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GENERIC COVERING PROPERTIES
FOR SPACES OF ANALYTIC FUNCTIONS

DAVID A. STEGENGA AND KENNETH STEPHENSON

By a classical result of Fatou, a bounded analytic function on the
unit disc £>, i.e. in the space H°°(D), has a radial limit at almost every
point on diλ We examine the question of whether this limiting or
boundary value lies in the interior or on the boundary of the image
domain. We show that the first case is "typical" in the sense that every
function in a certain dense Gδ-set of H°° has this property at a.e.
boundary point. Several other spaces including the disc algebra and the
Dirichlet space are also studied.

1. Introduction. Let D be the unit disc in C. In this paper we
consider certain types of covering properties for analytic functions belong-
ing to the disc algebra A{D), the space of bounded analytic functions
H°°(D), and the Dirichlet space 2. We prove these properties are generic
in the categorical sense; i.e., they hold for functions forming a residual set.
A generic property is said to hold for "nearly every" function in the space.

For / analytic in d, let Ef denote those points ξ e T = 3D where/(f)
fails to exist (as a nontangential limit) or where/(f) exists butf(ξ) £ f(D).
Our main results are summarized in this

THEOREM, (a) The Lebesgue measure \Ef | is zero for nearly every
function / e H°°(D).

(b) The logarithmic capacity Cap(Ef) is zero for nearly every function

(c) Let h be any Hausdorff measure function. The Hausdorff measure
Kh(EΛ is zero for nearly every function f ' e A(D).

The theorem says that nearly every function in these spaces maps the
boundary of the unit disc into the image of the interior; we might say it
buries its boundary values. The size of the exceptional set Ef depends
upon the space, but our results would seem to be the strongest possible in
this regard. One would not expect smaller exceptional sets for if°°(Z)) and
£&, since nontangential limits may not even exist for sets of measure zero
and capacity zero, respectively. This doesn't happen in Λ(D), since these
functions are continuous on D; however, we have shown that by almost
any measure of smallness, nearly every function in A(D) has a "small"
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exceptional set. It should be pointed out that a much stronger covering
property than that of our theorem may hold in spaces containing un-
bounded functions. In a sequel to this paper [15], we show that for
numerous spaces, including for example the Hardy spaces, nearly every
function maps D onto C.

We prove the parts of our theorem in Sections Three, Four, and Five.
Our result for A(D) answers a question of Carl Cowen [3] (see also
Problem 5.65 of [4]) which arose in his study of Toeplitz operators. He
asked for a function f ^ A(D) with \Ef \ = 0. An explicit example is
described in the remarks at the end of Section Three. Our theorem shows
that, in the categorical sense, functions in A(D) without this property are
pathological! In Jf/°°(D), the situation is somewhat reversed: Examples
with \Ef\ = 0 are easily found, but the proof that nearly every function has
this property is more difficult. It requires a result relating the geometry of
plane regions to harmonic measures on their boundaries which may be of
independent interest. This is discussed in the Remark at the end of
Section Five.

In Section Six we pose some questions regarding other spaces of
bounded analytic functions and other types of covering properties. We
also discuss some similarities our techniques of proof seem to have with
those used with gap power series.

The main ingredient in our proofs is something we call the depth
function, δ/9 for an analytic function /. It measures the size of ramified
discs lying in the image surface of / and tells, in an appropriate local
sense, how deeply various values are buried in the range of /. The depth
function is related to more common measures of schlicht discs in the
image surface, which have long been of interest in classical analysis, see
also [14]. Its properties are developed in the next section after we establish
some notation.

This research took place while the second author held a visiting
position at the University of Hawaii, Manoa, and he wishes to thank them
for their fine hospitality. Both authors thank George Csordas for helpful
conversations on the material presented here.

2. The depth function. For w <Ξ C and r > 0, D(w, r) = {z: \z -
w\ < r }. The unit disc is D = D(0,1) with dD = Γ, the unit circle. For a
Lebesgue measurable set E c T, \E\ denotes its normalized Lebesgue
measure.

If G is a plane domain, H(G) denotes the space of analytic functions
on G. For / e H(G), let f(G) = {w = f(z): z e G). If G' c G has
compact closure in G we write G' <s G. If Γ e C is a Borel set, then
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ω(z, Γ; G) denotes the harmonic measure of Γ n 3G with respect to G.
(see Tsuji [16] Chapter 3.17).

Suppose / e H(G), a e G, b = /(α), and r > 0. We write Ωfl(r) =
Ωβ j(r) for the (connected) component of f~ι(D(b, r)) in G which con-
tains α. If ΩΛ(r) <= G, the argument principle implies that / is a Λ -to-1
map of Ώa(r) onto D(b, r) for some k e Z+, the positive integers.

Suppose / is analytic on D and has a nontangential limit w e C at
some point £ e 71. We write /(£) = w. Recall, for example that if / e
H°°(D), then/(£) exists for almost all ^ E Γ ,

DEFINITION. Let G be a plane domain. If / e i/(G) and H> e C, the
depth function for/on G at w is

δ(w,/, G) = sup{r. Ω f l(0 <s G, someα with/(α) = w}.

When there is no ambiguity about the domain G, we write simply δf(w).
In geometric terms, 8f(w) is the supremum of the radii of (ramified)

discs centered at w which lie in the image surface of /. Thus it tells how
deeply w is buried in the range of /, but in a local sense, i.e., how the
sheets of the image surface cover w, rather than a global sense. In
particular, the largest disc about w which lies in/(G) will generally have a
radius greater than 8f(w).

In the remainder of this section we establish the main properties of
the depth function.

LEMMA 2.1. Let G be a plane domain and f a nonconstant function in
H(G).

(a) Either 8f Ξ= OO, or 8f: C -> [0, oo). In the latter case, δf is a Lipschitz
function with Lipschitz constant 1.

(b) 8f(w) > 0 if and only ifw<=Ξ f(G)
(c) Given K c /(G) compact, there exists η > 0 and an open set

G' G= G with 8{w, /, G') > ηjor all w G K,
(d)IfgeH(G),then

(2.1) sup|δ / (w)-δ g (w) |<sup|/-g |
G

with the understanding that if the right side is finite, then 8f = oo // and only
ifδg - oo.

Proof. Properties (a) and (b) follow easily from the open mapping
theorem. We point out that δf=oo may occur for any domain G, even
G = D.
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To prove (c), let T = infweKδ(w9 /, G). By (a) and (b), τ > 0. Choose
η with 0 < η < τ/4. There is a finite set wl9w29...9wn ^ K with

7 = 1

For each y9 there is a αy G G, with/(α7) = w7 and Ωα (τ/2) ^ G. Letting
G' = UJ=1ΩΛ (τ/2), we see G' <s G. Now, suppose w ^ K is arbitrary.
Then w G Z)(wy , η) for some j . Because/maps Ωa (τ/2) onto D(wJ9 τ/2),
there is fl G Ωfl (τ/2) with/(α) = w. Since D(w, η) <= D(wy, τ/2), ΩΛ(τ})
^ ΩΛ (τ/2) c Gr. In particular, Ωα(η) @ G', implying δ(w, /, Gr) > η.

To prove (d), suppose σ = sup z e C | /(z) — g(z)\ < oo. Assume first
that δf^oo and δg ^ oo and argue by contradiction. Let w0 £ C satisfy

(2.2) | δ / ( W o ) - δ g ( w o ) | > σ .

We may assume that 8f(w0) > δg(w0)9 so (2.1) implies δf(w0) > σ. Choose
ε > 0 sufficiently small that η = δf(w0) — εσ. For some a ^f~ι(w0),
Ω = Ώa f(η) <= G. Since / maps ΘΩ onto dD(w0, η) and | /— g\ < σ on
3Ω, we have g(3Ω) Π D(w0, η — σ) = 0 and, by Rouche's theorem,
D(wo,η — σ) c g(Ω). These two facts imply that some component of
g~\D(w09 η - σ)) lies in Ω, hence δg(w0) > η - σ. Now, ^(WQ) -
δg(w0)\ = \η + ε - δg(w0)| < ε 4- σ. Since this holds for all small ε > 0,
we contradict (2.2). A similar argument shows that δf = oo if and only if

β,-00.

The domains G which we consider will be D and subsets of D. We will
use the following results concerning the depth functions for bounded
analytic functions on D:

LEMMA 2.2. Letf9 g G H°°(D) and ξ E Γ , with f(ξ) = wλ and g(ξ) =
w2. Then

Proof. By Lemma 2.1(a) and (d) we have

\8,(Wl) - δg(w2)\ < \8f(Wl) - 8g(Wl)\ + \8g(Wι) - δg(w2)\

For/ e iί(Z)), £ / = { ξ e Γ : /({) does not exist or /({) « /(/>)} =
{ ξ e T: f(ξ) does not exist or δ^/XI)) = 0} An immediate consequence
of Lemma 2 and Fatou's lemma is

LEMMA 2.3. Letf,fn e H°°(D), with || /„ - / IL -» 0 as n -» oo.

limsup ji^l < |iS/|
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3. Disc algebra. The disc algebra A(D) is the space of bounded
analytic functions on D which may be extended continuously to D. It is a
Banach space under the supremum norm. Before stating our results we
recall the definitions concerning Hausdorff measure (see Chapter 2 [2]). A
measure function A is a monotone increasing function defined on r > 0,
with h(0) = 0. If E is a bounded plane set, we consider coverings of E by
a sequence of discs Dm with radii rm. We define

Mh(E) = inf£MO,
m

where the infimum is over all such coverings. If we restrict rm< t the
corresponding lower bound is denoted Λ(/), and the limit

= limΛ(ί)

is the Hausdorff measure of E. The quantities Mh{E) and Ah(E) are zero
simultaneously, and it will be more convenient for us to work with Mh.

THEOREM 3.1. Let h be a measure function. The collection of functions f
in A(D) for which Ah(Ej) — 0 is a dense Gδ-set.

With particular choices of h, one can show, for example, that those
collections for which \Ef | = 0, Cap(£y) = 0, the Hausdorff dimension of
Ef is zero are each dense Gδ-sets. Before the proof, we establish a
preliminary lemma. Here χ denotes the identity function χ(z) = z, Z G D .

LEMMA 3.2. Let ζ > 0 and n > 2 be given. Then there exists a function
8 = Sn ζ *n A(D) with the following properties:

(b) g is at most 2-to-l,

(c) ||χ - glloo < 4*/Λ
(d) { f e T: \g(ξ)\ = 1} = U"ZoIj where each I. is an open arc of T

with \Ij\< f.

Proof of Lemma. We obtain g as a Riemann mapping onto an
appropriate simply connected surface S lying over Z>, projected down to
D. First we construct S:

Let Γo, Tl9...9T»-ι be the arcs in D determined in the following
manner. These arcs are congruent, with Γ7 consisting of a radial segment
of length \/n ending at the «th root of unity e27T1J/n and an attached arc
of the circle {\z\ = 1 — l//i} The "doorways" between these circular arcs
are each of "angular measure" 2ττf. (We assume that ξ < n/2π.)
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Let So denote a copy of D slit along these arcs Γo, Γ l 9... 9Tn_v We
will obtain S by attaching additional surfaces along these slits. For each /,
0 < t < πξ, and for eachy = 0,1,2,... ,w — 1, define

UtJ= \jD(z,t(l-\z\))

We obtain a simply connected surface St by slitting each Utj along Γy

and attaching it to the corresponding slit in SQ with a cross connection.
This produces a simple branch point at the interior end of each arc Γy.
Note that the parameterized family {St: t e [0, πζ]} is a nested collection
of surfaces; that is, if 0 < tx < t2 < πζ9 then we will identify St with a
subset of St. The surface S which we want is Sτ for an appropriate choice
of T, 0 < T < πξ.

The unit circle, Γ, is a part of the boundary of each Sr Define the
harmonic function <o,( ) = ω( , Γ, St) on Sr We show that ω,(0) -> ωo(0)
as/jO.

For each t9 0 < t < πξ, let w, be the harmonic function on So whose
boundary values are these:

ifξ<ΞT

j
7 = 0

where the point Sλ and S2 are the two points of St lying over ξ.
For all / e (09piζ] we have

ω0 < ω j ^ < ut onS0.

For each point £ e Uylo^) which is not an endpoint of one of these arcs,
ut(ξ) clearly goes to 0 as / \ 0. Thus, ut(0) \ ωo(0), and the inequality
above implies <o,(0) \ ωo(0) as t \ 0.

If / is the union of the n open arcs (the "doorways") of the circle
{\z\ = 1 — \/n} which lie in SQ9 then

ωo(O) = ω(0, Γ, So) < ω(θ, /, 2>(θ, 1 - ^ ) ) .

This last value is exactly 2πnζ/2π = nξ. We therefore choose T, 0 < T <
τrζ9 so that

ωτ(0) < nξ.

Our surface S is taken to be Sτ.
Let p: S -> Z> be the natural projection, let φ be a one-to-one

conformal map of D onto S, and define g = p φ. We may choose φ so
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that g(0) = 0. Properties (a) and (b) are clear from the construction of S.
The function g is in A(D) because each boundary point of S has a
neighborhood which is conformally equivalent under p to a Jordan region
in the plane.

Properties (c) and (d) will follow from the w-fold rotational symmetry
of S. Define

J i n n

The boundary of S breaks into the n congruent, connected pieces

By a standard symmetry argument, g satisfies

for λ = elmi/n. Therefore, T = UjZbg'l(Bj)9 and each set g"\Bj) is an arc
of angular measure 2π/n. Composing with a rotation if necessary, we may
assume that J} = g~\Bj), for j = 0,1,...,« - 1. Since J} c Bp and the
diameter of Bj is at most Am/n (c) follows.

Finally, since conformal maps preserve harmonic measure,

{ } |
But {e* : \g(e* )| = 1} clearly consists of n congruent closed arcs,
/0, . . Λ - i , hence|/y.| < f,y = 0,...,« - 1.

Proof of Theorem 3.1. Define the set

9N= {f*ΞA(D):Mh{Ef)<l/N},

for V̂ = 1,2,,.... Clearly / e Π ^ ^ if and only if AfΛ(JE}) = 0, hence if
and only if Ah(Ef) = 0. It therefore suffices by the Baire category
theorem to prove that each 9N is open and dense.

To prove it is open, fix / e &N. There is a countable collection of
discs Dm with radii rm so that JE^C ΌmDm and Σmh(rm) < 1/N. Since
ξ -> δ / (/( | )) is continuous on T = 3D.

is positive. If g ^ 4̂(£>) with || /— gH^ < w/2, then Lemma 2 implies
βg(g(O) > 0 for ξ G Γ \ U w i ) w ; that is, E g c U w D m . Hence g e ^ , and
&N is open.
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To prove density, fix / e A(D) and ε > 0. Since / is uniformly
continuous on 2), there exists τ > 0 so that \f(zx) —f(z2)\ < ε if zl9

z2 e D with \zλ — z2\ < T. Choose n > 2 with 4ττ/« < T and choose ξ > 0
with n h(τrξ) < 1/N. Let g be the corresponding function gης from
Lemma 4. Clearly / ° g E >4(£>). Also, by Lemma 3.2(c), ||χ — gH^ <
4ττ/« < τ Therefore, || / - / ° glL = || / ° X ~ / ° glL < ε. It remains
only to prove that/ ° g e 9N.

If £ e Γ and |g(£)| < 1, then by Lemma 3.2(a), g(£) e g(D) and
hence (/og)(ξ) e (/°g)(£). Consequently, Efog C ^ G Γ : |g({)| = 1}.
By Lemma 3.2(d), this latter set is contained in U lJ/,- with \Ij\ < ξ. The
diameter of each Iy is less than 2πξ (because | | denotes normalizes
Lebesgue measure), so we can find discs DJ9j = 0,1,...,« — 1, of radius
πζ so that E/og c U7i)y. By our choice of ξ, n ° Λ(ττf) < 1/iV so Mh(Efog)
< 1/N and/og e S^.

REMARKS, (a) In some sense this is the best possible result concerning
the metric properties of Ef for / e A(D). For if Ah(Ef) = 0 for every
measure function h, then £^ would be countable, a clear impossibility. By
a result of Besicovitch [1], assuming the continuum hypothesis there are
uncountable measure sets this "small," but they cannot be Borel; our JS îs
closed.

(b) A concrete example of a function/e A(D) with \Ef | = 0 can be
obtained by extending the construction technique used in the proof of
Lemma 4. However, here is a more straightforward construction.

EXAMPLE. Our function / will be of the form / = g3, where g is a
conformal mapping of D onto a simply connected domain Ω c ΰ . The
domain Ω is obtained from D by removing countably many radial slits
ending at T. Specifically, at each primitive 2 "-root of unity ξ remove the
slit ending at £ of length 2~", n = 1,2,3,....

The boundary of Ω is locally connected, so the conformal map g:
D -> Ω is in A(D). [Theorem 9.8, 11] It follows that / e A(D). Also,
f(D) = D since Ω = g(D) contains at least one of the cube roots of z for
every z G ΰ . To show \Ef\ = 0, it therefore suffices to show that \E\ = 0,
where E = {£ e Γ: |g(£)| = 1}. It is clear that no point of E is a twist
point for g. By McMillan's twist point theorem [7], g is conformal at
almost all points of E. This means that if \E\ > 0, then there is some point
ξ ^ E so that Ω = g(D) contains Stolz regions of arbitrarily large angular
opening at g(£) e T. However, our construction guarantees that no Stolz
region of opening greater than Tan"1(τ7) lies in Ω. Therefore, \E\ = 0.
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4. Dirichlet space. The Dirichlet space Sd is the collection of func-

tions / e H(D) with

k 1/2

< 00,

where m2 denotes normalized area measure on D. This defines a norm

under which 2d is a Banach space. The elements f ^ 2 have nontangential

limits, which we continue to denote f(ζ), at all points ξ & T with the

possible exception of a subset of capacity zero. Also, we have

, t>0.

(See [13] for the preliminaries for this section.)

THEOREM 4.1. The collection of functions f in 3) for which Cdφ{Ef) = 0

is α dense G8-set.

We need a preliminary lemma. For g e H(D) and w e C, n(g, w)

denotes the cardinality, counting multiplicities, of g~x{ w}.

LEMMA 4.2. Let gk: D -> D be analytic, k <Ξ Z+, W/YΛ | |χ - g j ^ -» 0

as k -* oo and

sup ^(g*, w) c M e oo, for all k.
H<i

Thenfo gk -* f inΘas k -» oo /<9r eachf^ 3).

Proof of Lemma. For 0 < r < 1,

For r close to 1, 5 r is small since //D | / ' | 2 dm2 < oo. Since g^ =t χ on D,

*oo^*.r = 0 Finally,
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Write m = min r 5 S | z | < 1 | g*(z) | , then

Ck,<M jj \f'(w)\2dm2(w),
m<\w\<l

Since m -> r as k -> oo, l i m ^ ^ Ck r < M ° Br. This completes the proof.

Proof of Theorem 4.1. Define the set

for N = 1,2,3, It is enough to show that each ^ is open and dense.

Open. Fix / G &N. We claim that there exists a compact subset
K a dD for which the restriction of / to K is a continuous function and
Csψ(T\K) < 1/2TV. This is a fairly standard type result which can be
proved (in considerable generality) using Theorem 4(iii) [8] along with the
integral representation of functions in 2 [Lemma 2.1, 13]. Since / is
continuous on K so is δ̂  ° / and hence EfΠK = { ξ G K: 8f° f(ζ) = 0}.
The outer regularity of capacities then gives a 8 > 0 for which K8 = {ζ e
K: δf

of(S) > 8} also satisfies Cap(T\Kδ) < 1/2N. By Lemma 2.1(c)
there is a subdisc Dr <= D and η > 0 for which δ(/(f), /, £>') > η for all
f e ΛΓg. By taking || / — g\\s sufficiently small we have | f(z) — g(z)\ <
η/2 for z e D' and hence by Lemma 2.1(d) δ(/(f), g, /)') > ij/2 for all
f e ΛΓθ. Observe that if £ e J5Γβ and |/(f) - g(f)| < η/2 then
δ(g(f), g, Z>0 > 0 so that ζ <£ Eg. But by (4.1) we may assume that
I /(£) ~ £(£)l < fl/2 for all f G δZ> except for a set with capacity less that
1/2N (take || / — gH^ smaller if necessary). By the subadditivity property
of capacities the capacity of E8 is less than Cap(Γ\ Kδ) plus 1/2N which
is less than 1/N and hence &N is open.

Density. Let f ^ 3f and ε > 0. By Lemma 3.2 and Lemma 4.2 we can
choose g so that \\ f ° g ~ / J | < ε and Cap(£g) < 1/N. Since Efog c £ g

it follows that / ° g G ^ and hence ^ is dense. Thus, the proof of
Theorem 4.1 is complete.

5. The space H°°. The main result in this section is

THEOREM 5.1. The collection of functions f G H°° for which \Ef\ = 0 is a

dense Gδ~set.

The proof is more difficult than those of the previous theorems, since
the composition techniques used there no longer work. A prime ingredient
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is a preliminary result relating the geometry of plane domains to the
harmonic measures of their boundaries. This result should be of indepen-
dent interest (see the Remark at the end of the section). First some needed
notation.

Let Ω c C be open. For w e C, r > 0, let 0*(w, r, Ω) denote the
angular measure of the largest arc of

(z: \z - w\ = r) Π Ω,

with θ*(w, r, Ω) == oo if {z: \z — w\ = r) c Ω. We will have occasion to
consider w = oo; circles about oo correspond to circles centered at 0, so
we let:

for r > 0.
Define θ = θ Ω : C x (0, oo) -» [0, oo] by Θ(w, r) = 0*(H>, r, Ω). It is

easily verified that Θ is lower semicontinuous. For a > 0, Λα denotes
Hausdorff measure using the measure function h(r) = ra, r > 0.

LEMMA 5.2. Let Ω c C and a > \ be given. If Γ c 3Ω is a Borel set
with Λα(Γ) < oo, then all points w e Γ satisfy

ΊίϊϊΓ{0*(r?w,Ω)} > ~
r->0 Λ

with the possible exception of a set having harmonic measure zero with

respect to Ω.

Proof. We assume O G Ω . Our first step is to show that when w0 e 3Ω
and (5.1) fails, then

r - 0 >**

We begin by letting vt>0 = oo, in which case D(wQ9 r) denotes the set
{|w| > 1/r}. For r > 0 let Ωr == {w e Ω: |w| < 1/r). By the maximum
principle,

(5.3) ω(0, Z)(oo, r), Ωr) > ω(0, Z)(oo, r), Ω).

If (5.1) fails, then there is some β > a with

Choose r0 with 0*(oo, r, Ω) < π/β for 0 < r < r0. That is,

(5.4) ^ ( )
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By an estimate of Tsuji [Theorem 111.67,16]

-(0. B ( . . r)Λ)

for \/r > 2t09 some constant C. By (5.4),

is

«(0, Z)(oo, r),0Γ) < Cexp/-^/ 1 7 2 ' ^} < C'r'.

Since β > α, this and (5.3) imply (5.2) for w0 = oo. We may now prove
(5.2) for the general case that w0 e 3Ω, w0 e C. If -w^1 G Ω, we simply
transform to problem with the linear fractional transformation

+
z - w0

This maps -w^1 to 0 and w0 to oo. Circles centered at w0 are transformed
to circles centered at oo (i.e., circles centered at 0); moreover, the angular
measures of corresponding arcs are preserved. Also, harmonic measure is
preserved. We therefore obtain

G)(-WQ1, D(w09 r), Ω)
lim = 0.

By Harnach's inequality,

If -w^1 G Ω, then for r0 sufficiently small we may replace Ω by

Ω' = Ω u{|w - wo\ > r0)

with -WQ1 G Ω'. We have shown that (5.2) holds for Ω'. For 0 < r < r0,
the maximum principle implies

ω(0, D(w09 r), Ω) < ω(θ, D(wθ9 r), Ω),

so (5.2) holds for Ω also.
We may assume Aα(Γ) = 0. For Λα(Γ) < oo implies Λα + ε(Γ) = 0

for ε > 0. Having proven our lemma's conclusion for a + ε, it will hold
for a also.
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Let Γ' consist of the points w e Γ for which (5.1) fails. Because
w -> Θ(w, r, Ω) is lower semicontinuous, a routine argument shows Γ' is a
Borel set. It remains only to show that ω(0, Γ", Ω) = 0.

By (5.2), for each w e Γ', we may choose a radius ξ(w) so that

Define ΓΛ = closure {w e Γ': f(w) > \/n} n Γ, « = 2,3,4,.... Each ΓB

is a Borel set, and Γ = U«Γn. We show ω(0, ΓΛ, Ω) = 0, n = 2,3,....
Let ε > 0 be given, since Λa(Γn) < Λα(Γ) < 0, we can find open

discs Dv with radii rv < l/2n, so that Γπ c \JPDV and Σv(2rv)
a < ε. We

may assume, of course, that each Dv intersects Tn. Choose wv e Γn Π Dv

with f(w,) > l//i > 2rr. If Z), = Z>(wr,2r,) then by (5.5),

In particular,

Since ε > 0 was arbitrary, ω(0, ΓΛ, Ω) = 0. This concludes the proof of the
lemma.

Proof of Theorem 5.1. Define the sets

for iV = 1,2, 3,.... Clearly/ e Π ^ ^ if and only if \Ef\ = 0. By the Baire
category theorem it suffices to prove that each &N is open and dense.

That &N is open follows directly from Lemma 2.3. To show density, it
is enough to verify the following

Claim. There is a universal constant C < 1 so that given any noncon-
stant/ <= H°°{D) and ε > 0, there exists g e H^iD), \\ f - gl^ < ε, with

\Eg\ < C\Ef |.
We show that C = 1 - 2~14 works. Let / e H°°(D) be given. If

l̂ yl = 0, there is nothing to show, so assume \Ef\ > 0. The function g will
be of the form

(5.6) g(z)=f{z) + σ h(z)z", z^D,

where σ > 0, n e Z+, and Λ e H°°w(D), ||/2||oo < 1, are appropriately
chosen.
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Begin with σ. By choosing σ < ε, we see || /— gH^ < σ < ε. From
Lemma 2.2, we see that σ may be made smaller yet, if necessary, to ensure
that

Henceforth, σ is fixed.
Next, we construct h: Let Ω = /(Z>), and apply Lemma 5.2 with

Γ = 3Ω and a = 2. Since Γ has finite area, Λ2(Γ) < oo. Thus, at all
points we3ί2, with the exception of a set of harmonic measure zero,
there is a sequence rj -* 0 with 0*(ry, w, Ω) > π/4. Although these ry

depend on w, they can be perturbed slightly using the function Θ = ΘΩ

defined earlier. Let rv r29... be an enumeration of the rationals in (0, σ).
Inductively define I\, Γ2,... c 3Ω by

Tj• — I w e 3Ω \ (J Γ :̂ Θ(ry, w) >
\ k=i

Since Θ is lower semicontinuous, each Γy is a Borel set and, by the result
from Lemma 5.2,

(5.8) ωίz,3Ω\UΓ,;ΩJ = 0, z e Ω.

Define Fj = {ξ ^ T: f(ξ) G Γy}, j = 1,2,.... Each Fj is a measurable
subset of Ej9 and Lόwner's Theorem [16, p. 322] and (5.8) imply
\Ef\ {JJFJ\ = 0. Choose j 0 so large that |Uj°=i^| > j\Ef\. By a routine
argument, there is a compact set K c Ω so that, for eachy = 1,2,... Jθ9

the set

satisfies

We now choose h to be the outer function [12, Chap. 17] with

^ for ξ e Ej,j = 1,2,...j0,

1, f eΓ\U^-

Since each ry < σ j E H°°(D) with H * ^ < 1. Henceforth, Λ remains
unchanged.
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Finally, we must choose the integer n. Apply Lemma l(c) to/, taking
K to be the compact set in F(D) found above. This gives a radius R,
0 < R < 1, and η > 0 so that

(5.9) δ(w,/, £>(0, R)) > η , for w €= # .

Take « sufficiently large that iίΛ < η. By (5.6),

sup | / ( z ) - g ( z ) | < η .
\z\<R

Along with Lemma 2.1(d) and (5.9), this implies that g(D) contains K.
For each ξ e U JLi-E/> with the possible exception of a set of measure

zero where \h\ does not take its prescribed radial limit, there is an arc
J(ζ) c T of angular measure 7r/8 with

(5.10) [/(£) +°Λ(ff)λ]*€=tf, forλ e / ( £ ) .

By the pigeon hole principle, there exists some arc / c Γ o f angular
measure τr/16 such that

E' = j f e U £,: / c /(f), and (5.10) holds

satisfies

l_

32

Jo

By the generalized Riemann-Lebesgue lemma (see Chap. II, Thm. 4.15
[18]).

2 ^ xAe β)Xj(einθ) dθ^\J\ \E'\ = ±\E'\t

as n -* oo. Increase our w, if necessary, so that

This implies that the set

satisfies
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Now, if £ G E" c E\ then Γ e / and/ c /(£), so (5.10) implies

Therefore, E" Π Eg = 0, while E" c Ef. Since

we see that

I.E, n ,E>| < ( l - 2-1 3) |JE>|.

Along with (5.7) this gives

\Eg\<(l-2-4)\Ef\.

This proves the claim with C = 1 — 2"14, and completes the proof of the
theorem.

REMARKS, (a) The idea behind the proof is this: By Lemma 5.2, most
points of df(D) have many directions in which a small displacement will
push them into/(Z>). We modified /by adding a "displacement" func-
tion, namely σh(z)zn, which frequently added a vector in the right
direction to bury some of the boundary. The parameter σ kept / and g
close in H°°(D), while h gave our displacements the correct lengths based
on the geometry of Ω. The n played two roles: It "randomized" the
directions of the displacement vectors, so that a certain fixed proportion
of them would hit Ω. But it also "froze" enough Ω in place so that Ω
would still be there when the displacement arrived! The randomizing
effect is very similar to what occurs with gapped power series and leads to
some of their covering behavior, see [17], [5], and [9].

(b) Results similar to Lemma 5.2 have appeared in the literature.
McMillan [6] considered simply connected domains Ω and showed that for
all w e 3Ω, with the possible exception of a set with harmonic measure
zero, limr_^o0*(r, w9 Ω) > π. Lemma 5.2 gives the bound π/2 for arbi-
trary domains. The best bound for general domains seems to be an open
question. Θksendal [10] also has related results, although he does not
concern himself with the "largest arc" as we do. However, he does
conjecture that harmonic measure on 3Ω is singular with respect to Aa for
a > 1. Were this the case, Lemma 5.2 would imply McMillan's result for
arbitrary domains. Note that the method of Lemma 5.2 will also yield area
results like those of McMillan and Θksendal. In light of the above we
conjecture that lim,.^0 θ*(ζ, r) > π, for arbitrary domains G, where ζ e 3G
is chosen outside an exception set of zero harmonic measure.
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