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In memory of Ernst Straus

Let G be an acyclic directed graph with |V (G)| > k. We prove that
there exists a colouring {C,, C,,...,C,,} such that for every collection
{Py, Py,...,P,} of k vertex disjoint paths with [U%_, P,| a maximum,
each colour class C; meets min{|C,|, k} of these paths. An analogous
theorem, partially interchanging the roles of paths and colour classes, has
been shown by Cameron [4] and Saks [17] and we indicate a third proof.

1. Introduction. Let G = (V, E) be a directed graph containing no
loops or multiple edges. A path P in G is a sequence of distinct vertices
(vy, 0g,...,0;) such that (v, v,,,)€E, i=12,...,]1—1. The set of
vertices { v, vy,...,0;} of a path P = (v, v,,...,v,) will be denoted by
V(P). The cardinality of P, denoted by |P|, is |V( P)|.

A family &£ of paths is called a path-partition of G if its members are
vertex disjoint and U{V(P): P € £} = V. For each nonnegative integer
k, the k-norm | 2|, of a path partition# = { P,,...,P,} is defined by

m
|2, = Zjl min{|P}, k }.
A partition which minimizes |#|, is called k-optimum. For example, a
l-optimum partition is a partition P containing a minimum number of
paths.

A partial k-colouring is a family €% = {C,, C,,...,C,} of at most k
disjoint independent sets C; called colour classes. The cardinality of a
partial k-colouring ¢ = {C,, C,,...,C,} is |U!_, C,|, and #* is said to be
optimum if |Ui_,C,| is as large as possible. A path partition £ =
(P, Py,...,P,} and a partial k-colouring ¥* are orthogonal if every path
P,in P meets min{ |P,), k} different colour classes of €*.

Berge [2] made the following conjecture:

Conjecture 1. Let G be a directed graph and let £ be a positive integer.
Then for every k-optimum path partition &, there exists a partial k-col-
ouring €* orthogonal to .
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Let 7, (G) be the k-norm of a k-optimum path partition in G, and let
a,(G) be the cardinality of an optimum partial k-colouring in G. A
weaker conjecture by Linial [14] is as follows:

Conjecture 2. Let G be a directed graph and let k be a positive integer.

Then,

a,(G) = m(G).
If Conjecture 1 holds, then every path P in a k-optimum path partition &
meets at least min{|P|, k} vertices of some partial k-colouring % *. Hence,
a,(G) = Xpcpmin{|P|, k} = m,(G), and Conjecture 2 holds.

For k = 1, Conjecture 2 holds by the Gallai-Milgram theorem [9].
Linial [13] showed that the proof of the Gallai-Milgram theorem also
yields Conjecture 1 for this case.

For transitive graphs, Conjecture 2 is given for k = 1 by Dilworth’s
theorem [6], and for all k by the theorem of Greene and Kleitman [10]. It
is easy to deduce from it that Conjecture 1 also holds for such graphs.
Linial [14] and Cameron [3] independently showed that Conjecture 2
holds for all acyclic graphs. Conjecture 1 was proved for such graphs in
[1]. Cameron [4] and Saks [17] have shown that an even stronger version of
Conjecture 1 holds for all acyclic graphs:

THEOREM 1. Let G be a directed acyclic graph, and let k be a positive
integer. Then there exists a partial k-colouring €* which is orthogonal to
every k-optimum path partition ? of G.

We indicate a proof of Theorem 1 in §3. This proof is different from
the ones in [4] and [17] and was found independently.

It is possible to ‘dualize’ the notions of path partition and partial
k-colouring, by interchanging the roles of ‘path’ and ‘independent set’ in
the definitions and theorems above.

A colouring % is a partition of V into disjoint independent sets. For
each non-negative integer k, the k-norm |%|, of a colouring €=
{Cy, Cy,...,C,,} is defined as:

m
1%« = 21 min{|C}, k }.
A colouring which minimizes ||, is called k-optimum. For example, a
l-optimum colouring is a colouring with x colours, where x is the
chromatic number of G.
The analogue of a partial k-colouring for paths, is a path k-pack,
defined to be a family % = { P, P,,...,P,} of at most k disjoint paths
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P,. The cardinality of a path k-pack #* = { P, P,,...,P,} is|U}_, P,|, and
P* is optimum if |U!_, P| is as large as possible. A colouring %=
{C,, C,,...,C,} and a path k-pack 2* are orthogonal if every colour class
C,in ¥meets min{|C,], k} different paths of 2#*.

As a dual analogue of Conjecture 1, we suggest the following:

Conjecture 3. Let G be a directed graph and let k be a positive integer.
Then for every optimum path k-pack #*, there exists a colouring %
orthogonal to 2.

Let x,(G) be the k-norm of a k-optimum colouring in G, and let
A, (G) be the cardinality of an optimum path k-pack in G. The dual of
Conjecture 2 would be:

Conjecture 4. (Linial [14]). Let G be a directed graph and let k be a
positive integer. Then,

A(G) 2 x,(G).

It is not difficult to see that Conjecture 3 implies Conjecture 4. For k = 1,
Conjecture 4 is given by the Gallai-Roy theorem [7, 15] and Conjecture 3
is also valid in this case, by the proof of the Gallai-Roy theorem.

For transitive graphs, Conjecture 4 is true by Greene’s theorem [9]
and Conjecture 3 can be deduced from it. Hoffman [12] and Saks [16]
have independently proved Conjecture 4 for all acyclic graphs.

In this paper we prove the following stronger version of Conjecture 3
for all acyclic graphs:

THEOREM 2. Let G be a directed acyclic graph and let k be a positive
integer. Then there exists a colouring € orthogonal to every optimum path
k-pack P*.

2. Proof of Theorem 2. If V' can be covered by k or fewer vertex
disjoint paths, then making each vertex a colour class satisfies Theorem 2.
So assume otherwise. Let || = n, and label the vertices 1,2,...,n. We
shall use the linear program defined in [12]:

Let C = (¢;;),i, j = 0,1,...,n, be defined by

¢,o=0 foralli ¢y =1 forallj>0

c;,=0 foralli
ifi>0,j>0,andi #j,thenc,,=1 if(i,j)€E

= not defined if (i, j) ¢ E.
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Consider the transportation problem:

L

(2.1) maximize ), ¢;;x

ijviy

T

~o~
g
=]

where x,; > 0 for all i, j, except that x, ; is not defined if i > 0,/ > 0, #j
and (i, j) &€ E.

n n
(2.2) )y Xoj = Y xo=k
=0 i=0
n n
(2.3) Zox,.j =1 fori>0; Zox,j =1 forj> 0.
Jj= i=

Every path k-pack % = { P,, P,,...,P,}, t < k, corresponds to a feasible
solution of (2.1)—(2.3), x, defined in the following way:

Xgo=k —1
ifj> 0,
xo;, =1 if jis the start of one of Py,..., P,
= 0 otherwise.
ifi >0,
x;0 =1 ifiistheendof oneof P,,...,rt,
= 0 otherwise
ifi >0,

x;=1 ifie V(P)U ---U V(P)
=0 ifie V(P,)U ---U V(P)
ifi >0,j>0,i#j, then
x,;=1 if (i, j)is an edge of P, for some r = 1,...,t
= (0 otherwise.

It can be shown that every vertex of (2.1)—(2.3) is integral and corresponds
to a path k-pack of G. Hence, an integral optimum solution of (2.1)—(2.3)
corresponds to an optimum path k-pack, and conversely.

Consider the dual problem:

n n
II. min k(uy + v,) + 2 u, + Y v
i=1 j=1
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where

(2.4) u,+ v, >¢; foralli,j.
Complementary slackness conditions for I and II are
(2.5) x;>0=u +v=c,; foralli,j.

Since the matrix of equations (2.4) is totally unimodular, the 1.p. attains its
minimum at integral «’s and v’s. We may subtract u, from each u; and v,,
i =0,1,...,n, to get an integral optimum solution with

(2.6) uy = 0.

We are now ready to define our colour classes. The “interesting” classes
—the S, defined below—get their names from the values of variables. Let

W={i>0:u,+v, =0}

S={ieWv=r)
and

T,={j}, wherej & W.

Let s = max{v;]i € W}. (We shall show later that s = p,.) We shall
establish that €= { S, S,,...,S,, T}, T,,...,T,} is a colouring of G which
satisfies the theorem.

To show % is a colouring, we need only prove that each S, is an
independent set. Suppose not. Then there exist i, j € S,, (i, j) € E. But
u, +v,=0,u,+ 0,2 1implyv, — v, > 1, so v, = v; = r is impossible.

By our stipulations at the beginning of the proof, an optimum path
k-pack contains k paths. Let % = { P, P,,...,P,} be optimum. We must
show that:

(i) each T; = { j} is on some path of P* and

(ii) each S, meets all paths of 2%,

To prove (i), note that j € T, means u; + v; > 0, implying by (2.5) that
x,; = 0.Since X, x,, = 1, we must have x , = 1 for some /, so j is in some
path of 2%,

To prove (i), we first observe that

(2.7) vy = S.

To show (2.7) we use (2.4):
u,+vy=2c=0 VieWw
u,+v,=0 Vie W.

From the last two equations we deduce that v, > v, Vi € W, and (2.7)
follows.
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Next, let P be a path of £*, and for ease of notation, assume the path
is (1,2,...,7). Then

Xop = Xpp =0 =Xy = X0 =1
By (2.5), uy + v, = 1, so by (2.6)
(2.8) v; = 1.
Similarly, by (2.5), u, + v, = 0, and by (2.4), 4, + v, > 0, so
(2.9) v, = v,

Fromu; + v; > 0 and u; + v;,, = 1 it follows that

(2.10) forj=1,2,...,1-1, v;,; —v;<1, withequality if and

onlyifu, + v, = 0.
Together, (2.8)—(2.10) show that §;, S,,...,S, _; all meet P. All that
remains to be shown is that S, meets P.

From the proof of (2.9), we see that if u, + v, = 0, then also v, = v,
and /isin S, and in P. If u, + v, > 0, then v, > v,. From (2.10) it follows
that there is some j </ with u; + v; =0 and v; = v, — 1 > v,. By (2.7),
this means v, = vy, j is in §, and j is on P. This completes the proof.

Another proof of the theorem can be deduced from [S5] and [11]. It is
worth noting that Theorem 2 is not true for general directed graphs, as we
shall show in §4.

3. An outline of a proof of Theorem 1. The proof uses ideas similar
to the ones used in the proof of Theorem 2.
Let C = (¢;;)si,J= 0,...,n, be defined by

(3.1) cio=0 foralli; ¢, =k forallj,0

c;=1 foralli>0
ifi >0,/ > 0andi # j then
c;=0 if(i,j) € E

= not defined if (i, j) & E.

Consider the following linear program:

I/
n
minimize Y, ;X
i=0,/=0
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where x;; > 0 for all i, j, except that x; ;1s not defined

(32) { o

ifi>0,j>0,i+j,(i,j)€E.
(3.3) Z Xoj = Z Xjp=n
j=0 i=0

(3.4) > x,;=1 foralli>0; Y x;=1 forj>0.
j=0 i=0

Let & be a path partition, and let 2° denote the set of all paths in £ of
cardinality at most k, and #* denote the set of paths in 2 of cardinality at
least k. Paths of cardinality k are assigned arbitrarily to 2° or *. We
define the following matrix

X(2) = (x,;) corresponding to #:

Xoo =1 —|P"|

ifj > 0, xo, =1 if j is the start of some path in #*.
= otherwise
ifi>0, x,,=1 ifiistheend of some pathin#".
= ( otherwise
ifi>0, x,;=1 ifibelongstosome pathin2°.
= (0 otherwise
x;; =1 if for some P € 2, (i, j) is an edge of P.
= (0 otherwise.

As in §2, it can be shown that in this correspondence, every integral
optimal solution of (3.2)—(3.4) corresponds to a k-optimum path partition,
and conversely.

Consider the dual problem.

1.
n n
maximize n1(ug + vy) + 2 u; + 2 v,
(3-5) i=1 i=1
where u, + v, < ¢;; foralli,j.
We may assume that there exists an integral optimum solution of I’
satisfyingu, = v, = 0,4, <0and 0 < v, < k.

We associate a partial k-colouring €% = {C,, C,,...,C,} to such a
solution in the following way. Let

C={i>01~u=v,=r}.
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Using the complementary slackness conditions it can be proved (as in
§2) that €* is orthogonal to every k-optimum path partition.

4. Some counterexamples. Let G be a poset, and let £, and €* be
a path partition, and a partial k-colouring of G, respectively. Since every
path P in # meets at most min{ | P}, k } vertices of €%, we have
(4.) €4 < ¥ min{|2], k).
Pe®p
If # and € are orthogonal, then equality holds and Zis k-optimum and ¥
is optimum. Thus, the following extension of Conjecture 1 is valid for G.

THEOREM 1. For every k-optimum path partition P, there exists an
optimum partial k-colouring €* orthogonal to 2.

However, if G is not a poset, Theorem 1’ may not be valid, as
demonstrated in the following example, for k = 1 (see Figure 1). The set
S = {1,3,6} denotes the unique optimum independent set. £ =
{(1,2,3,5,6), (4)} is a 1-optimum path partition not orthogonal to S.

In a similar manner, the following extension of Conjecture 3 holds for
all posets G.

THEOREM 3'. For every optimum path k-pack P*, there exists a k-opti-
mum colouring € orthogonal to P*.

Theorem 3’ may not be valid for graphs other than posets, as shown
in the following counterexample for & = 1 (see Figure 2).

The path P = (1,2,3,4) is a longest path, and x(G) = 3. But any
3-colouring colours P in two different colours, as shown in Figure 2.

3 2 I

FIGURE 1
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FIGURE 2

Another variant of Conjecture 1 is:

THEOREM 1”. For every optimum partial k-colouring €*, there exists a
path partition P, orthogonal to €*.

It can be proved that Theorem 1” is valid for posets, but not in
general. For k = 1, we have the following counterexample (see Figure 3).

FIGURE 3

No path partition is orthogonal to ¢' = {(1,3)} in G. A similar
variant on Conjecture 3 is

THEOREM 3”. For every k-optimum colouring € there exists a path
k-pack orthogonal to €.

As in Theorem 17, this theorem is valid for posets, but not for all
graph, as demonstrated in Figure 4.
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2

FIGURE 4

The path P = (1,2, 3) is a unique longest path but it is not orthogonal
to the colouring € = {(1, 3), (2,4), (5)}.

Finally, we show that neither Theorem 1 nor Theorem 2 is true in
general for all graphs.

Let G = (V, E) be defined by (see Figure 5)

V= {Pl,Pz,P3,P4,P5,Q,R}

and

E = {(P, P)wherei <j} U{(P;,0),(Q, R), (R, P,)}.

FIGURE 5

It can be verified that for any maximum independent set S in G, there
exists a path partition which is not orthogonal to S. Also, there is no way
of colouring G so that all longest paths (there are three of them) meet all
colours. Hence G serves as a counterexample for £ = 1 for Theorem 1 as
well as for Theorem 2, when considered for general graphs.
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