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DEGENERATE SECANT VARIETIES
AND A PROBLEM ON MATRICES

NORMAN GOLDSTEIN

We show that if a developable ruled surface of a curve in complex
projective space has a degenerate secant variety, then the surface already
lies in a IP4. This result eliminates a redundancy in the list of Griffiths
and Harris, of surfaces that have degenerate secant varieties.

1. Introduction. A d-dimensional variety X c P£, N > Id + 1, is
said to have a degenerate secant variety, Sec(X), when dim(Sec(X)) <2d.
In [1, Results 5.37, 6.16-18], Griffiths and Harris prove the Proposition:
Let X c P N be a surface having a degenerate secant variety. Then either
(i) X c P4, (ii) X is a cone, (iii) X is the Veronese surface, or (iv) X is
developable.

It is easy to show that any of conditions (i), (ii) or (iii) implies that X
has a degenerate secant variety. The main contribution of the present
paper is the Proposition (3.5): If a developable surface, X, has a degener-
ate secant variety, then X is contained in a P 4.

Combining the above two results, we obtain

THEOREM (1.0). A surface X<zPN has a degenerate secant variety
precisely when one of conditions (i), (ii) or (iii) above is satisfied.

It is interesting to note that a developable surface always has a
degenerate tangent variety i.e.

dim(Tan( X)) < 3 [ 1, Result 5.37]

this also follows from our Lemma (3.3).
We will see in §3 that a variety Xd c PN gives rise to a family of

(N — d) X (d + 1) matrices {A(x)} where x belongs to some poly disc
U c Cd. Let I I denote "determinant". Result (3.2.1) states that

dimSec(X) < 2d

<=> mnk(A(x) - A(y)) <d Vx,ytΞU

<=» \Aτ(x) - A*(y)\ = 0 for all (d + l)-tuples of rows

/ = (io,il9...,id).
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The matrix problem inspired by this condition of degeneracy is:

Characterize those 1-parameter analytic families of n X n matrices

(* belongs to a disc ί / c C ) such that

(1.1) \A{t) - A(s)\ = 0 Vs,teU.

We say that such families are degenerate. For n = 1, of course,

"degenerate" is the same as "constant". Letting s -> / in (1.1), we find

that |^4'(/)| = 0 for a degenerate family {A(ί)}; however it is easy to

construct examples where this condition alone does not imply degeneracy

of the family. The next result includes the solution for n = 2 of the

degeneracy problem (1.1).

PROPOSITION (4.5). Let {A(t)} be an n X n family such that A\t) has

rank 1 for all t e U. Then {A(t)} is degenerate precisely when

(1.2) there are constant vectors u,w (u Φ 0) such that either

A(t)u = w or u'A(t) = w* V i e t / .

Of course, for any n X n family, if condition (1.2) is satisfied then the

family is degenerate. We call such families trivially degenerate. When the

family arises geometrically, as described in §3, then the two cases (1.2) of

trivial degeneracy correspond, respectively, to X being a cone or X being

contained in a hyperplane.

For n > 3, there are nontrivially degenerate families. The Veronese

surface furnishes such an example:

A(x,y) =
x2 2x 0

y2 0 2y
xy y x

Here, x and y may be viewed as functions of /.

I do not know the structure of the general degenerate family for

n > 3. Moreover, surfaces give rise to 3 X 3 families. However, when the

surface, X, is developable, the family is actually of 1 parameter and A'(t)

has rank 1. We then apply Proposition (4.5) and deduce that X lies in a

hyperplane when Sec( X) is degenerate.

Motivation to study secant varieties of surfaces arose from the Defini-

tion ([2, p. 257]): Let«S c P 5 be a smooth quadric hypersurface. A surface

X c Si is said to have rank r when for generic z e 3, there are precisely r

sets {xλ, x2] ^ X9 X\ Φ x2>
 s u °h that the line through xλ and x2 passes

through z.
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One can show that rank(Λ") = 0 precisely when Sec(X) Φ P 5 ; this
happens exactly when X a P 4 or X is the Veronese surface. (A cone in 3,
is contained in the P 4 tangent to & at the vertex of the cone.)

2. Notation. The setting for htis article is TV-dimensional complex
projective space, P 4 ; it is the set of all linear 1-dimensional subspaces of
C N+1. The methods we use are local and analytic in nature. For simplicity
of presentation, however, we will consider only algebraic subvarieties of
P N, i.e. Zariski open subsets of closed subvarieties of P N.

A line in P N is a linear P 1 c P N. A line is said to be a secant line to a
variety X cz PN when the line contains at least two points of X. The secant
variety of X, Sec( X), is the closure of the union of all the secant lines to
X.

Homogeneous coordinates in PN are denoted by (z 0 , . . . 9zN). Let X
be a ^-dimensional sub variety of P N. The regular (i.e. manifold) points of
X are denoted by Xreg. Let Δ c X x X be the diagonal, and Xo c Xτeg the
open subset lying in {z0 Φ 0}. Let ^ 0 = (Xo X X 0 \Δ) X P 1 , and σ:
3C0 -> P N the map defined by σ(x, y9 λ, μ) = λx + μy, where x0 = y0 = 1
and (λ, μ) ^ P 1 . Then SC§ is a 2d 4- 1 dimensional smooth variety and
σ(^*0) is a dense constructive subset of Sec( X). Assuming that N > 2 d +
1, we say that Sec(X) is degenerate when dimSec(X) < 2<i. Sard's theo-
rem provides a local criterion for degeneracy.

, π\ Sec(X) is degenerate <=> the differential rank of σ is at
^ ' ' most 2 d at each point of ^ 0 .

Unless otherwise stated, a P r c P N refers to a linear subspace. When
JC ^ Xreg, there is a well-defined P^ tangent to X at x, and we denote it as

A variety I c P ̂  is called a cone when there is a sub variety F c P ^
and a point z e P N such that X is the union of all the lines that contain z
and meet Y.

We are mainly concerned with surfaces, i.e. 2-dimensional varieties.
The Veronese surface is a smooth surface in P 5 of degree 4, and isomor-
phic to P 2. Up to a regular isomorphism of P 5 , it is the image of the map
P 2 -> P 5 given by (x, y, z) •-> (x2, y2, z2, xy, xz9 yz). A surface is called
developable if there is a curve C c P N such that f̂ is (the closure of) the
union of all the tangent lines to C.

3. Degeneracy and matrices.

(3.0) DEFINITION. A family of m X n matrices {Λ(x)}, x e [/, is said
to be a degenerate family when rank (A(x) — A{y)) < min(m, n) for all
x, y belonging to U.
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In this section we establish the connection between degenerate secant

varieties and degenerate families of matrices. We prove the main result

(3.5), but relegate the matrix calculations to the final section of the paper.

The differential criterion (2.0) for degeneracy translates into

(3.1) Sec( X) is degenerate P i n V>VXΦ 0
x y

Lreg

A proof of this statement is also in [1, §6.2].

Without loss of generality, let U c C d be an open set, and [ / ^ I a

parametrization of (a Euclidean open subset of) X, given by x •-»

(1, x, f(x))\ where/: U -> CN~d. In terms of these coordinates, PXX is

the linear space spanned by the columns of the (N + 1) X (d + 1) matrix

ί 1
X

0
id

df/dx

0

where Id is the identity dX d matrix and df/dx is the Jacobian matrix of

/. Let A(x) be the (N - d)X(d+ 1) matrix

K

so that

(3.2)

spanned by the columns of

By (3.1) and (3.2),

(3.2.1) Sec(X) is degenerate - A(y)) <d Vx,yeU9

i.e. Sec(I) is degenerate precisely when {A(x)}> x e [/, form a degener-

ate family.
For the rest of this section, let X be the developable surface of a curve

C c p " .

LEMMA (3.3). For generic x e X, we have that PXX = P/2)C, the 2nd

osculating space to the curve C at the point t where the line containing x is

tangent to C.

Proof. Let t »-> (1, t, g(t))t parametrize a Euclidean neighborhood in

C. So,

(5, 0 -> (1, /, g) ' + j(0,1, g'Y = (1, s + /, g + sg'Y
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contains a parametrization of an open subset of X, and PxXis spanned by
the columns of

i.e. P

(3.4)

1
t + s

xXis spanned by the columns

6

0
1

g'

of

0
1

g'

g' -

0
0

g"

0
1

fig"

which also span P/2)C.

Assume, now, that Sec( X) is degenerate. We next show

D

PROPOSITION (3.5). The developable surface, X, with a degenerate
secant variety, is contained in aP4.

To show that X c P 4, we may as well assume that X is nondegenerate
in P N i.e. X <£ P 7V~1, and that N > 5. In fact, we may take N = 5, since if
π is a projection into P 5 , then π(X) is the developable surface of the
curve π(C), Sec(π(X)) = π(Sec(X)) is at most 4-dimensional, and if
π(X)a P 4 t h e n Z c P " " 1 .

We now construct the degenerate 3 x 3 family associated to X. By
Lemma (3.3), this is a 1-parameter family; we use the notation of that
lemma and write g(t) = (a(t), B(t)Y where a(t) e C and B(t) e C l W e
note that if a" = 0 then a = λt + μ and this implies that C, and hence X,
is contained in a P 4 , viz. z2 — λzλ — μz0 = 0. So, we may assume that
a"(t) Φ 0. With this in mind, we define the 3 x 3 matrix

A(t) = ( * - tW - ", B' - ^B", (a-

By performing column operations on the matrix (3.4), we find that the
columns of

span P/2)C, so that {A(t)}, t e U9 is the degenerate family associated to
X. We differentiate and obtain that

A'(t) = (qEpEE) = EP<
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has rank 1, where

E = (B"(a"y1y, p = ta'-a,

For a family {w(t)} of 3-vectors, we denote the Wronskian 3 x 3

matrix by ω(w) = (w w' w"). Using (3.6) one verifies that |ω(P) | = qfp"

— q"pr = —{a")2 Φ 0, so by Proposition (4.5) of the next section there is

a constant 3-vector u such that ulA' = 0, i.e. u*E = 0. Thus

( w ' t f ' V Γ 1 ) ' = 0, u'B" = λα",

and finally

u*B = λa + μt + v

which exhibits a P 4 containing X, completing the proof of Proposition

(3.5).

4. Degenerate families of matrices. Let {A(t)} be a 1-parameter

analytic family of n X n matrices. Fix an s and put B(t) = A(t + s) —

A(s). We will see that

(4.0)

The conditions for {A(t)} to be a degenerate family (3.0), \B(t)\ = 0, are

(4.1) σ/(5) = 0 , / > 0 .

The 1 s t two coefficients are, as we'll soon see,

(4.1.1) σo = \A'(s)\ and σi = ±-^\A'(s)\.

Of course, if σ0 = 0 then also σλ = 0. We say that "σι = 0" imposes no

inductive condition on the family { A{t)}.

Formulas for the other σ 's are described by introducing the derivative

operator, Di9 where DtB is the n X n matrix whose columns are the same

as those of 2?, except for the /th column, which is the derivative of the j'th

column of B. A well-known formula states

So

(4.2) \B\{N) = Σ\Dh • • DiNB\ = Σ(%)\D? • D?B
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where the summation is over all w-tuples a = (al9... ,αw) of nonnegative

integers such that |α| = aλ + + an = N. The binomial coefficient is

W = JV!(α!)~1 where α! = a x ! ••• α Λ ! .

The coefficients of the series (4.0) are found by evaluating (4.2) at

t = 0. But B(0) = 0, so each term on the right side of (4.2) is zero unless

each oίj> 1; i.e. the series (4.0) begins at tn.

We change notation and write N = n + ra, 1 = (1,1,...1) and con-

sider indices of the form 1 + α, α. > 0. Since

/ J v n + m

(« + m)!σm=(^-j |2?| at/ = 0,

we conclude that

where the summation is over all a with \a\ = m, and Z>α denotes i ) " 1

Df". We have used the relation Dλ - - - DnB = A'(t + $).

The formulas (4.1.1) are now easy to verify. Using a modification of

formula (4.3), I have written each of the conditions σ2 = 0, σ3 = 0 and

σ4 = 0 in terms of simple expressions involving A'{s). It turns out that

"σ 3 = 0" imposes no inductive condition on [A(t)}\ it also appears that

the odd relations o2k+ι = 0 are implied by σ0 = = σ2k = 0, but I

have not verified this.

Let {E(t)} denote a 1-parameter family of w-vectors. We denote the

n X n Wronskian matrix by

LEMMA (4.4). The Wronskian satisfies \ω(E)\ = 0precisely when there

is a constant vector u Φ 0 with uιE = 0.

Proof. The existence of such a u implies that u'ω(E) = 0, hence

|co(JE7)I = 0. Conversely, assume that |ω(2?)| = 0. For n = 1, the result is

trivial. So, assume that n > 2, and that the result is valid for matrices of

size n — 1. Over an open set in the parameter domain, we may construct

an analytic family of π-vectors {u(t)} such that

(4.4.1) u'ω(E) = 0.

By rearranging the coefficients of E, we may assume that uι = (υ* 1), with

v an n — 1 vector. If v is constant, there is nothing more to prove, so
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assume that υ' Φ 0. Differentiating (4.4.1), we obtain

(4.4.2) u"ω(E) + u'ω(E)' = 0.

Let E denote the 1st n — 1 entries of E. From the 1st n — 1 columns of

(4.4.2) we conclude that υ"ω(E) = 0. Thus 1^(^)1 = 0, and by the induc-

tive assumption there is a constant n — 1 vector v with v%E = 0. Take

w' = (t/0). D

Recall (1.2) that the family [A{t)} is called trivially degenerate if

there is a constant π-vector u Φ 0 such that either A'u = 0 or u*A' = 0.

We formulate, now,

PROPOSITION (4.5). Let [A(t)}91 e JJ.be a degenerate family ofn X n

matrices for which A\t) has rank 1 for all ί G ί / . Then {A(t)} is trivially

degenerate. More precisely, express A' = EP\ where E(t) and P(t) are

n-vectors defined over an open subset of U. We will see that either (i)

|ω(I?)| = 0, or (ii) |ω(P)| = 0, so that by Lemma (4.4) there is a constant

n-vector u Φ 0 such that in case (i), u*Af = 0, and in case (ii), A'u = 0.

(4.6) For an π-tuple of non-negative integers λ = (λ 1 ? . . . ,λΛ), let E(λ)

denote the product E±λι) E<λ"\ and as usual E(ί) = (d/dtyE. Let

\E(λ)\ denote the determinant of the matrix ( £ ( λ l ) , . . . ,/?(λ»)).

Claim. The coefficients (4.0) may be expressed

(4.7) σm

where the summation is over all λ, μ e M" with 0 < λx < < λw,

0 < μλ < < μn, |λ| + \μ\ = m. The coefficient δ(λ, μ) is the determi-

nant of the matrix (1 4- λ7 + μ^.)"1, i, y = 1,...,«, and is essentially the

Cauchy double alternant [3, p. 311] for which the formula is

ΓΊ(λ, " k - 1

see [4, p. 348]. In particular, the δ(λ, μ) that appear in (4.7) are not zero.

Assume for the moment that the claim is true. Let M = n(n — 1).

The λ's and μ's'are strictly increasing, so |λ| and |μ| are each greater than

0 + 14- . . . + π - l = M/2. Thus,

om = 0 for m < M,
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while

σM = \ ω ( E ) \ \ ω ( P ) \ ( 0 \ l \ --• ( n - l ) \ ) ~ 2 8 n .

Thus, "σM = 0" implies that |ω(i?)| |ω(P)| = 0, and this proves the
Proposition.

To prove the Claim, we substitute A' = EP* into formula (4.3). The
zth column of DaA' is

{EPir
d=i

where the summation is over all λ, > 0, with the convention that P/ r ) = 0
when r < 0. Recalling notation (4.6), we may write

where

and the sum is over all λ,. > 0. Substitution into (4.3) yields

(4.8) am = r X

λ a

where (1 + a)'1 = ((1 + aj - - (1 + α j ) " 1 .

Next, arrange the λ's into increasing order. For σ a permutation of
{1,...,«}, let (λ σ ) 7 = λσ(/); and sg(σ) = ± 1 is the sign of σ. Then (4.8)
becomes

λ σ a

where, now, 0 < λ 1 < λ 2 < <λn and σ runs through the permuta-

tions of {(1,...,«)}. Let μ = a - λ σ . Then

ΣPiμ)(μ' V1Σ sg(σ)(i + μ + λ j " 1

μ σ

and, upon rearranging the μ's into increasing sequences, we arrive at
formula (4.7). D
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