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RETICULATED SETS AND THE ISOMORPHISM
OF ANALYTIC POWERS

R. M. SHORTT

We study the properties of separable measurable spaces which are
"Borel-dense of order «." Those Borel-dense of order 1 are precisely
those that embed as a subset of the unit interval with totally imperfect
complement, and the nth order version is an appropriate casting of this
idea into n dimensions. The concept enables one to sharpen some known
results concerning the isomorphism types of analytic spaces. A result of
Mauldin and Shortt (separately) may be stated thus:

(1) If X is a space Borel-dense of order 1 and is Borel-isomorphic
with X X X, then X is automatically a standard (absolute Borel) space.
(Mauldin assumed X to be analytic.)

We obtain the following enlargement:
(2) If X is a space Borel-dense of order n and Xn is Borel-isomor-

phic with Xm (some m> n), then Xis an analytic space.
The requirement of nth order density is not overly severe. Comple-

ments (in a standard space) of universally null sets are Borel-dense of
every finite order, for example; the same may be said for complements of
sets always of first category or, more generally, of sets with Marczewski's
property 0 ° ) . Statement 2 might therefore be regarded as a criterion
whereby to judge which universally null sets (or sets always of first
category, or sets with property (s0)) are co-analytic. It should also be
mentioned, however, that the problem of finding a particular Borel-dense
non-Borel analytic space A for which A2 s A3 is open; it may be that
"analytic" in statement 2 can be strengthened to "standard". The
relationship between Borel-density and the Blackwell property is also
noted.

Our method of proof revolves around a strengthening of a classical
theorem of Mazurkiewicz and Sierpiίiski [10] to the effect that if A is an
analytic subset of a product Sx X S2, then the set of s in Sx such that the
section A(s) is uncountable is analytic. A multi-dimensional version of
this theorem is proposition 1 infra, wherein "uncountable" is replaced
with "non-recticulate" in keeping with the dimensions of the sections. The
fact that the projection of an analytic set is again analytic is expanded
into this multi-dimensional setting in Proposition 2. Other classical results
of Lusin and Braun do not generalize, however, as is shown by an
example.
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1. Notations, preliminaries. We work exclusively with separable

spaces, i.e. measurable spaces (X, 3S) with a countably generated and

separated σ-algebra 3$. Often, the notation of the σ-algebra is suppressed.

If A is a subset of X, then A is considered a separable space under its

relative structure £8(A) = {B Π A: B e 38). We assume that the reader is

familiar with the elements of descriptive set theory and the study of Borel

spaces, in particular the theory of standard and analytic spaces. As

references, we give Kuratowski [6], Hoffmann-Jorgensen [5], and Rao and

Bhaskara Rao [11].
In much of what follows, we shall be considering a collection of

(usually uncountable standard) spaces Sv...9Sn and subsets A of their

product S = Sλ X X Sn. By a k-slice of S we mean a set of the form

Aλ X - X An9 where k of these factor sets are singletons and the other

n — k sets Aj are equal to Sj. An w-slice of S is thus a single point of S,

whilst the only 0-slice is S itself. If {il9..., ik} is a subset of {1,...,«} of

cardinality k, and sl9...9sk are elements of Siι9...9Slk9 respectively, then

{ ί Έ S : s(ij) = sj>j = I*... ,&} is the k-slice of S over the point (sv... ,sk);
it will occasionally be identified with its projection on 11(5^: i Φ iy9

7 = 1,...,*}.
lϊ A <z S, then by a ksection of A we mean the intersection of A with

a &-slice of S\ if B is a Λ -slice of 5 over the point (sv... 9sk)9 then 5 Π ^

is the k-section of A over the point (sl9... 9sk) and is denoted A(sl9... ,5Λ).

Again, these sets are sometimes identified with their projections onto the

corresponding (n — λ:)-dimensional partial product. If k is an integer

0 < k < /?, then \\A\\k is the smallest cardinality of a collection of Λ>sec-

tions of S whose union contains A as a subset. Obviously, ||-4||0 < IMHi <

• < ||-4||π; \\A\\n denotes the cardinality of A9 whereas ||^4||0 is zero or

unity according as A is null or non-void. A set A is k-reticulate in S if it is

contained in some countable union of /c-slices of S, i.e. if \\A\\k < S o . In

S = Sλ X X Sn9 the terms "w-reticulate" and "countable" are synony-

mous, while every subset of S is O-reticulate. By a thread of S is meant an

uncountable standard subset of S, each of whose 1-sections contains at

most one point.

Let Sl9...9Sn be standard spaces and let ^ c ^ . ^ ^ c S , , be

subsets of these. Say that Xl9...9Xn arc jointly Borel-dense of order n in

Sλ,...,Sn if every analytic subset A oΐ(SιX X Sn) \(Xλ X - X Xn)

is contained in a countable union of 1-slices of Sλ X X Sn over points

in Sf\Xj9j = Ί , . . . , « . A separable space X is Borel-dense of order n if X

embeds as a subset of a standard space S in such a way that X,..., X

(tt-times) are jointly Borel-dense of order n in 5, . . . ,S («-times).
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The notion of Borel-density was studied in Shortt [12] and [13], and

we summarize a few of the main results presently:

LEMMA 1. // a separable space X can be written as a countable union

X = Xγ U X2 U of sets Xi9 each Borel-dense of order 1, then X is

Borel-dense of order 1.

Proof. Embed X in some standard space S. Then there are sets

Sv S2,..., in^(S) with X. c S, and St\Xέ totally imperfect. So = SλU

S2 U is standard, contains X, and is such that S0\X is totally

imperfect. D

LEMMA 2. If a separable space X is Borel-dense of order 1, then so is any

member of

Proof. Embed X in a standard space S with S\X totally imperfect.

Then each A in 3&(X) may be written as B Π X for some B in 3S(X).

Since B \ A c S \ X, the lemma follows. D

LEMMA 3. (1) if X is a universally measurable space (resp. space with the

restricted Baire property, resp. space with property (s)) which is Borel-dense

of order 1, then X is Borel-dense of order n = 1,2, (Such spaces are

precisely the complements of universally null sets (resp. sets always of first

category, resp. sets with property (s0)) in a standard space.)

(2) // X is Borel-dense of order 1, then X has the Blackwell property if

and only if X is Borel-dense of order 2. (For such spaces, strong and weak

Blackwell properties are equivalent.)

(3) // Xx and X2 are uncountable separable spaces such that Xλ X X2 is

Borel-dense of order 1, then Xλ and X2 are standard.

Proof. (1) Corollary 5 in Shortt [12] gives an argument for universally

measurable spaces that generalizes straightforwardly to the other cases.

(2) This is the principal result in Shortt [13].

(3) Proposition 13 in Shortt [12]; compare also Mauldin [9], Remark 4

in Grzegorek and Ryll-Nardzewski [3], and a new proof to appear in

Grzegorek [4].

The following fact will be in frequent employ throughout the sequel:

LEMMA 4. Let Aλ and A2 be subsets of the standard spaces S-^ and S2,

respectively. Suppose that g is a Borel-isomorphism of Aλ onto A2. If' S1\A1

andS2\A2 contain uncountableBorelsubsets of Sx andS2, then g extends to

an isomorphism of Sλ onto S2.



218 R. M. SHORTT

Proof. Apply the extension theorem in Kuratowski [6, §36, VII] and

the fact that any two uncountable standard spaces are Borel-isomorphic.

To conclude this preliminary section, we present some results on

subsets of a product space containing a "thread":

LEMMA 5. Let Sv...,Sn be standard spaces and let A be an uncountable

analytic subset of S = Sλ X X Sn9 each of whose 1-sections is countable.

Then A contains a thread.

Proof. A selection theorem of Lusin [7, p. 243] (also see Hoffmann-

jΘrgensen [5, III.6.7]) implies that there is an uncountable analytic Aλ c A

which is the graph of a one-one measurable function from an analytic

subset of Sx onto an (analytic) subset of S2 X X Sn. Repeating this

argument, we obtain uncountable analytic sets ^ D ^ D i 2 D ••• D An

such that At is the graph of a one-one measurable function from some

analytic subset of S, onto a subset of Sλ X •• X S M X S i + 1 X X Sn.

Every non-empty 1-section of An is a singleton set. Any uncountable

standard subset of An is a thread. D

LEMMA 6. Let Sv...,Sn and P be Polish spaces. Suppose that f:

P —> Sλ X X Sn is a continuous function whose image A = f(P) is an

{analytic) subset of S = Sλ X X Sn. Then amongst the following three

statements, (1) implies (2), and (2) implies (3):

(1) A contains a thread of S.

(2) There is a dense-in-itself sequence of points ofP on which each of the

component functions fv... ,/„ of f is one-one.

(3) A is not 1-reticulate in S.

Proof. (1) implies (2): Suppose that T c A is a thread of S. Then /

is continuous from f~ι{T) onto Γ, and the implication follows from

Kuratowski [6, §36, V].

(2) implies (3): We assume that E c P is such a countable dense-in-it-

self set and look for a contradiction. Suppose that A is contained in

Cx U C2 U , where each C, is some 1-slice of S. Put Xj = f~\Cj) for

j = 1,2, Then P = Xλ U X2 U expresses P as the union of a

sequence of closed sets. Since each of the components f l 9 . . . ,/„ is one-one

on J?, it follows that, for eachy, E Π Xj contains at most one point and is

therefore scattered. From Kuratowski [6, §34, IV, Corollary 5], E is

scattered, a contradiction. D
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Conjecture. The three conditions in Lemma 6 are actually equivalent.

Recent work of Graf and Mauldin [2, Theorem 4.4] shows this to be

true when n = 2. The case n = oo might also be of interest.

LEMMA 7. Let Sv...,Sn be standard spaces and suppose that A is an

analytic subset of the product S = Sx X X Sn. Then A is k-reticulate in

S (1 < k < n) if and only if these three conditions are satisfied:

(1) Each 1-section of A is (k — l)-reticulate. {This condition is vacuous

ifk = 1.)

(2) Given a subset F = {iv... ,/r} c {1,...,n} of cardinality r, k < r

< n, define the sets

A(F) = ( ( ^ J / r ) e ^ x --XSir:

A (Sj,..., J,.) 15 not 1-reticulate }.

£αcΛ of these sets A(F) is k-reticulate.

(3) A contains no thread of S.

Proof. The necessity of the three conditions is easily verified, if a little

cumbrous to write out. To prove sufficiency, note first that condition (2)

implies that by removing countably many A>slices of S from A, one may

obtain a set A' each of whose r-sections, k < r < n, is 1-reticulate. In

particular, each (Λ — l)-section of A' is countable, and each (n — 2)-

section of A' is contained in a countable union of 1-slices. It follows that

each (n — 2)-section of A' is countable. Proceeding in iterative fashion, we

see that each /:-section of A' is countable.

Claim. Each 1-section of A' is countable. If k = 1, this has already

been shown. For k > 1, we use condition 1: each 1-section of A and hence

of A' is (k — l)-reticulate. Because each Λ>section of A' is countable, the

claim is seen to be proved.

Now A' was formed from A by the removal of countably many

1-sections. Lemma 5 and condition 3 combine to show that A' is in fact

countable. It follows that A is Λ -reticulate. D

In addition to the role it plays in the development of the next section,

this lemma enables us to establish a special continuum hypothesis for the

cardinalities ||>4||^ as follows:

LEMMA 8. Let Sl9...9Sn be standard spaces and suppose that A is an

analytic subset of the product S = Sλ X X Sn. If \\A\\k < c, then \\A\\k

< N o , i.e. A is k-reticulate in S.
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Proof. We proceed via induction on the dimension n, noting that the
case k = n (in particular n = 1) is subsumed by the special continuum
hypothesis for analytic sets. So assume that 1 < k < n and that the lemma
obtains in dimensions 1,... ,n — 1.

It remains only to verify the three conditions set forth in Lemma 7.
Each 1-section of A is contained in fewer than c (k — l)-sections and so
from the induction hypothesis is (k — l)-reticulate. A similar reasoning
establishes condition 2: note that the pairs

\\A(Siι,...,Slr)\\k<c j\\A(F)\\k<c

ana (

are, by the induction hypothesis, equivalent. Condition 3 is immediate. D
We conclude this section with a combinatorial result to be used in the

next section. Its proof is perhaps of some independent interest.

LEMMA 9. Let Sl9...9Sn be arbitrary non-empty sets and let A be a

subset of the product S = Sx X X Sn. Let m and k be non-negative

integers, 0 < k < n. Then \\A\\k > m if and only if there is a finite subset P

of A with\\P\\k > m.

Proof. Endow the sets Sl9...9Sn with compact Hausdorff topologies
(there is such a topology on every set) and give S the corresponding
product topology. Let Jf be the hyper-space of all closed subsets of S
under the exponential topology of Hausdorff and Vietoris (v. Kuratowski
[6, §17]) and let Jf(m) be the sub-space of all unions of fewer than m
λ>slices of S. Since the map sending a point s = (sλ,... 9sk) to the Λ -slice
over s is continuous into JΓ, and because the operation of union is
continuous, it follows that Jf(m) is compact. ( X is also compact, but this
will not be needed.)

Now let K be the least cardinal number for which there is a subset P
of A or cardinality /c such that \\P\\k > m. It suffices to prove that K is
finite. Supposing contrariwise that K is infinite and employing a well-
ordering, one may write P as an ascending union Po c Pλ c c Pa c
• of sets indexed by all ordinals a < /c, with each Pa of power less than
K. For each a < /c, let Ka be a member of Jf(m) with Pa c Ka. By the
compactness of Jf*(m), there is a sub-net {.fiΓα(λ)}λ of [Ka}a converging
to some K in Jf(m). It follows that K contains each Pa and so P c K, a,
contradiction. D

2. Reticulate sections. We begin by recalling the classical theorem
of Mazurkiewicz and Sierpiftski [10] on sections of an analytic set.



RETICULATED SETS 221

THEOREM (Mazurkiewicz-Sierpihski). Let A be an analytic subset of the
product Sx X S2 of standard spaces Sx and S2. Then the set {s e Sτ: A(s) is
uncountable } is analytic.

Proof. In addition to the original 1924 paper, one might also consult
Kuratowski [6, §39, VII] and Hoffmann-Jorgensen [5, III.6.1].

The following generalization of this theorem will serve as our primary
tool for investigation of product isomorphisms.

PROPOSITION 1. Let Sθ9 Sv...,Sn be Polish spaces and let B be an
analytic subset of S = So X Sx X X Sn. For each integer k, 1 < k < n,
the set

A = {s e So: B(s) is not k-reticulate in Sx X X Sn}

is an analytic subset of So.

Demonstration. We proceed by induction on the dimension n, noting
that the case k = n (in particular n = 1) is the classical Mazurkiewicz-
Sierpiήski Theorem. So assume that 1 < k < n and that the proposition is
true in dimensions, 1,2,... 9n — 1.

In the case where k = 1, define Ao to be the null set. If k > 1, then
for each / = 1,...,n, define

Bt = {(s, s^ e SQ X Si'. B(s, s,) is not (k - l)-reticulate}

and let Ao be the union of the projections of the Bt onto So. By the
induction hypothesis, each Bt (and hence Ao) is analytic.

Given a subset F = {i l9...,im} of {1,...,n} of cardinality m, k < m
< n, define the sets

B(s, 5f ,... 9s ) is not 1-reticulate}

and

A(F) = {s G So: B(F)(s) is not fc-reticulate).

Again using the induction hypothesis, we see that the sets B(F) and A(F)
are analytic. For each m, k < m < n, define Am to be the union of all
A (F) as F ranges over all subsets of {1,..., n} of cardinality m.

Since B is analytic, there is a Polish space P and a continuous
function f:P-*S mapping P onto 5. Let /0, / x,... Jn be the components
of the function /. Define Z to be the (Polish) space of all sequences in
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P°° = P X P X that are dense-in-themselves. Cf. Kuratowski [6, §30,

XII]. Define An to be the set of all s in So such, that there is a

dense-in-itself sequence of points of P on which:

(1) fQ is identically equal to s, and

(2) each of the functions fl9 ...,/„ is one-one. An is the projection on SQ

of the following subset of So X Z:

analytic.
U • u which

D

Since this last is a G8 set, its projection

Lemmas 6 and 7 imply that >4 = Λ

fact establishes the proposition.

COROLLARY. Let Sθ9 Sl9...9Snbe Polish spaces and let f:D-^Sobea

measurable function defined on an analytic subset D of Sλ X X Sn. For

each integer k,\ < k < n, the set

[s ^ S0:f~
ι(s) is not k-reticulate in Sx X • • • X S j

is an analytic subset of So.

Proof. Since / is measurable, the graph of / is an analytic subset of

So X Sx X - - X Sn; the sets f~ι(s) are sections of this graph over points

s in So. The previous theorem now applies. D

The following result elaborates upon the theme that the projection of

an analytic set is again analytic. Compare Hoffmann-Jorgensen [5, III.5.1].

PROPOSITION 2. Let A be an analytic subset of the product S0X Sλ X

• X Sn ofstandard spaces. Let m and k be non-negative integers 0 < k < n.

Then the set

A(m9k)= {s^S0:\\A(s)\\k>m}

is analytic.

Demonstration. Noting that A(l, k) is merely the projection of A onto

So and is therefore analytic, we may assume that m > 2; also, we take

k > 1 (k = 0 is trivial). For each positive integer /, define Aι to be the set

of all s in So such, that A(s) has a subset P = {pl9...,/?,} of cardinality

not exceeding / for which \\P\\k > m. With this notation, we do not mean

that the/?/s are necessarily distinct. Such a set P is not contained in any
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union of m - 1 /c-sections of S = Sx X X Sn. Otherwise put, let Jf be

the collection of all /c-element subsets of {1,... ,Λ } then for any subset J^

of *yΓx {1,...,/} of power m — 1, there is some point /?r in P not

contained in any of the ^-sections of S over the points (Pj(iι),... ,pj(ik))

for {/*!,... Jk) X {7} G J*\ Here, pj(i) denotes the ith co-ordinate of pJm

Thus, (Pj(i1),...,Pj(ik))*(pr(iι)9...,pr(ik)) for each {il9...9ik} X {y}

It therefore becomes possible to write At as the projection on So of the

following subset of So X S X X S:

i

Π U Π{(s9pl9...9pi):(s9p1)9...9(s9pi)^A

^nd (pj(iι),...,pJ(ik)) Φ (pr(h), ,pr(ik))}>

where the index Granges over all subsets of JVX {1,...,/} of cardinality

m — 1 and where the second intersection is taken over all elements

{i l9..., ik } X {j} of J*\ Thus, each Aι is an analytic subset of SQ.

By Lemma 9, A(m, k) = Am U Am+1 U ^4 m + 2

 u *''» andso^4(m, fc)

is analytic. D

COROLLARY. /« the same content as the proposition, the sets

are also analytic.

Proof. Immediate from the identity A (oo, k) = Π™=ιA(m9 k). Π

COROLLARY. Let S09 Sv.. .,Snbe standard spaces and let f: D -> Sobe

a measurable function defined on an analytic subset D of Sx X X Sn. For

each k,0 < k < n, and m > 0, the set

is an analytic subset of SQ.

Proof. Apply the preceding proposition to the graph of / and its

sections f~ι( s). Π

A classical result of Lusin [7, p. 257] runs as follows:

THEOREM (Lusin). Let A be an analytic subset of the product Sλ X S2 of

standard spaces Sλ and S2. Then the set {s e Sx: A(s) is singleton} is

co-analytic.
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Generalizations and supplements for this theorem are to be found in
Braun [1], where the phase "is singleton" is replaced by "contains an
isolated point" and "is countable" &c. Unfortunately, the analogous
results do not hold in the present context, at least not without some extra
restrictions. We conclude this section with an example to illustrate the
point.

EXAMPLE. Let Sλ and S2 be standard spaces and let B be a Borel
subset of Sx X S2 whose projection onto Sλ is not Borel. Define/: B -> Sλ

to be projection onto the first co-ordinate. Then / ( i ) = { j e Sλ:
11/~ι(s)111 = 1} is not co-analytic.

A satisfactory generalization of some of Lusin and Braun's other
results might yet be attempted; it may be impossible, but worth it
nonetheless.

3. Isomorphism of powers. The concept of reticulation gives some
insight into the structure of product spaces; in particular, it relates the
regularity of certain Borel-dense spaces to their behavior under Cartesian
multiplication. As long as Borel-dense spaces and their totally imperfect
complements continue as objects of study, such results will have their
place. For example, proposition 3 suggests that some sort of dimension
theory might be developed for Borel-dense spaces.

We are now ready for our principal result on isomorphisms of
product spaces. It is interesting to note that the full strength of proposi-
tion 1, i.e. for k = 1,...,«, is used in the proof. By the notation Xm is
meant the m-fold product of the space X with itself, with the convention
that X° is a one-point space.

PROPOSITION 3. Let X be a separable space, Borel-dense of order n,

where n is a fixed positive integer. If Xn is Borel-isomorphic with a product

Xn~ι X An X An + ι, where An and An+1 are uncountable separable spaces,

then X is analytic.

Demonstration. First note that for n = 1, this is part 3 of Lemma 3: in
this special case, it can be concluded that X is a standard space. For the
rest of the proof, we assume that n > 2.

Case I. Both of the spaces An and An+ι are standard. Let S be an
uncountable standard space. In this case, Xn and Xn~ι X S X S are
isomorphic. Since S and S X S are isomorphic, we have the isomorphisms
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X" ^ I ^ X S s X»~ι xSX S s X"~ι X XX S. By taking A'n = X

and v4'ί+1 = 5, we see that case 1 reduces to

Case II. At least one of the spaces An, An+1 is not standard. We
assume that X is not analytic and derive a contradiction. Suppose that X
is Borel-dense of order n in the (uncountable) standard space S and that
g: Xn -» Xn~ι X An X An+ι is a Borel-isomorphism. By Lemma 4, g
extends to an isomorphism / of Sn onto a product of standard spaces
Sλ X S2 X X SΛ X Sn + 1. Let the components of / be denoted by
fv fi> »Λ+1 a n c * consider the set

^ = [s e SΊ:/ΓHΌ is not 1-reticulate in S"}.

Since ΛΓ is Borel-dense of order n in S, one has J?! c X. From the
reticulation theorem, Bx is analytic, and so there must be some xx in X
withfϊ\xι) 1-reticulate in Sn. Now consider the set

B2 = { Λ €Ξ S2: / [ " ^ ) Π/2~^j) is not 2-reticulate in Sn}.

The reticulation theorem, applied to the restriction of/2 to/1"
1(x1), shows

B2 to be analytic. Given s & S2\X, we see that fϊι(xι) Π/^1(1y) is a
1-reticulate subset of Sn contained in Sn \ Xn. Its intersection with any
1-slice of Sn may therefore be considered a subset of Sn~ι\Xn~ι. It
follows from the (n — l)-order Borel-density of X that/f^ q) Π / f 1 ^ ) is
2-reticulate in Sn. So B2 c X, and so there is some x2 in X with
/ΓH Xi) n fϊ\xi) 2-reticulate in Sn.

This process continues until elements xv...,xn_1 oΐ X are produced
with/fVi) n * * n Jn-i(xn-ι) a n (n ~ l)-reticulate subset of Sn. Then,
under the map /~\ the space {xx} X ••• X{xn_ι} xAn X An+ι and
hence An X An+ι is Borel-isomorphic with an (n — l)-reticulate Borel
subset of JΓ". But any (n — l)-reticulate Borel subset of Xn is isomoφhic
with a countable union (in Sn) of Borel subsets of X and so is Borel-dense.
By part 3 of Lemma 3, An and An+ι must be standard, a contradiction. D

PROPOSITION 4. Let X be a separable space, Borel-dense of order n. If
X" is Borel-isomorphic with a 1-reticulate Borel subset of itself, then X is
analytic.

Demonstration. This is an application of the same method as was used
in the proof of Proposition 3, Case II. The details are omitted.

COROLLARY. Let X be Borel-dense of order n. If Xn is Borel-isomorphic
with the direct sum of a finite or countably infinite number of copies of Xn~ι,
then X is analytic.
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Proof. Such a direct sum may be regarded as a 1-reticulate Borel
subset of Xn. The preceding proposition now applies.

Numerous other sequelae of Propositions 3 and 4 could now be
added, all similar in character to the foregoing corollary. This similarity
precludes a listing here.

Added in proof. H. Sarbadhikari has established the conjecture men-
tioned after Lemma 6.
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