudenbush basis theorem. This corollary says that if Σ is any
system, of any cardinality, of ADE's in finitely many dependent variables
yi9-..9yn, then there exists a finite subsystem Σf of Σ that has exactly the
same analytic (or C00, respectively) solutions that Σ has. However it was
shown in [RUB] that there exists a system Σ of ADE's in one dependent
variable y such that no finite subsystem Σf has the same basic solutions
that Σ has. Our Theorem 5 states, however, in this context of one
dependent variable, that there must exist a countable subsystem Σ ω of Σ
that has exactly the same basic solutions that Σ has. We thank Ms.
Zimmerman-Huisgen for suggesting this possibility.

2. Statements of theorems.

THEOREM 1. Let a0, aι,...,an be continuous functions on [a, b] X Rm.
Suppose that y ^ Dm[a, b] and satisfies on [a, b] the equation:

(2) ao{x, y{x),... ^^(x)) + a^x, y(x),... ,y<m-»(

Ify(m)(x) is discontinuous at x0 e [a, b] then:

(3) ak{xo,y(xo),...ym-1\

forallk = 0,!,...,«.
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THEOREM 2. Let Q(x, yo,...,ym) be a continuous function of m + 2

variables and suppose that u ^ Dm(I). Then

has the Darboux property on I.

(Theorem 2 is not used in the sequel, but it is a pleasing result, and

fits naturally in this place. Besides, the two lemmas (Lemmas 3.2.1 and

3.2.2) we provide to help us prove Theorem 2 are used several places in

the proofs of the later theorems.)

THEOREM 3. Let u be a basic solution of an algebraic differential

equation on an interval I. Then u must be analytic on a dense open subset of

I.

Note. It is important to make the convention, in the case of ADE's of

order 0 (i.e. algebraic equations that are not differential equations) that a

basic solution is by definition continuous. Otherwise, equations like

y2 — ( j c 2 - f l ) = 0 can have really terrible solutions because one could

make a non-measurable choice of ± vx2 -f 1 :

THEOREM 4. (The P-Q theorem) Let P and Q be differential polynomials

and let u(x) be a function on the interval I such that:

(i) u satisfies P(x, y, y\... 9y
(m)) = 0 everywhere on I.

(ii) u is n-times differentiable on I.

(iii) u satisfies Q(x, y9 y'9... ,y(n)) = 0 on a dense subset of I.

Then:

(iv) u satisfies Q(x, y, y\... ,y^) = 0 everywhere on I.

THEOREM 5. Let Σ be any system, of any cardinality, of algebraic

differential equations in one dependent variable y. Then there exists a

countable subsystem ΣωofΣ such that Σω and Σ have exactly the same basic

solutions.

3. Proofs of the theorems.

3.1. Proof of Theorem 1. (By contradiction.) Suppose y(m) is discon-

tinuous at JC0 but (3) is not true at x0. Let L = l i m i n f ^ ^ j ^ ^ c) and

U = limsupJC_JC y(m)(x). Then L < U. For each x in [a, b]9 define a
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polynomial qx by

By (2) we have:

(4) qx(y{m)(x)) = 0 for all x in [a, b].

Since each ak(x) is continuous, and since/(x), j 7(x),. . . ^ ^ " ^ ( J C ) are
continuous, we have:

(5) lim qx = qx uniformly on compact subsets of the complex plane C.
x-*x0 °

Because (3) is not satisfied at x0, the polynomial qXo is not the zero
polynomial. Let wl9...9w be its roots, with wλ = y(m)(x0). Let JV be a
neighborhood in the plane of the set {wl9..., wp} such that N (the closure
of ΛΓ) does not contain the interval (L, ί/), and let T be a point in
(L, U)\N. Since j ( m ) has the intermediate value property, there exists a
sequence xy -> JC0 so that j ( m ) θ y ) -> Γ (actually βy

(m)(jcy) = T). But by
(5), l i m ^ ^ ^ = qXQ uniformly on compact subsets of C. Hence by
Hurwitz's Theorem, the roots of qx for large enough j must be contained
in N. Sincey(m)(Xj) -> Γ ί TV,>^(m (̂jcy) cannot be a root of qx fory large
enough, i .e . ,^(/" I >(x y ))*0.

This contradiction proves the theorem.

3.2. iVw/ o/ Theorem 2. (First proof.) We first state and prove two
lemmas.

LEMMA 3.2.1. Let Q(x, y0, yl9...9ym) be continuous on [a, b] X Rm+1,
let u e £)m, and let q(x) = Q(x, u(x), u'(x)9.. ,,u(m\x)). Suppose that
q(x) > 0 for all x in {a, b). Then q(x) > 0 for x = a and x = b.

Proof. This follows readily from the fact that Q and x,u,.. .,u(m~λ)

are continuous, while w(m) has the Darboux property. For we may
choose a sequence xk\a so that u^m\xk) -> w ( m )(α). Then
β(x^M(xΛ),...,n(l>l>(jcΛ)) > 0. Therefore Q{a,u(a\...ym\a)) > 0.

In what follows, if K is a nonempty perfect set and if P(x9 y) = 0 is
an ADE of the form (1), we may do all our analysis on K, and talk about
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u being a basic solution on K of (1). This means that all the derivatives are

with respect to K, that is, the difference quotients are restricted to points

of K.

LEMMA 3.2.2. Let K be a nonempty perfect subset of R and let u(x) be

n-times differentiable with respect to K. Further let u(x) satisfy an algebraic

differential equation (1) P = 0 of order m and degree k on K where m < n.

Then there exists an open interval J so that K C\ J is nonempty and such that

u(x) is infinitely differentiable with respect to K Π J.

Proof. Let P be the lowest polynomial with the required property.

That is P has the lowest order m, and among those of order m, P has the

lowest degree k. We let r(x) = P(x, u(x),... ,w ( m )(x)), where the deriva-

tives are taken with respect to K. Now r(x) s= 0 on K. Since K is perfect,

r'(χ) = QonK. Thus:

(DιP)(x9u,...9uM)u"

where

This last partial derivative is called the separant of P, and is denoted

S = dP/dy(m\ Now it is easy to see that S is lower than P, and therefore

there exists an x 0 in K where S(xQ) Φ 0. Consequently S(x) Φ 0

throughout a set of the form J Π K where / is an open interval that

contains xQ. We can solve (*) above for u(m+l) as a rational function F of

x, w(x),.. .,w ( m )(x). (Notice that w ( m + 1 ) makes sense by our hypothesis

that m < n and u e D£.) The denominator of this rational expression is

S. We can differentiate as many times as we please in / Π K to arrive at

expressions for w ( m + 2 ), t ί ( m + 3 ) , . . . whose denominators are powers of S

and hence nonvanishing. D

Now to the proof of the Theorem. Suppose q(a) < c < q(b) but

q Φ con (a, b\ where ̂ (x) = Q(x, u(x), u'(x),...,u(m\x)). Let:

A = { x : ? ( x ) > c } n[*,ft]

5 = {x:q{x)<c} n[a,b]

D = 8y4(= boundary of
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First of all, D is a perfect set. For if x0 were an isolated point of D,
say x0 e A then the two intervals contiguous to D and meeting at x0

would both be in A9 by Lemma 3.2.1. But then x0 would not be a boundary
point of A,

By Theorem 1 ((i) => (iii)) of Chapter 0 of [BRU], there exists a point
x0 in D such that the restriction of u(m) to D is continuous at x09 because
w(m) is in Bv Suppose that x0 is in A (the case x0 in B is similarly treated).
Then there exists an open interval / containing x0 such that / Π D c A,
for x0 is also a point of relative continuity of q(x), since Q is continuous.

Now let L be a complementary interval to D in /. The above
argument applying Lemma 3.2.1 shows that L c A. This contradicts the
condition that JC0 Ξ D = dA, since we have now a whole neighborhood
(namely /) of x0 consisting only of points of A.

(Second Proof). This proof is due to C. J. Neugebauer whom we
thank for his kind permission to include it here. It is a simple proof
modulo the fact [NEU, Theorem 4] (also Theorem on page 104 of [BRU])
that a function/: [0,1] -» R belongs to DBλ (both Baire 1 and Darboux) if
and only if/has the following interval function convergence property Cv

DEFINITION. Let Jo = [0,1] and f:I0-+R and let {/} be the collec-
tion of all nondegenerate compact subintervals of /0. We shall use the
notation / -> x to denote x in / and |/| -» 0. The function / is said to
possess property Cι provided that for each / in {/} there exists a value xr

in 1° such that / -> x implies that/(;c7) ->/(*) for each x in /.
Now to prove our Theorem, suppose that u e Dm(I0) say, and let

q(x) be defined as above. Suppose further that x e /0 and I -* x. Then
u{m)(xj) -> w(m)(x) for a suitable selection JC7 in /0, since w(m) e ( Z ^ ) .
But then, because Q is continuous and because w, w',. ..,w(m~1) are
continuous, we have #(.X/) —> #(x), and hence # G (DBX) and in particu-
lar # is Darboux. D

3.3. Proo/ o/ Theorem 3. Since this theorem was proved in [RUB]
under the added hypothesis that u e Cm if the order of P is ra, where w
satisfies (1) P(x9 y) = 0, it is enough to show that if u e Z>m and satisfies
(1), on /, then w(w) is continuous on some subinterval / of /. As earlier, we
take P to be the lowest differential polynomial for which u satisfies (1).
Write P(x9 y) = ΣPk(x, y)[y{m)]k. Since P is not the zero polynomial,
there is some k0 such that Pk , is not the zero polynomial. Now suppose,
by way of contradiction, that u{m)(x) is discontinuous on a dense set Δ.
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Then by Theorem 1, at each x 0 E A w e must have

Pko{xo, u(xo)9 u'(xo)9...9u<m-»(xo)) = 0.

But Pk (x, u(x), u'(x),...,u(m~ι\x)) is a continuous function of x and
hence we would have

for all x in /, which contradicts P being lowest. Of course the primary
inductive step where P has order 0 and degree 1 is trivial. D

3.4. Proof of Theorem 4. We note that since u satisfies P = 0 every-
where, u is analytic on a dense open set by Theorem 3 and because it
satisfies Q = 0 on a dense set, it must satisfy Q = 0 on a dense open set.

Now, we may suppose without loss of generality, that m = n. For if
m > n then u Ξ C", and the conclusion is immediate. If, on the other
hand, m < n, then we may differentiate P a suitable number of times.
Now let V be the interior (relative to (a, b)) of the set {x:
Q(x, u{x),... ym\x)) = 0} and let K = (α, b)\V. By Lemma 3.2.1, (or
Theorem 2) K is perfect relative to (a,b). We wish to show that K is
empty. Suppose not. The set {x: q(x) = 0}, where q{x) =
<2(x, w(x),... ,w(m)(*)), is dense in J^ since it contains, by Lemma 3.2.1,
the endpoints of the complementary intervals to K. Also, the set {x:
q{x) Φ 0} is dense in K. Now ι/(m) is discontinuous (even relative to K)
on {x: q(x) Φ 0}. Write

as before. By Theorem 1, all the functions

ak(x) = Pk{x,u(x)y...y
m-V(x))

must vanish on the set K, first because they each vanish on a dense subset
of K, and then, by continuity, on all of K. So, relative to K, there is a
non-trivial differential polynomial Pko of order < m that annuls u. By
Lemma 3.2.2, it follows that u must be infinitely differentiable, relative to
K, on some nontrivial portion J Γ\ K, where / is an open interval. This
contradicts the fact that u is discontinuous, relative to K, on its dense
subset { x: q(x) Φ 0} Π K. Π

Notice that the same proof works if we require only that Q be a
continuous function of its arguments, and not necessarily a differential
polynomial, but we must then suppose that u satisfies Q = 0 on a dense
open set. When Q is a polynomial, Theorem 3 gives us a dense open set
when we have only a dense set to start with.
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3.5. Proof of Theorem 5. Given Σ, let Σ^be the finite subsystem of Σ
that has the same C00 solutions as Σ on /. The existence of Σf is proved in
[KAP]. Now in order to be able to plug u(x) into Σ, u must be
differentiable to order N for some 0 < N < oo. That is, the equations of Σ
demand sufficient differentiability of u. Enlarge Σf to Σ ω by throwing into
Σ ω at most a countable number of equations from Σ so that now the
differentiability demands of Σ ω are the same as those of Σ. We claim that
Σ ω has exactly the same basic solutions as Σ. It is clear that every basic
solution of Σ is a basic solution of Σ ω . For the converse, let u be a basic
solution of Σ ω , and let Q be a differential polynomial in Σ. Now u is
analytic on a dense open set Ω by Theorem 3 and since u satisfies Σf on Ω,
it must satisfy Q on Ω since locally, every analytic solution of Σf solves Σ.
But note that u is now everywhere differentiable enough to plug into Q,
and we may apply the P~Q Theorem (Theorem 4) to conclude that u is a
solution everywhere of Q. Π

We conclude this paper by reminding the reader that we have re-
stricted out attention to ADE's in one dependent variable. This leaves
open a number of challenging problems about systems of ADE's in a
finite number of dependent variables.
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