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ON SOME INFINITE SERIES OF L. J. MORDELL

AND THEIR ANALOGUES

M . V. SUBBARAO AND R. SlTARAMACHANDRARAO

In this paper we obtain a general reciprocity relation (Theorem 2.1)
for a class of double series, from which we deduce several results
including two alternating double series for f(3) (where ζ(s) is the
Riemann zeta function), which complement a result of L. J. Mordell.
Later in the paper, we obtain another reciprocity relation for the double
series and also extend our investigations to multiple series.

1. Introduction. In 1958 L. J. Mordell (cf. [7], Theorems I and II)
considered the multiple series
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(1.1) Σ W 2 Kih + ••• + /„ + fl)(/i + •• + l, + a + ί)

•••(/!+ + lr + a + s)

where r > 1, .s > 0 are integers and a > — r is real. In particular, he

deduced that

(1.2) f 1/lMk + l2) - 2f(3)

where f denotes the Riemann zeta function defined by f(s) = Σ^Li^"5

for complex s with real part greater than 1 and its analytic continuation.
Also he proved (cf. [7], Theorem III) that for positive integral r
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/1./2-1

where clr is a rational number and that c2 = 1/2835.
In §2 of this paper, we prove a reciprocity relation for a class of

infinite series which are closely related to (1.2). We deduce from this, for
example that
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which are complementary to (1.2). In §3, we evaluate the multiple series in
(1.1). Our evaluation is different from that of Mordell and involves
Stirling numbers of the first kind. In §4, we prove another reciprocity
relation for double series and deduce MordelΓs result (1.3) above with an
explicit determination of the constant c2r in terms of the Bernoulli
numbers.

2. A reciprocity relation for double series. Throughout the paper,
Z ( 0 ) , Z + , R+, R and C respectively denote the sets of all non-negative
integers, positive integers, positive reals, reals and complex numbers. For
bounded maps/, g: Z + - > C , M , D G Z + and wEΛ + ,we write

(2.D

We note that the series on the right converges absolutely since /, g are
bounded functions, r + k > lyfrk and w e R+. We also write

(2.2)
r = 2 ' k = l # v

for x > 1 and ̂  e Z + . Then we have the following reciprocity relation

THEOREM 2.1.

(1 X\ *\ (u iv w) + <? (v u w)
V / y , g \ ' ' / j , g1 \ ' ? /

M - l

Proof. It is known (cf. [8], p. 48, eqn. (9)) that for u, v e Z +

(2 4) = ( - l ) B 5
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Hence by (2.1)

SfJu, v; w) - j ^ %\?*§ " (-!)"rΣ ^ I) kv(

8

k

{k_\r

,

u- 1

Σ l V 4- / — 1 \ v1 J\r) V £v r A

Now the theorem follows in view of (2.2).
To illustrate the reciprocity relation, we define the functions ε and is

(for real s) by

ε(n) = ( — 1)", is(n) = «5,

for n e Z + . Then we have

COROLLARY 2.1. For w e Z +

00 ^ M —

(2.5) Σ ' r r ( r + t ) w - Σ

( 2 . 6 ) Σ l u t . u y ' Σ " ' l \ l ) D ( u

C( , ), D( , ) αnrf E{ , ) respectively denote Cioio( , ), Cε /Q( , ) and

C, ( , ) . Further for w e Z +

(2-8) Σ ., M W = (» + l ) f (w + 2) - Σ f (/)f (w + 2 - /),

(2-9) Σ j T 1 , ,.Λ =

. On taking u = v and (i) / = g = J 0 , (ii) / = ε, g = /0 and (iii)
/ = ι'o, g = ε in turn in Theorem 2.1, we obtain (2.5), (2.6) and (2.7).
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To prove (2.8) we take u = 1 in(2.5) and compare it with the well
known result (cf. [8], p. 49, eqn. (3))

(2.11) Σ ?(0f (w + 2 - i) = (w + l)ζ(w + 2)-2Σ~Σl

valid for w e Z + .
To prove (2.9) we take u = w = 1 in (2.6) and compare it with (cf. [8],

lines 5 and 16, p = 2)
oo / -i \ ^ r— 1 -• -i

To prove (2.10), first we recall the following result due to the second
author and A. Sivaramasarma (cf. [10], eqn. (1.3))

(2.13) f Σ-T7Γ—T = ̂ (3)
r = = 1 k==ι r (k + r) 4

Since

we have by (2.7) for w e i? +

00

£ l r ^ ( - :

-. oo -. 2 r - l / _ i \ ^ 1 °° 1 / r 1 1

Now (2.10) follows from (2.13) and (2.14) with w = 1. This completes the
proof of Corollary 2.1.

REMARK 2.1. As mentioned in the introduction, L. J. Mordell (cf. [6]
eqn. (10)), using different arguments, proved (2.8) in case w = 1. Since

OO -j / θ θ 0 0 O θ \ - |

y — - — = y + y - T — - —
" rk(r + k) \ I rkir -f k)

^ r<k r>k r = k '
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MordelΓs result given in (1.2) above is equivalent to

<215) l ,έ^Vi) = ϊ«3)

which is due to the second author and A. Sivaramasarma (cf. [10], eqn.

(1.2)).

REMARK 2.2. The result given in (2.11) is often rediscovered and dates

back to Euler (cf. [8], Footnotes on p. 47). Some recent authors ascribe it

to G. T. Williams (cf. [13], Theorem III). The special case a = 2 of (2.11)

was also proved by W. E. Briggs, S. Chowla, A. J. Kempner and W. E.

Kientka [2]. For a recent proof of (2.11) we refer to the second author and

A. Sivaramasarma [10]. Their arguments are based on a generalisation of a

transformation formula due to J. Lehner and M. Newman and also

discuss equivalent forms of (2.11), (2.13) and (2.15).

REMARK 2.3. We note that the following result is implicit in the proof

of (2.10)

oo 2r—

(2.16) Σ Σ
r 1 * χ r2k

This may be compared with the following result stated by S. Ramanujan

(cf. [9], p. 108) and proved recently by the second author and A.

Sivaramasarma [11]

3. Evaluation of multiple series. For r e Z + , s e Z ( 0 ) and a > — r,
we write

where the symbol (/, r) under the summation sign indicates that the sum

extends over all Muples (/1?... ,/r) of positive integers. L. J. Mordell (cf.

[7], Theorems I and II) proved that

(3 1)7- (a) = - 1 | y (-iy{a-l)(a-2) . (a-i)\

' rs a s\ (s + ιy+ι .=1 /!(* + ; + i ) r + 1 I"
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In this section, we give a different evaluation of Trs(a) involving S%r\ the
Stirling numbers of the first kind, which are defined by

n

x{x - 1) (JC - n + 1) = Σ Snr)*r-

THEOREM 3.1.

f _1"\"C'(' )

(3.2) r Γ » = ( - i ) ' r ! Σ ^ τ U T B T

Further for w ^ Z +

(3.3) £ 1/V2 /r(/x + + lr + α) = (-l)V! Σ

Proo/. It is well known (cf. [4], p. 146, eqn. (3)) that

Hence

(3.4) TrΛ(a) = I 1 Λ /r(/x + + /, + a)

(-I)'f e-°r(log(l-e-r))rdy

( - 1 ) 7 e-^rl Σ { } : dys

(l)rr\Σ I n

-i)V' Γ ι ' "
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Since for fixed r e Z + , S^r) = O((n - l)!(log n)r+1) (cf. [4], p. 161, line
3), the interchange of summation and integration could be easily justified.
Also since

we have

and consequently (3.2) follows from (3.4) and (3.5).
To prove (3.3), we differentiate term wise (w — 1) times the series

appearing in (3.4). The term wise differentiations are easily justified. This
completes the proof of Theorem 3.1.

REMARK 3.1. Our evaluation of Trs(a) is different from what of
Mordell and has the advantage of yielding (3.3) readily. However, Mordell's
evaluation as given in (3.1) can be utilized to obtain the result

(3.6) Σ i A - / f ( Ί + ••• + hΐ

- y ((r + l ) f ( r + 2) - Σ f ( i ) f ( r + 2 - /)).

In fact, term wise differentiations of the series defining Tr s(a) and the
series appearing on the right of (3.1) yield in case s = 0

(ΛΌ

so that (3.6) follows from (2.11).

We also evaluate a related multiple series

THEOREM 3.2. For r,w e Z + am/ a <Ξ R+, let

(3.7) Kr,w(fl) =

(3.8)
Λ . x n\(n
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Proof. We have

= y I ί1 χΊ+-+'r+a-idx

= f χ-4 Σ ?Γ +n) dx = Z1 x'~^e'~
J0 \(/,r) V " • lr j J0

5 = 0

, i 'o

Now on substituting the infinite series representation of ex and integrating
term wise, the theorem follows.

4. MordelΓs series. In this section, we prove a reciprocity relation
for a class of harmonic double series related to MordelΓs series given in
(1.3).

For m, «, p e Z+, we write
00 j

M(m, n, p) = Σ ΓTΓ

Then we have the following reciprocity relation

THEOREM 4.1.

(4.1) M(2m,2n,2p) + M{2n,2p,2m) + M(2p,2m,2n)
A 2 n ) + J2rn

'(2m 4- 2n — 2r — l)\(2rμζ(2r)ζ(2m + 2n + 2p — 2r)

(4.2) = - ^
(2w)!(2«)!

0<r<min(m, n)

(2m + 2n- 2r)\
2n + 2p - 2r)\ B^
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Proof. If Bn(x) denotes the Bernoulli polynomial of order n defined

by

text ~ Bn(x)t"

e'-l h «!

for |; | < 2τr, it is well known (cf. [1], §12.11) that

(4.3) B2n(x) = an Σ 57
r=\ r

forO < x < l.Here

(4.4) «π = (-l)" + 1 2(2«)!/(2^) 2 ".

Thus if Bn denotes Bn(0), then it is known due to Euler (cf. [1], Theorem

12.17) the for n e Z +

(4.5) B2n = (-l)"+12(2n)\ζ(2n)/(2π)2".

Since Bo = 1 and f (0) = -1/2, we note that (4.5) is true for n = 0 also.

Now by (4.3), we have for m, n, p ̂  Z +

^2«(^)*2»(^)^W β «««»«!, Σ r2mk2nj2P '
r,Λ,/-l r K I y

The series on the right converges uniformly for x e [0,1] and hence can

be integrated term wise. We note that the integral from 0 to 1 of the terms

of the series vanishes except when either r = k + / or k = / 4- r or

/ = r 4- k since

4cos A cos #cos C = cos( - ^ + 5 + C ) + cos(v4 - 5 + C)

+ cos(.4 4 5 - C) 4- cos(y4 4 B 4 C).

Thus

(4.6)

= ^ ^ { M ( 2 m , 2 « , 2 / ? ) 4 Af(2«,2/?,2m) 4 λf(2p,2m,2n)}.

However, it is known due to L. Carlitz [3] that for m, «, /? e Z +

(4.7) jf1 Bm(x)Bn(x)Bp(x) dx

-<-»'••,< Σ {»(2

M>».(2" r)}
0srsmin(m/2 «/2)

!
! 2 r

Now (4.2) follows from (4.6) and (4.7) while (4.1) follows from (4.5) and

(4.2).
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REMARK 3.1. L. J. Mordell (cf. [7], Theorem III) noted that for
m e Z + , M(2ra,2m,2m) is a rational multiple of π6m. However, from
Theorem 4.1 we have the more explicit evaluation

M(2m,2m,2m) =
3((2m)!)2

•2m\(4m-2r-l)l

sr<m^ - ' (6m-2r)\

8m v

5. Some open problems. At the end of his paper, L. J. Mordell [7]
remarked that it would be of interest to find the corresponding result for
(1.3) wherein the occuring exponents 2r inside the summation are replaced
by 2r + 1. However, we note that, much earlier to MordelΓs work
[7], L. Tornheim [12] essentially solved this problem by proving that
M(2r + l , 2 r + l , 2 r + l ) may be explicitly determined as a polynomial
in £(2), ?(3),... ,£(6r 4- 3) with rational coefficients. In addition to prov-
ing (1.2), Tornheim makes a systematic and thorough investigation of
harmonic double series.

Our attempts to evaluate the series

(-I) (-l)

/ * , / ! = l r n r n r { m + n ) r ' m ^ = 1 m r n r { m + n ) r '

in particular when r is even and

m > n 1 * 2"

where a > 1 and b,c, d ̂  Z+ were not successful.
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