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FREE PRODUCTS OF TOPOLOGICAL GROUPS
WITH AMALGAMATION

ELYAHU KATZ AND SIDNEY A. MORRIS

It is proved that the free product of any two &ω-groups with a
compact subgroup amalgamated is a Aω-group, and in particular, Haus-
dorff.

1. Introduction. In recent years much work has been done on
describing the topology of free products of topological groups (see for
example [1, 3, 8, 10, 12, 13, 15]). From there it is natural to progress to
free products with amalgamation.

One would hope that the free product with amalgamation of any
Hausdorff topological groups exists, is Hausdorff and its underlying
group structure is the amalgamated free product of the underlying groups.
This would include as a special case Graev's theorem [2] that the free
product of Hausdorff groups is Hausdorff. As his proof is certainly
non-trivial, it should not be expected that this "hope" will be easily
verified, even if the result is true.

The first contribution to this problem was by Ordman [13], who
showed that the amalgamated free product of certain locally invariant
Hausdorff topological groups is Hausdorff. The next contribution was by
Khan and Morris [5] who proved the Hausdorffness of the free product of
Hausdorff groups with a central subgroup amalgamated. This has recently
been extended by Katz and Morris [4] to free products of A:ω-groups with
a closed normal subgroup amalgamated.

Most of the work on free topological groups and free products of
topological groups in fact deals with topological groups which are kω-
spaces. Therefore, the result we would like to have is that the amalga-
mated free product of A:ω-groups is a &ω-group. This would imply La
Martin's theorem that epics in the category of &ω-groups have dense
range. (See [6], [11] and [14].) We prove here that the free product of any
two λ:ω-groups with a compact subgroup amalgamated is a &ω-group and
in particular Hausdorff. This result includes a large class of examples not
covered by [4] or [13], since every connected locally compact Hausdorff
topological group, G is a kω-gτoup and has a compact subgroup K such
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that G is homeomorphic to R" X K, for some Euclidean group R". Such
examples with G not locally invariant and K not normal exist in profu-
sion.

2. Definitions and statements of the main result. The standard
references for amalgamated free products of groups are B. H. Neumann
[9] and Magnus, Karrass and Solitar [7]. For completeness we include
some definitions here.

DEFINITION. Let A be a common subgroup of groups G and H. The
group G * A H is said to be the free product of G and H with amalgamated
subgroup A if

(i) G and H are subgroups of G * A H,
(ii) G U Hgenerates G* AHalgebraically,

(iii) every pair φl9 φ2 of homomorphisms of G and H, respectively,
into any group D which agree on A, extend to a homomorphism Φ of
G* AH into D.

DEFINITION. Let A be a common subgroup of topological groups G
and H. The topological group G * A H is said to be the free product of the
topological groups G and H with amalgamated subgroup A if

(i) G and H are topological subgroups of G * A H,
(ii) G U Hgenerates G* AHalgebraically, and

(iii) every pair φl9 φ2 of continuous homomorphisms of G and H,
respectively, into any topological group Z>, which agree on A9 extend to a
continuous homomorphism of G * A H into D.

Our main result is the following:

THEOREM. Let F and G be kω-groups with a common compact subgroup
A. Then the free product of F and G with A amalgamated is a kω-group. (In
particular, the amalgamated free product F * A G is Hausdorff.)

3. Yoffi representations. To prove the main theorem it suffices to
show that the kernel, K, of the canonical homomorphism Φ: F*G ->
F * A G is closed. The first step in doing this is to find a nice representa-
tion for the elemnts of K. This will be achieved in Proposition 1.

NOTATION. We denote the embedding map of A in F by / and the
embedding map of A in G by g.

It is readily seen that K is the normal subgroup generated by
{f(a)g(a)~ι: a e A}. Further, observe that each w G Kh&s a representa-
tion.
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where for eachy, ty t lies in F or G, and tjt and tJti+ι do not both belong to

F o r both belong to G, and each υt G {f(a)g(a)~ι

9 g(a)f(a)~ι: a G ^4}.

DEFINITIONS. For each representation of the form (*) we define the

weight of the representation t o b e a s e q u e n c e ( a l 9 a2, a3,... , a n , . . . ) , w h e r e

a( is the number of # 's equal to the number i. We well-order the set of

sequences of saying (al9 a29... 9an9...) < (a'l9 a'l9... 9a'n9...) if and only if

at = a\9 for / > n and an < a'n.

Given any word w it may have many representations of the form (*).

We define the weight of the word w to be the least weight of all the

representations of w.

We shall see later, when dealing with transpositions, that a word need

not have a unique representation of least weight.

REMARK 1. Let w have representation (*) of least weight,

(i) If υt = /(ajgia;)-1, then tιqι Φ / ( α , ) " 1 and *r£ Φ g ( β | ) , since

otherwise w would have a representation of smaller weight.

(ii) No tiX tt gVjt^q t~l equals xλx2 xr where each xy =

^M * *" •*./,« f(bj)g(bj)~ιs~n - - - s~l, where each 5f lies in F or G and st

and 5 / + 1 do not both belong to F or both belong to G and bj G ̂ 4, for
w

7

 < ?i»7 = 1,2,... ,r. (This would contradict the fact that the representa-

tion of w has least weight.)

(iii) If

"' t

••• sqυs~ι

where υ = f(a)g(a)~ι, a e v4, and each s, <Ξ F or G then

(iv) Let

Put a = a~\ If /7 ̂  e F, put / = tιqf{a^ S O / G F . If t^ G G, put

ί = ti9qιg(at)9 so ί e G. Then in both cases
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The above rewriting shows that we can assume that if (*) is a

representation of a word w e K, then each υt is of the ίoτmf{ai)g{ai)~1.

Because, if it is not, we can change the representation so that it is.

Further, the change of representation does not affect the weight. So each

w G ί has a representation of the form (*) of least weight, with each

vi = / ( a ^ g K ) " 1 , for some a^A.

NOTATION. From now on whenever we say we have a representation

of the form (*) we mean that vt = f(ai)g(cιiy
1

9 for each /.

We need some further restrictions on the representations we consider.

DEFINITIONS. Let xλ = tlλ tlqj{aι)g{a1)~ιt^ι t^l and x2

(i) Let qλ > q2 and tltj = t2j for 1 <j < q2 — 1 and tlqit2q2f(a2) =

e. If qλ = q2 then qis said to have an even link with x2. If qx Φ q2 then xλ

is said to have an odd link with x2.

(ii) Let qλ < q2 and thJ = t2j for 1 <j < q — 1 and g(cι1)~1t{qit2qι

= e. If qλ = q2 then xx is said to have an even link with x2. If ^ Φ q2 then

xx is said to have an odd link with x2.

(in) If xλ does not have an even link with x2 or an odd link with x 2,

then xx is said to have a neutral link with x 2 .

(iv) A representation J C ^ xs for w e K, where each x. = tiX

tiyqvit^q

i

i - - - /Γj1, for ι;J. = f{ai)g{ai)~ι, is said to be jwjjfi1 if it has least

weight and each x. has a neutral link with xi+ι.

LEMMA 1. Let the representation (*) of w ^ K have least weight and be

such that qt = qi+ι for some i. If tUj = t i + l p j = \,...Xqi- 1), vt =

f(ai)g(ai)~1andvi+ι =f(ai+ι)g(ai+ιy
1thent^ti+l9qi+j(ai+ι) Φ e and

g(ai)~1tj~q

iti+ι Φ e\ that is, xt does not have an even link with xi+v

Proof. Suppose g(ai)~1t~q

iti+hq+i = e. Then

So

λA Hebrew word meaning nice.
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t '" ^

M~\l*ι+ι.q^

'

'(i + l),!

This is clearly a contradiction to (*) having least weight. So

tf/Γ^Λ+i^+i φ e S ί m ί l a r l y At c a n b e s h o w n t h a t ^//+u + ι /( f l /+i )

NOTATION. Let Jf = U^iuvu'1: M e ( F u G ) " , ϋ=f(a)g(ay\
a & A), where (F U G)n denotes the set of words which are the product
of at most n elements from FUG.

*LEMMA 2. Let xλ = ί u ^ / ( ^ g K Γ 1 ^

*2,1 * ' * t2Jq2f(
a2)S(a2)~lί2X ' ' ' ^,ί ̂ e l#/l ̂  ^/ X l ^ β 5 aΆ °^ ^n^ W^ X2

then xλx2 = X2xi> ^Λere x'2 and x[ are in X, the weight of the representation
xτ x2 equals the weight of the representation x'29 x[9 and xf

2 has a neutral link
with x[.

Proof. Without loss of generality, assume qx > q2. Then tλj = t2j for
1 < j < q2 - 1 and t^qtXqJ{a2) = e. Put

and

Then X2xί h a s the required properties.

DEFINITION. The change of representation from xxx2 to x2x[, when
qx > q2 or when q2 > ql9 is called a transposition.

PROPOSITION 1. Each w e Khas ayoffi representation.
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Proof. Choose a representation of w of the form (*) which has least

weight. Let this representation be w = xx xs, where xt = tιX

* w h e Γ e Vi = f(ai)g(ai)~l f θ Γ ί = I,- ,S-

Our proof will be by induction on s. Firstly consider the case s = 2;

that is, w = xλ - x2. If JCX has a neutral link with xl9 then this is a yoffi

representation. Observe that by Lemma 1, xλ cannot have an even link

with x 2 . So we let xλ have an odd link with x2. Then by Lemma 2 we can

apply a transposition to obtain x2x[ such that this representation also has

least weight and x2 has a neutral link with x[. Hence x2x[ is a yoffi

representation of w.

Now suppose that every word of the form w = xλx2 — xn9 for

n < 5, has a yoffi representation. Then consider any word
w = xλx2 ••• xs+ι

where the weight of the word w equals the weight of the representation
xi ' " ' χ

s+v Clearly the weight of the word xγx2 xs equals the weight

of the representations xλ xs. Thus by the inductive hypothesis it has a

yoffi representation of the same weight. So without loss of generality we

can assume that it is xλ xs. So each xi has a neutral link with xi+ι for

Ϊ = 1,... ,s — 1. If xs has a neutral link with xs+1 we are done. If not, we

perform a transposition of xsxs+ι to obtain from w the representation

xxx2 xs-ιx's+ιx's. If xs-ι has a neutral link with x's+l9 we are done. If

xs_λ has an odd link with x's+ι then we apply a transposition of xs-ιx's+ι

to obtain the representation XχX2 '''
 χ

s-2χs'+iχ's-ιχs- By Lemma 3

(proved independently below) x's_ιx's has a neutral link. Once again, if
χ

s-2x"+ι has a neutral link we are done. If not, apply a transposition of
χ

s-2x's+ι t o obtain xxx2 ••• Xj-ax/ΐi xί-i xί-i xί By Lemma 3 again

X^_2JC^ has a neutral link. Continuing this process, if necessary, we obtain

a yoffi representation. So the proof is complete once we have Lemma 3.

LEMMA 3. Let xxx2xz be a representation of a word w such that the

weight of the word w equals the weight of the representation xλx2x3. If xλ has

a neutral link with x29 then xλx2x39 xλx
r

3x2 or x"x[x2 is a yoffi representa-

tion where x'3x2 is a transposition of x2x3 and x"x{ is a transposition of

xxx'3.

Proof. If xλx2x3 is not a yoffi representation let

xi = */i * W ^ ) ^ / ) " 1 ^ ' ' * 'M> f θ Γ / = 1 ? 2 ' 3

We distinguish

(i) 4i < #2

(iv) q2 < q3

six

<

<

cases

03*

01.

(ϋ) qx <

(V) ^3 *c 9 <

; 02»

C 02»

(iii)

(vi)

03 "

^ 2 "c q <

- 0i,

= 03-
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Consider case (i). We claim that xλ has a neutral link with x'3 since xλ

has a neutral link with x2 and the first qλ elements of x2 and x'3 are the

same. Hence xxx3x2 is a yoffi representation. Exactly the same argument

works in case (ii). Now consider case (iii). If xx has a neutral link with x'3
we are done. If not, consider x3x[x2. We have to show that x[ has a

neutral link with x2. In obtaining x2 from x2 we replace only t2 ^ by /3

and *2,<73 + i by ̂ (^3)^2,^+1 a n c * in obtaining x[ from JCX we replace only

Kq3

 b y '3,*, a n d *iffc+i b y S(*3)Ί,fc+i> because x 3 = * ; in this case. The

fact that xλ has a neutral link with x 2 then clearly implies that x[ has a

neutral link with x2. Hence x3x[x2 is a yoffi representation.

Cases (iv)-(vi) are proved in the same fashion.

Finally observe that q2 = q3 implies that x2 has a neutral link with x3

and so xιx2x3 is a yoffi representation, qx = # 2 implies x3x[x2 is a yoffi

representation, and qx = #3 implies xλx3x2 is a yoffi representation. This

completes the proof of the lemma.

4. The reduced lengths of elements of K. The key results of this

section are Propositions 2 and 3 which imply that if w = xλx2 - - - xs is a

yoffi representation and w has reduced length < n (that is, w e ( i 7 U G)"),

then s < n and 2 ^ -f 1 < An, for i = 1,2,... ,5.

LEMMA 4. Let w G Khaυe representation (*) of least weight. Ifqi > qi+1

for some i and t ω = ti+ιpforj = 1,...,# / + 1, /Ae/t ί/ l̂+1 + i) * f(<*,+i).

Proof. Suppose / / ( f t + 1 + 1 ) = / ( Λ , + I ) . Then

'('/.I

As the weight of the representation on the left side of the equality is

greater than the weight of the representation on the right side, we have a

contradiction. Hence tiq^ι+ι Φ f(ai+1).
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PROPOSITION 2. Let w e K and have yoffi representation (*). Then for
each i e { 1 , 2 , . . . , 5 } , g ί f l , . ) " 1 / ^ ^ / + u ••• ti+h(Ji+ιf(ai+1) in re-

duced form equals gιfιg2fi ''' fk where each f ^ F\ { e}, Sj ^ G\ {e}>
andki > 1.

Proof. It suffices to show that in putting the relevant word in reduced
form, the elements g{at)~ι and/(α / + 1 ) do not get cancelled. Indeed, we
prove only that/(α / + 1) does not get cancelled, as the other follows by an
analogous argument. The element f(ai+ι) could get cancelled out only in
one of the following ways; but all are impossible, as indicated by the
bracketed remarks.

(1) t7+\q+i=f(ai+1) (Remark l(i))

(2) f(ai+1) = / i f f t + i + 1 and

' , ,y = '<i+i),y> J = 1 > >4f/+i ( L e m m a 4 )

(3) tZLhi+m+J^i+i) = e a n d

*ij = hi+VJ' 7 = ! ' ' ̂ /+1 ~ ! (y° f f i implies neutral link).

Thus/(α / + 1) does not get cancelled out. So we see that the proposi-
tion is true.

REMARK 2. Proposition 2 implies that if w = xλ xs is a yoffi
representation and has reduced length < «, then s < n.

LEMMA 5. Let w e K have yoffi representation (*). If the reduced length
of w' = Ί,i Kqυι - - vs^s\l)qsi - ί("L1)fl is m, then the reduced
length ofw is greatre than or equal torn — 3.

Proof. By Proposition 2, in order to obtain the reduced form of w
from the reduced form of w' it suffices to ascertain what is the reduced
form of

From what we have said earlier it is obvious that the reduced length of
g K - i Γ 1 ' , " - 1 ! , ^ * ts,q,f(

as)is grater than or equal to \qs_λ - qs\ - 2.
The reduced length of g(as)t~ι

qs t~l is greater than or equal to qs.
Noting that the length of tlλ vλ f{as_λ) is greater than or

equal to m — (qs_λ + I), we see that the reduced length of w is greater
than or equal torn - qs_λ - 1 + \qs_λ — qs\ — 2 + qs> m — 3.
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REMARK 3. Of course the bound m — 3 in Lemma 5 is a crude one,
but it serves the purpose.

PROPOSITION 3. Let w e K have yoffi representation (*). If the reduced
length ofw is n then 2qt -f 1 < n + 3s, for each i = 1,... >s.

Proof. Consider tiλ υi, tj^. Successively multiplying on the
right or left with words of the same kind, we obtain the word w. In so
doing, we can apply Lemma 5 above s — 1 times, and the result follows.

REMARK 4. Combining Remark 2 and Proposition 3 we obtain the
desired result 2qi 4- 1 < 4H.

5. Proof of the Theorem. To prove the main result, which is the
theorem stated in §2, we must now study the kω structure.

It is known [12] that the free product of two fcω-groups is a /cω-group.
More particularly, if F and G have kω decompositions F = Un Fn and
G = Un Gn then the free product has kω decomposition

For convenience, we assume f(A) c Fv g(A) c Gv Fn = F~ι, Gn = G~\
FnFm c F M + m and Gβm c G n + m .

Recall that Φ is the canonical continuous homomorphism F*G -»

NOTATION. Let

1 : «e(F,u Gj",ί; =/(fl)g(fl)"\fl e

J Γ - U * n and Yn = {Xn)
n.

Here (X n) n denotes the set of all words which are the product of at most n
elements from Xn.

Clearly each Xn and Yn is compact, and K = U ^ j Yn.

REMARK 5. To prove that K is closed, it suffices to show that for each

(1) KD(FnUGn)
nQY2ns.

This suffices, since then we would have

κn(Fn u Gn)
n = κn(Fn u Gn)

n n Y2n, = y2li, n(f; n G j w
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which is compact, and hence we would have K closed in F * G by the

A:ω-condition.

Proposition 1 implies that each w ^ K Π (FnU Gn)
n has a yoffi

representation (*). Remarks 2 and 4 then imply that s < n and 2qt, + 1 <

4«, for each i. To complete the proof of (1) above (and hence of the

theorem) it suffices to show that each t i } e F2n3 U Gln*. This is a conse-

quence of Proposition 4, proved below.

PROPOSITION 4. Let w ^ K have yoffi representation (*). If w e

(Fn U Gn)\ then each tUJ e Fn*+n U Gn,+n.

Proof. By Proposition 2, we know that w in its reduced form is the

product of the reduced form of the following blocks:

Ί,i *i.jM; gM^ fM', gW' /W ;

The reduced form of w in i 7 * G is unique, so each block in the reduced

yoffi representation of w matches a part of the reduced form obtained

from the word w e (Fn U Gn)
n. Thus any reduced block of w can be

expanded to part of a word in (Fn U Gn)
n and is therefore itself in

(Fn U G J " .

Consider the block Bo = ί u tlqj{ax). Recalling that f(A) c F l 9

g(Λ) c G1 ? FWFW c Fn+m and GrtGw c Gπ + l f I, and noting that each thJ

(1 <j < q — 1) can be expanded to a part of a word in (Fn U GΛ) n, at

worst a product of « elements all from Fn (or Gπ) it follows that

thJ e Frt2 U Gn2. If /1>ft <= F, then, at worst ^^/(flO e i^2 ? so / l f f t e i y + 1 .

Therefore /x 7 e /^ 2 + 1 U Gn2+ι, ΐorj = 1,... , ^ .

Consider the block Bλ = g(aλ)~ι / ( α 2 ) E a c ^ element in 5 X is

also in the reduced form (of BJ or is amalgamated by other elements of

Bv Such an amalgamation can involve at most three elements. At most

one of these three is a t2J. Of the others at most one is a tιk, and the

other is in f{A) U g(^ί). As the elements of the reduced form of w lie in

Fni U GW2, we see that each element of Bλ must lie rnF2n2+2 U G2n2+2.

We now proceed to consider in a similar fashion 5 2 , 5 3 , . . . ,BS_V We

thus obtain that each tUj that appears in w is an element of Fs{ni+1) U

Gs(n2+1). The result now follows by observing that s < n.

REMARK 6. To prove the theorem, it suffices to show that the kernel K

of Φ is a closed subgroup of F* G. Observing that Φ(F) Γ)Φ((FnU Gn)
n)

Q Φ([Fn2 U (Gn2 Π A)]n) it then follows that F is a closed topological
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subgroup of F*AG. Similarly G is seen to be a closed topological
subgroup of F * A G also.

We have thus completed the proof of the theorem.

REMARK 7. We conclude by noting that if G is any connected locally
compact group and K is a maximal compact subgroup, then the amalga-
mated free product G * κ G is seen, from our Theorem, to be a A:ω-group
(and hence Hausdorff). This example could not be deduced from Ordman
[13], Khan and Morris [5] or Katz and Morris [4].

REMARK 8. Our Theorem includes the case when K is a finite group. It
should be interesting to investigate this case further.
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