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NON-ISOTROPIC UNITARY SPACES AND MODULES
WITH CAUCHY-SCHWARZ INEQUALITIES

M. CHACRON

This subject is concerned with non-isotropic unitary spaces V' over
involutorial division rings D with characteristic not 2 and with non-trivial
non-archimedean exponential valuations w, which are abelian. It will
require a generalized Cauchy-Schwarz inequality relative to w. The
dimension of V over D need not be finite. Treatments of the unitary
module V of finite vectors v in v (finite, in a technical sense), the ring L,
of linear transformations of V that increase lengths, and the unitary
group U yield information on the normal subgroup structure of this group
and the factor group U /U N Z, where U is the rth derived group
of U and Z is the center of the ground division ring D.

Introduction. From a purely ring-theoretic viewpoint this subject
arose from the treatment of primitive ring with involution L, in which, 2 is
invertible and 1 — k is invertible for every skew-symmetric k in L. These
invertibility assumptions ensure plenty of unitary elements u = u* ' in L,
via the Cayley transform u®> = (1 — k) /(1 + k) and one is interested in
deciding whether or not the factor group [U,U]/[U,U] N Z is simple,
where Z = center(L) and U is the group of unitary elements in L.
Another question which is of interest to me is the nature of the ring that is
generated by U. From a more down to earth viewpoint, this subject
specializes to the rings L of the form L = L(V), the full ring of linear
transformations of a certain left vector space V. It will be assumed
throughout that V is a non-isotropic unitary space (in the sense of I
Kaplansky), where the involutorial ground division ring (D; *) will be
equipped with a non-trivial non-archimedean exponential valuation w,
which is abelian. In fact, w will be a *-valuation (in the sense of S. S.
Holland, Jr.). I will require, furthermore,

§)) 2w(u-v) = w(u-u)+w(v- o)+ 2e,,

where (-) is the form of the unitary space V,--- < --- is the ordering in
G, the value group of w, and ¢, is a constant (depending on V) in G. As
shown by a theorem of Kaplansky, if L is as in the outset then L can be
represented as a subring of L(¥V'), where the involution in L corresponds
to the adjoint involution ¢ — ¢*, provided L has a minimal left ideal. Of
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course, given the valuation of w and /or assumption (1) are extra assump-
tions.

I shall call V an elliptic space if some inequality (1) holds true. As a
special case of (1), there is, of course, the Cauchy-Schwarz inequality
obtained by setting ¢, = 0 in (1):

(2) 2w(u-v) =2 w(u-u) +w(v-v).

Readers who are more familiar with (2), which has been dealt with
recently by Holland [11], may stick to (2) throughout this work. My
motivation in (1) will be explained as a concluding remark. I proceed to
the material of this work.

This work is organized in four sections of which the first two were
kept independent. Treatment of the unitary R-module ¥, of finite vectors
cropping up in a given non-degenerate O-elliptic space V (e.g. V satisfies
(2)) occupies §1. Treatment of the ring that is generated by U has been
omitted for reasons of space. Instead I will propose the ring L, of linear
transformations ¢ that increase lengths

(3) w(ug -up) 2 w(u-u) (ue€V).

The ideal structure of this ring will be investigated in an increasingly
larger way in §§2 and 3. Treatment of the unitary group U of V and
related groups will be done also by stages and exclusively in §4. Now to a
synopsis of the results in the order these results will appear in the work.

Concerning Section 1. By length of v € V, I mean the element w(v - v)
in the group with infinity adjoined G U {o0}. Those vectors v having
non-negative lengths, or finite vectors, form an R-module, where R is the
valuation ring in (D; w). Questions such as when is this module ¥ a free
module, when does ¥}, contain some orthogonal basis and when orthogo-
nal summands of the residue space ¥ (in the sense of Holland) can be
lifted to ¥V, will be provided satisfactory solutions. In §1, Theorem 1.7 (1)
will establish that if V" has a denumerable basis then Vj is free if and only
if V; has an orthogonal basis, which relates to Kaplansky’s [13, Theorems
37, 38, pp. 46—48]. In the cited theorem it will also be demonstrated that
the freeness requirement has a neat number theoretic interpretation,
namely, either the value group G is divisible by 2 or G has a first positive
element ¢ = 0% such that one at least of these two elements 0, ¢ is
represented by the form (e.g. occurs at length) in each one-dimensional
subspace of V. As a corollary if 1 (= unity of D) is represented by the
form in each one-dimensional subspace of ¥ then V| has an orthogonal
basis. This corollary is due to Holland (see [11, Theorem 5.4]).
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Concerning Section 2. The treatment of the ring L, of all linear
transformations ¢ that increase lengths corresponds to several needs. For
one thing, for these spaces V for which the R-module V is free L, will be
shown to be isomorphic to the full endomorphism ring of ¥}, (see §3,
Theorem 3.25). For another, in a continuation of this work, I will show to
what extent the ideal structure of L, is the same as that of the subring of
L that is generated by U. A third need more pressing for this work is to
use the ideal structure of L, for the normal subgroup structure of the
group U. Last but not least one is interested in finding the analog for L of
the valuation ring R in D. An attempt will be made to keep the treatment
of L, coordinate-free. Instead of the usual vector valuation of the ring L
viewed as a matrix ring over D, I will propose the notion of *-prevaluation
-+« w2 ---. This is a binary relation between L and G U {co} whose
restriction to Z and G U {00} is the same as the binary relation w defined
by
(4) w2gew(z)2g.

For general ¢ € Land g € G U {0}, ¢w > gis defined by

(5) wvp - v9)2w(v-v)+2g (veV).

Axioms of a *-prevaluation in general are listed and verifications of these
axioms for the particular *-prevaluation --- w > --- are stated without
proofs (or almost). One can view the valuation ring R to be the set of
elements x € D such that xw > 0. Likewise, L, is the set of linear
transformations ¢ such that ¢w > 0. Evidently U is the unitary group of
L, so that every 2-sided ideal I of L which is *-closed (e.g. if ¢ € I and if
¢ has adjoint ¢* then ¢* € I) gives rise to the congruence subgroup
UN @1 +1I). Each g > 0 in G gives rise to the ideal L, (resp. Lg) of
all linear transformations ¢ such that ¢w > g (resp. ¢w > g, that is,
w(vo - v$p) > w(v - v) + 2g, for every 0 # v € V). Among the non-for-
mal theorems in §2, Theorem 2.7, asserts that L, is a prime ring which is
an order in an overring of all linear transformations of finite rank,
Theorem 2.12, asserts that L in contained in the Jacobson radical of L,
if V is finite-dimensional (or a more general result) and, Theorem 2.19,
asserts that the congruence subgroup U;” = UN (1 + Lg) has all its
non-trivial roots of unity (if any) outside U, for a certain ¢, € G
depending on the characteristics of D and of the residue division ring D
(g0 = 0 if charac(D) # 0; g, = w( p), if charac(D) = 0 and charac(D) =
p + 0; g, = 0 if charac(D) = 0).

Concerning Section3. This section corresponds to several needs. (i)
When the coordinate-free contribution of the *-prevaluation --- w > ---
as employed in the preceding section is a fact; still, on one or two
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occasions in that section, the matrix delineation of this binary relation is
as I believe, inevitable. (i1) In archimedean matrix representation of the
n-dimensional orthogonal group O(D; n(-)), where D is a field carrying
an archimedean exponential valuation and (-) is an n-dimensional coordi-
nate orthogonal form on D, each orthogonal transformation ¢ viewed as a
matrix over D has all its entries from the valuation ring R in D. In the
considered non-archimedean set up, if (f;) is an orthogonal basis of ¥ and
if ¢ € U what can be asserted about the matrix of ¢ relative to the basis
(f,)? (iii) While there is a parallel between R and L from the formal point
of view of *-prevaluations can one say something deeper; for instance, is
L§ = Jac(L,) the unique maximal 2-sided ideal of the ring L,? (iv) What
is the nature of the factor group U/U;"? v) Of the mapping g — U, =
(1 + L,) N U? Taking the situation dealt with in (ii) as a fresh starting
point, I will be dealing with those non-isotropic unitary spaces V (inequal-
ity (1) not required at the outset, *-valuation w required) equipped with
some orthogonal bases ( f;) such that

(6) ¢ € U=wlentr, (¢)) >¢ (alli,j)),

where ¢, is a fixed element in G, ¢ < 0; the case ¢ = 0 being exactly
analogous to the requirement in (ii). In Theorem 3.2, I will show that (6)
implies V verifies some inequality (1); in the case & = 0 and 1 /2 exists in
R, 1 will establish in Theorem 3.10, that V verifies the usual Cauchy-
Schwarz inequality. For general ¢, I will intertwine in Theorem 3.5, the
x-prevaluation --- w > --- with its matrix counterpart w defined by

(7) oW =g W(entri,j(¢)) > g (alli,j).

This approximation theorem uses two parameters, namely an index of
ellipticity ¢, and a bound ¢, for the basis ( f;), that is some ¢, € G such
that |w(f; - f,) — w(/f; - f))| < &, for all pairs i, j (|g|=g if g >0 and
|gl = —g if g < 0). Both ¢, and ¢, depend fairly sharply on ¢;; in case
e, = 0 and 1/2 exists in R, I will show in Theorem 3.10 that ¢, = 0 and
g, = 0 or else ¢, is the first positive element ¢ in G. For such a pair
(V; (f;)), I will provide satisfactory solutions to the questions in (iii), (iv)
and (v) (see Theorems 3.13 through 3.23).

Concerning Section 4. 1 stated in the opening remarks that my initial
motivation for this work can be traced back in the question asking if the
group [U,U]/[U,U]N Z is a simple group. For instance if ¥ is an
Euclidean space (in the sense of E. Artin) of finite dimension > 3 then by
Artin [1, Theorem 5.3, p. 17] the preceding group is a simple group. If,
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contrary to the non-isotropic requirement, ¥ is any non-degenerate unitary
space with index > 2, where the ground division ring D is deprived of the
valuation w, but D contains at least 25 elements, then by J. Dieudonné [6,
Theorems 1 and 4], the cited group is again a simple group. If V is any
non-isotropic elliptic space which is orthogonal (e.g. * = identity mapping
of D) and of finite dimension n > 3 then by Artin [6, Theorem 5.8, p. 184]
the group [U,U]/[U,U]lN Z is not simple. Treatment of the general
projective group U /U N Z (r=0,1,2,...) for the considered space
V arises as a conjunction of the cited results for, at least, »r < 1. In §4,
Theorem 4.4.7, 1 will establish that U /U N Z does not verify the
descending chain conditon for normal subgroups at the exception of the
obvious cases where V is the 2-dimensional orthogonal space or V is
1-dimensional and dim, D < 4. As an explanation of this negative fact 1
will propose a positive one, namely, the positive cone G* can be dually
embedded in the lattice of normal subgroups of the group U /U N Z
for at least r < 1. This is done in Theorems 4.2.2 and Theorem 4.3.5,
under a certain assumption familiar to §3, and a different assumption
about the residue division ring D, namely, the dimension of D over its
own center exceeds 4. As an application of the foregoing theorems, I will
derive that every torison normal subgroup of U is central; when D is
finite-dimensional or * is of the first kind then the same conclusion will
hold for U replaced by U /U N Z. (See Theorems 4.4.7 and 4.4.8.)

Concerning assumption (1). In Artin’s Geometric Algebra, it is stated
that the old principle valid for Euclidean space ¥, namely, “small dis-
placements on the unit sphere can be combined to give arbitrary displace-
ments” (local cit. [1, Chapter V, Sect. 3, p. 179]) fails badly when the
ground field D is equipped with a non-archimedean absolute value or,
equivalently, a non-archimedean exponential valuation; it suffices to take
V to be an orthogonal space of finite dimension n > 3 with assumption
(1). The term used by Artin for such a space V is an elliptic space (see [1,
Def. 5.2, p. 180])—1I suggest no explanation of this term. My interest in
assumption (1) arises more specifically from Artin’s [1, Theorem 5.6, 5.7,
pp. 18-183] which asserts that assumption (1) implies and is implied by
the requirement some (and, hence, all) congruence subgroup U, = (1 +
L,) N U # 1. Loosely speaking these theorems tell us that (1) has thus a
ring-theoretic formulation and, by way of consequence, (1) serves the
function of measuring the ring-theoretic incidence of (2). To close, let me
add that as of the writing of this article no example of elliptic space V' not
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O-elliptic is known to me.(*) As a matter of fact, I will establish in a
continuation of this work that if w is of rank 1 then (1) < (2), which
yields a full ring-theoretic formulation of (2) for such valuations w.

1. The module of finite vectors. I will begin with: a review of some
of the undefined terms used in the Introduction; the main definitions and
conventions; brief comments about non-isotropy, the valuation w, and
assumption (1) in Introduction. The rest of this section specializes to the
modulo ¥V, (Definition 1.1 onward).

(a) Involutorial division ring D. Hereafter, D stands for a non-com-
mutative skew-field or division ring with charac(D) # 2. Let x — x* be
any fixed anti-automorphism of D of period 2 if D is not a field and
period 1 or 2 otherwise. Let

Z=27(D) (= {z€Dlzx =xz Vv x € D}),
#(D;+) = (wlx € D = 1),

be the center and unitary group of D respectively. If x € D, denote by x,
the right translation of D induced by x and let

(0) Dy = { x4lx € D},

be the division ring of right translations of D (regular right representation
of D). Given the symmetric element s = s* in D, s # 0, let (s) stand for
the new involution defined by

(1) x) = gx*s7t,

(b) Group with oo adjoined G*. Hereafter, G stands for an additive
group, G # 0, which is abelian and ordered. Denote the linear ordering on

G by --- < ---. Extend the addition and the ordering to the set
G* = G U {0} (00 & G) by the laws

(2) g <o, foreveryge G, and

(3) g+ w=0+g=o00 =00+ 00, foreveryg€ G.

(c) *-Valuation ([11, Sect. 2, p. 221]). Following Holland, by *-valua-
tion, I mean a mapping w: D » G* verifying the following.

(4) If D*= { x € D|x + 0}, thenw(D*) (= { w(x)|]x € D*}) = G.
(5) w(xy) = w(x) + w(y) (x, y € D).

'In a private communication (letter to me of October 3, 1984) H. Gross, University of
Zurich, has elaborated on this matter, where he attributes examples using 2-adic valuation
to his student URS-Martin Kiinzi (Ph.d. dissertation). He also points out that the
equivalence (1) « (2) has been indeed established by his student in a slightly more
general set up.
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(6) w(x + y) = Min(w(x), w(y)).
(7) w(x*) = w(x).

(d) Elliptic space. Let V be any unitary space over the involutorial
division ring D. Hereafter, D carries a *-valuation w.

DEFINITION 1.0. I will call V an elliptic space (resp. 0-elliptic space) if
for some ¢, in G (resp. g, = 0)
(8) 2w(u - v) = w(u-u) +w(v-v)+ 2e,
for every pair u, vin V.

(e) Concerning the valued division ring D. By definition, w is a

non-archimedean exponential valuation (in the sense of Jacobson) of D,
which is abelian since G is abelian and w is non-trivial since G # 0. Let

(9) R = { x € Dlw(x) = 0};
(10) J = { x € Dlw(x) > 0}.

Then R is the valuation ring in D. Indeed, R is a subring of D, which is
preserved under conjugation. Every one-sided ideal of R is 2-sided. Every
finite set of ideals of R has a largest member. J = Jac(R) is the largest
non-zero ideal # Rin R. For g € G, let

(11) J,={ x € Dlw(x) > g}.

Then J, 1s an additive subgroup of D; if, further, g > 0, then J, is an ideal
of R.

Although 2 is invertible in D it need not be so in R. Of course, 2 € R
since R has unity. The factor ring R /J, a division ring by the preceding, is
denoted by D (residue division ring):

(12) D=R/J.

(f) Concerning the *-valuation w. Inequality (6) carries over to alge-
braic sums:

(13) w( Y xi) > Min (w(x,)) (strong triangle inequality).
i=1

i=1,..., n

In the special case w(x,) # w(x;) for every pair i # j, one has the equality
(14) w( Yy x,.) = lyﬁn (w(x,;)) (special triangle equality),

i=1 !
Law (7) follows automatically from (5) plus D is finite-dimensional over Z

with * of the first kind. This is an immediate corollary to Dieudonné [6,
Theorem 5].
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(g) Non-isotropic form. Hereafter, V' stands for any non-degenerate
elliptic space. From the elliptic assumption alone follows that if Rad(V)
= {v € V|v-V =0}, then

(15) RadV = {v|v- v = 0}.
From non-degeneracy follows thus non-isotropy of the space V:
(16) v-o=0=>0=0 (veV).

(h) Constant of ellipticity. If V # 0 is elliptic then clearly the element
g, appearing in (8) is not positive. Hence ¢, < 0. In the sequel, I refer to ¢,
as to index of ellipticity without insisting that &, be the largest (as a
negative element). Throughout this work V stands for a non-degenerate
elliptic space and from Theorem 1.6 until the end of this section V is
O-elliptic.

DerinNiTION 1.1. Call v a finite vector if foreachu € V
(17) 2w(u-v) = (u-u).
Denote by 1}, the set of all finite vectors.
Clearly the linear inequality (17) implies
(18) w(v-v)>0;
it suffices to set # = v in (17). The quadratic inequality (18) implies back

(17) under the O-elliptic assumption. For the general assumption (1), the
penalty is the constant &:

(19) 2w(u - v) = w(u - u) + 2¢,.

Call v € V,, infinitesimal, if

(20) 2w(u-v)>w(u-u) (u-u=+0).
Again, (20) implies

(21) w(v-v) >0,

which implies back (20) up to g,:

(22) 2w(u-v)> (u-u)+2¢ (u-u+0).

In the sequel, the subset of all infinitesimals v in V is denoted by V; . In
symbols:

23) veViye(veVoyandu-u+0=2w(u-v)>w(u-u)).
0

THEOREM 1.2. Let V be any unitary space over the x-valued division ring
D—ellipticity of V not required. Then:

(1) If V, is the set of finite vectors on V then V, is a submodule of the
R-module V, where R is the valuation ring in the valued division ring (D; w).
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(2) If V' is the subset of infinitesimal vectors then Vy is a submodule
of V.

(3) V,- V, € R and, hence, V, can be turned into a unitary module,
relative to the form (-).

(4) V,, Vy" and J (= Jac(R)) are such that

M) JV, C Vi,

(i) V, - V" c J, and

(i) Vg -V, J.

Proof. (1) If v is a finite vecor and A € R, then for a givenu € V,
2w(u -(Av)) = 2w((u - v)A*) = 2w(u - v) + 2w(A*)
=2w(u-v)+2w(A) 2 2w(u-v) = w(u-u);

as this holds for each u € V, Av € ¥, follows. For u, v as before, if v’ is
another finite vector, then

2w(u-(v+0))=2w(u-v+u-v')=2Min(w(u - v),w(u-v'))
= Min(2w(u - v),2w(u - v')) = w(u - u)

impliesv + v' € V.

(2) is a trivial adaptation of (1).

3) If v, vV €V, then from v € V,, and v' € V, C V, follows
2w(v - V") = w(v' - V") = 0 so that w(v - v") > 0 or, v - v" € R, for every
pairv, v’ € V.

4 HI0+#jeJ,and0 # v € V,, then forevery0 # u € V,

2w(u - jv) =2w(u-v) +2w(j) = w(u - u) +2w(j) > w(u - u)

placing jv in V.

(i) If ve Vyand 0 # u € V;, then from u € V; C ¥ follows
2w(u - v) = w(u - u). From u € V; follows w(u - u)> 0.
Equivalently, w(u - v) > 0 placing u - v in J.

(iii) Vo™ - Vo= (Wy - Wi)* CJ* =, D

As a side remark, if V' # 0 then ¥}, # 0. This follows trivially from the
elliptic axiom. Conversely, in §2 Theorem 2.18 it is shown that if ¥, # 0
then V is elliptic by parts (e.g. every finite dimensional subspace of V
satisfies some inequality (1)). I turn to questions about the unitary
R-module V. As a rule of thumb everything that will follow relies on the
following extra assumption, which necessitates the 0-elliptic axiom (2):

(23) Vo\ Vs = {ve Vw(v-v)=0}.
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Equivalently, (21) asserts that if v is finite but not infinitesimal then and
only then w(v - v) = 0 (medial vector v).

DEerFINITION 1.2. The family (A;);.;, where A; € D, is said to be a
nullary row vector over D if all A; = 0 except for finitely many indices
in I.

In the sequel, by basis of V (resp. V;) over D (resp. R) I mean any
family (f;),,;in V (in ¥}) such that given v € V (resp. v € V) thereis a
unique nullary vector (A;) over D (resp. over R) such that

(24) v= Z A S

cel
Can one say that Vj is a free module (e.g. ¥, has some basis)? orthogonally
free module (e.g. ¥, has some orthogonal basis)? The following examples
will give some feeling for these questions.

ExaMmpLE 1.4. (i) Up to isometry every unitary R-module V;, where V'
is 1-dimensional is of the form

Vo=2, = {xeR2w(x) > g,},

where g, € w (A D; *)) and g, > 0.

(i)) Conversely, for any such g, the set £, is a left (in fact, 2-sided)
ideal of the valuation ring R, which can be realized as the R-module V;, of
some non-degenerate 0-elliptic space V.

(iii) To say that #, viewed as a unitary R-module (in the sense of (ii))
is orthogonally free it is the same as saying that ., is a principal left ideal
of the ring R).

Proof. (1). Let V be any non-degenerate unitary space, which is
1-dimensional. Pick any v € V such that v-v # 0. If 5, = v - v, then
s; = s§ # 0. Replacing v by Av changes s; to As;A*. It follows that one
can find some 0 # s = s* & R, which is represented by the form (e.g.
s = u - u,some u € V). Then V is isometric to the space D relative to the
coordinate form

Xy = xsy*.
Here, the valuation w is analytic, that is,
(25) w(v-v)=w(v-0)
where v € D is defined by the equation
(26) v=vu (u-u=s).
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Since the space -, D is evidently O-elliptic relative to (-,) it follows that V'
is O-elliptic. Then V; corresponds to V;,(,D; (-,)). Now,

x € Vo(pD; () @ w(xsx*) = 0 & 2w(x) = —w(s).
Thus if g, = —w(s), then g, € w(HA(D; *)), 8, = 0, and
Vo = V(D5 (+) = Ze-
(2) Pick any s = s* such that w(s) = —g,. Equip , D with the form
(27) Xy = xsy*.
By construction, V = ;, D is a non-degenerate 0-elliptic space with V, = .Z,

i~
(3) Since .#, is an R-submodule of a 1-dimensional non-degenerat(:e

unitary space it is clear that %, cannot contain any two non-zero orthog-
onal vectors. Hence, 4, is 1-dimensional. Equivalently, the left ideal .#, is
a principal left ideal. O

ExaMPLE 1.5. (a) If (f) is any orthogonal basis of the space V, then
foreveryv € V

(28) 0= L (v-f) Firhe

el
(b) If V possesses some orthogonal basis and if every g € G that is
represented by the form (e.g. there is v € ¥V such that v = w(v - v)) is
divisible by 2 then the R-module V}, is orthogonally free.

Proof. (a) For let (A,) be the nullary vector over D such that
v = X A,,. By construction, there is a unique finite subset I, of I such that
A, #Oforeach: € [;and -v =% ., A, f.If

- )
v EII(U f,)fl_ftfl

then v — v’ is orthogonal to each f,. Hence v = v'.

(b) Let (f,) be any orthogonal basis of V over D. Without disturbing
the orthogonality relations each f can be replaced by g, with w(g, - g,) = 0.
The new basis (g) is in V. If v € ¥, then by (a),

1
v=2(v-8) "¢
el gL.gt

follows. If v - g, # 0 then from O-ellipticity follows
2w(v-g)=w(v-v)+w(g -g)=w(v-v)=0

givingw(v - g) = 0or,v - g, € R. Hence, (g,) is a basisof Vover R. O
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The treatment of bases of the R-module ¥V}, (if any) necessitates, of
course, treatment of those v € V|, such that Av € ¥, implies A € R. Before
I deal with such vectors v let me observe that if in the value group G there
is some g, > 0 such that g, < 2g for every g > 0 then G has a first
positive element & which is precisely g,. Indeed, if g < 0 but g < g,, then
8o — 8 > O so that g, < 2(g, — g), thatis, 2g < g, a contradiction.

THEOREM 1.6. Let V be any nondegenerate O-elliptic space, let v € V
and let g, = w(v - v). The following requirements are equivalent.

(1) gy < 2g foreveryg € G* (= {h € G|h > 0}).

(2) go = 0 or g, = & = 1st positive element of G.

(3) 8o = 0andif\v € V,, then A € R,

(4) go=0andifu €V, then w(u - u) > g,.
If one (and, hence all) requirements are verified then I will call v a
pseudo-medial vector.

Proof. (1) = (2). If v is not medial then 0 < g, <2g for every
g € G*. From this g, = «.

(2) = (3) From Av € V, follows that if g = w(A) then2g + g, > 0 or
€= g, > —2g; equivalently, —g < 0, thatis,g > Oor A € R.

(3) = (4) Given u € Vjif u, is the projection of u on v:

u = (U'U)v UU,

then w(u, - u;) = 2w(u - v) — w(v - v) > w(u - u) > 0 placing u, in v,. If
A = (u - v)(v - v) then since Av = u; € V;, A € R follows or w(u - v) >
w(v - v).

(4) = (1) Let g € G. If g, > 2g then if x € D is such that w(x) =
g then w(x v -x)=g,—2g>0 placing x'v in V" c V. Thus
w(x v -v)=g,— g=w(v-v)=g,or g < 0. The contrapositive of this
is that if g > 0 then g, < 2g, as desired. ]

THEOREM 1.7. Let V be any non-degenerate 0-elliptic space, which has
some denumerable basis. The following requirements are equivalent.

(1) The R-module Vy, is a free module (e.g. V,, has some basis over R)

(2) The R-module Vy is orthogonally free (e.g. V, has some orthogonal
basis over R).
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(3) For every g € G which is represented by the form (e.g. g = w(v - v)
for some v € V) there is g’ € G and € € G such that g = 2g" + &, where
either ¢ = 0 or else ¢ is the first positive element in G.

(4) Given 0 #+ v € V there is A\ € D such that \v is a pseudo-medial
vector (V contains enough pseudo-medial vectors).

Proof. (1) = (2) Evidently the R-module V is an essential extension of
the R-module ¥}, in that if v € V there is 0 # A € D such that Av € 7,
Equivalently, V' = DV,. Then every basis of ¥V}, is a basis of V over D.
Hence V}, contains a denumerable basis, say, (e;);_;,_ . Now Vis non-iso-
tropic. Thus by induction on » one can define the following sequence

(f)i=12..
- 1
(29) f1=e19 fn=en— Zenfx(f )fz (n>1)'

i=1 i’ ft
Put:
1 .
an,i = (en ft)f f (l < n)s
v, =a,,f. It is to be shown that v, ; € ¥,. For since V' is 0O-elliptic it

follows that 2w(e, - f;) — w(f; - f;) = w(e, - e,) = 0 (e, € V,). Now, by a
straight calculation w(v,; - v,,) = 2w(a, ) + w(f, - f) = 2w(e, - f,) —
w(f; - f;). The relations v, ;, € V,, will be used to show that, in turn,
a,;, € R and f, € V, for every pair i, n with i < n. From the preceding
a,.f;=v,, €V, By a straight induction on n follows f, =e, —

" La,f, € V,. For the relations a,, € R, where i < n, use the n — 1
first equations of the f;

fi= ey,

Lh=e— a2,1f19

n—2
foc1= €1 — Z &,_y,:fis
i=1

to express the f;, 1 <i<n — 1, in terms of the e;, 1 <j < n — 1. Since
the f, with 1 < i < n — 2 evidently do not use e, _, it follows that

fn—l = ﬁlel + -0t Bn—Zen—Z + 1 - en—l’
for some B; < D. In the equation of f,,

fn = en - an,lfl - an,n—-l n—1»
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substituting for the f; with 1 < i < f, _, one obtains
fn = Ylel + -+ Yn—Zen—Z - an,n——len—l + en’

where the y, € D, 1 <i<n— 2. Since e,...,e,,... is a basis of the
R-module ¥} it follows that all coefficients in the preceding equation are
in R, particularly —a, ,_;, € R. Hence,

fn + A, n—1Jn-1 =fn, =e, anlfl - T an,n—2fn—2

where f, € V,. Repeating the preceding argument for f, replaced by f,
shows thatea, , , € R. Step by stepa,, ,_;,...,a,; € R follow.

Since the a,,; are all in R it follows that the e; are R-expressible in
terms of the f; € V. Since the e; span ¥}, so will be the f; and since the f;
are orthogonal they form hence an orthogonal basis of ¥, over R.

(2) = (3). I will first establish the following identity, which was
suggested to me by the referee:

(29) w(igvi-vi) = Min r(w(vj~uj))

(0 # vy,...,v, orthogonal vectorsin V).

One-half of (22) follows automatically from the generalized triangle
inequality. Conversely, for any fixed i,

2w(v, - v,) = 2w(v,. -y vj) 2w, v)+wl 2o- vj)

j=1 Jj=1
giving after cancellation by w(v; - v;), w(v; - v;) = w(X7_,v; - v;). As this
holds for every i it follows that Min,_; . (w(v;-v,)) 2 w(X)_; v, - v)).
Next, I observe that if (f;) is any orthogonal basis of the R-module ¥
then by a straight adaptation of the preceding if (A,) is any nullary row
vector over D, then

(30) w( DAL AL = Minw(M - A,
iel el

((f;) any orthogonal family in V). Now since ( f;) is a basis of ¥; over R it
follows that for each fixed i € I, f, € V, and if Af, € V, then A € R. In
view of Theorem 1.6, f; is then a pseudo-medial vector of V for every
i € I. If then oo # gis represented by the form, say, g = w(v - v) then for
some 0 # N €D, N\v e V,. If v =Nv then v" =X A,f;, for a certain
nullary row vector (A;) over R. From (30), follows

w(v' - v') = w(Xo(f, - £,,) %)
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for some i, € I and some A, € R. Since v # 0 and X" # 0 it follows that
v” # 0 so that w(v" - v") # o and, hence, A, # 0. Then

g=w(v -v)—-2w(X)= w()\o(fio -fio)}\"()) - 2w(X)
=2w(AN") +e

where e = f; - f, = 0 or else ¢ is the first positive element in G (Theorem
1.6).

(3) = (4) This is a corollary to Theorem 1.6.

(4) = (1) That V possesses an orthogonal basis as soon as V' possesses
a denumerable basis was shown for the R-submodule Vj itself so, V' has
some orthogonal basis. Given any orthogonal basis (g;);; for the space V'
over D, scale this basis to an orthogonal basis of ¥ over D, where the new
g; are pseudo-medial vectors. I assert that these g, form a basis of 1, over
R. For to begin with the g, € V. They are linearly independent over D
and, hence, over R. To see that the g; span J, over R proceed as follows.
Given 0 # v € V; C V, since (g;);c; i1s an orthogonal basis in V, it
follows (Example 1.5) that

v = Z(v-gi)(gi .1g.i)gi,

iel

where it is understood that all the (v - f,)(f - f) =0 but for a finite
number of indices. Since each g, is pseudo-medial w(v - g,) = w(g,; - g,)
follows (Theorem 1.7, point 4.) or, (v - g,)(g, - g&) € R. Hence the preced-
ing equation shows that v is R-expressible in terms of the g;, as desired. O

As stated earlier in Introduction, the equivalence 1 < 2 holds for any
unitary R-module V},, where R is any valuation ring containing 1/2 and V,
is finite-dimensional (cf. [13; Theorems 37, 38]). Note, however, that the
argument as given in [13] makes essential use of these two extra assump-
tions (extra assumptions for Theorem 1.7).

Using arguments similar to the argument in Theorem 1.7 and stan-
dard arguments one can show the following corollaries.

COROLLARY 1.8. Let V be any non-degenerate 0-elliptic space. Then:

(1) If V has some orthogonal basis then V, is orthogonally free if and
only if V contains enough pseudo-medial vectors.

(2) If the subgroup 2G is of index < 2 in G (in particular if G is
isomorphic to the ordered additive group of integers) then given g € G there
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is g’ € G and € such that g = 2g’ + ¢, where either ¢ = 0 or € is the first
positive element in G so that V contains enough pseudo-medial vectors.

(3) If V is spanned by pseudo-medial vectors it does not generally follow
that V contains enough pseudo-medial vectors.

COROLLARY 1.9. Let V be as in Corollary 1.8. Then:
(1) If Vi is an orthogonal summand in V, then, in fact, V, = V.
(2) If V' has denumerable basis as an R-module then so must be V.

To find orthogonal summands of the R-module ¥, less forbidding
than V5", I will first recall a construction due to Holland of the residue
space V ([11, Theorem 5.4]). Let V = V,/V; . Then annihilator in R of V
can be turned into a left space over D = R/J. By Theorem 1.2, again,

Vi Vocd

so that ¥ can be equipped with the form
(31) (v+ V) (u+ Vy)=vu+ J(v,u € V).
Then (V;(+)) is a unitary space over D, relative to the induced involution

of D. By construction, if 7 - o = 0 then for o = v + V', v - v € J follows
so that v € V" or 0 = 0. Thus 0 is non-isotropic. This is the

REMARK 1.10 (Holland [11, Theorem 5.4]). Let V" be any unitary space
over the *-valued division ring D. Then the factor R-module V,/V;" can
be turned into a non-isotropic unitary space over the residue division ring
D (residue space V = (V,/V; ;(+))), relative to the form

(v+ V) (u+Vy)=v-u+J.

THEOREM 1.11. Let V be any non-degenerate 0-elliptic space having
some orthogonal basis. Let V® be any non-zero finite dimensional subspace
of the residue space V. Then V) can be lifted to an R-submodule VV of the
R-module V,, such that:

W) VR Ve =V,

(2) VY possesses an orthogonal basis formed by medial vectors with
cardinality equal to dim4 V',

(3) VY is an orthogonal summand of V, with orthogonal complement
V{® mapping onto the orthogonal of V®V in V.

Proof 1. and 2. Let f,,....f, be a basis of V® over D and let
fis---»f, € V, map onto f,,...,f, respectively. Denote by V! the R-sub-
module of ¥V that is spanned by the f,.. By construction, V" /V;" = V®.
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Also, the f; form a basis of the R-module V. For let A,...,A, € R be
such that Y A,f, = 0. Then L X,f, = 0. Thus A, € J for every i. If some
A, # 0 pick one of least value, say, A\,. Then f; + X,.; A{'A,f; = 0. By
construction, A;'A; € R. The precedmg argument shows that f; +
Epl)\‘l}\bf, =0, Wh.lCh is nonsense. This shows that all A; = 0. Therefore
(f,) is a basis V over R. I proceed to show that the basis (f;) can be
transformed to an orthogonal basis (g;) of V), where each g; is a medial
vector. Put:

gl =f1’

1
=f,—(f gl)gl g 815

=f, - En(f g,)——glg,

I claim that (g;) is the desired basis. The agrument goes by induction on
n.Forn=1,g =f,e VP c Vyand g, & V, . Thus g, is pseudo-medial.
Assume that g,,...,g,_; are medial vectors. Since for each i <n,
g, is medial and since f, € V¥ C V,, it follows by Theorem 1.7, that

(f, - 8)8.-8) € R. Hence, ¥,_,(f, 8)1/(g: - 8)8 € V). Thus
g, € V® c V,. Assume that g, € V. In the equation

=t~ I%(f g,)——gjgt

substituting for all the g; with i < n in terms of the f; will not disturb the
term f, since each g; is R-expressible in terms of f; with j < i < n. Going
down to the residue space ¥, one has
0=f-n+271f-i (YLEI_)),
i<n

contrary to the fact that the ( f}) jer form a basis over D. This shows that
g, € V,, and, hence, g, € V¥ C ¥, is a medial vector. By construction,
the sequence g;,...,g, is an orthogonal sequence of medial vectors in V.
Since the f; are R-expressible in terms of the g; and since the f, span Vi it
follows that g;,. . .,g, is a basis of V() over R.

(3) It is to be shown that if ¥® = ¥ is the orthogonal of ¥, in ¥V
then V® = V" N ¥, is an orthogonal complement of V" in V.

Since V' = {g,...,g,}* it follows that V® & DV = V. Since
Vi has an orthogonal basis gi,...,g, as an R-module it follows that the
projection of any givenv € ¥V, € Von DV is

n=3 (v-8)1/(5 8)g)-

i=1
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Thus
v=v,00, (v,€DV®;0,€V?).

Now the g are medial vectors and v € V,,. By Theorem 1.7, again, follows
(v-8)(8. - 8) € R. Hence

= _ O}
;( "8y &&GV
Thus v, = v — v, € V,sothatv, € V(Z) Therefore V, = V" & V.
(4) V® maps onto the orthogonal ¥ @of ¥ in V.
Clearly, V® ® V® = V. Since V® @ V@ = V it follows that V»
® V® =V, = V. By construction, V¥ = V. Hence, V® & V@ = V.
Then V@ ¢ VO = ¥V forces V® = V. |

THEOREM 1.12. Let V be any non-degenerate 0-elliptic space, which is
finite-dimensional. Then:

(1) Any two maximal orthogonal families of medial vectors have equal
cardinalities n,.

(2) Any two maximal orthogonal families of truly pseudo-medial vectors
have equal cardinalities n, provided V contains enough pseudo-medial vec-
tors.

(3)n, + n,=dim,V.

Proof 1. Let f,....f, be any maximal orthogonal family of medial
vectors. Denote by V(l) the span of the f, in V. Clearly f,,.. f is a basis
of ¥® over D. If V,® is the span of the f, over R then by Theorem 1. 11,
V® is an orthogonal summand of V,. Assume that n, # dim3 V. by the
cited theorem, the orthogonal of ¥ in ¥, maps onto ¥®". Since
n, < dimy V and since V is non-isotropic and, hence, non-degenerate, it
follows that ¥ ®+ # 0 so that V" contains some non-zero vector f. If
fe (V®)* maps onto f then f is a medial vector. Now f,,..., [y, is an
orthogonal family consisting solely of medial vectors, a contradiction.
This shows that n, = dimy (V).

(2) Let g;,...,8,, be any maximal orthogonal family of truly pseudo-
medial vectors. Let V@ be the span of the g; over the ring R. I claim that
Vi@ is an orthogonal summand of the R-module V. For letv € V. As a
vector in V, v = v; ® v,, where v, is the projection of v onto the subspace
DV®, which has the orthogonal basis g,, ,. . .,g, . Now,

n2 1
&P’

0= X (0 8) oo

i=1
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Since g; is pseudo-medial it follows by Theorem 1.7 that (v, - g;)(8&, - &;)
€ R. Hence, v, € V{®. From this v, = v — v, € V,. Hence V@ is an
orthogonal summand in V. Let V" be its orthogonal complement. Every
0 # v € V® can be scaled to a pseudo-medial vector Av € V. By con-
struction, Av € Vi{. By maximality of the family g,,...,g, followsAvisa
medial vector. Therefore, ¥ possesses an orthogonal basis of medial
vectors fy,...,f,s. Going down to the residue space V one finds that
n¥* = dimy V = n,. Therefore n, = n — n,. ]

2. Ring of linear transformations increasing lengths. The goal of
this section is two-fold. Firstly, a parallel between the valuation ring R in
D and a certain subring L, of the full ring L of linear transformations of
the space V is drawn. Here V is any non-degenerate elliptic space and the
parallel is obtained by means of a certain binary relation --- w > --
(hereafter called *-prevaluation) between L and the value group G. Sec-
ondly, the ideal structure of the ring L, is dealt with with a view to apply
the results to the normal subgroup structure of the group U. At the end of
the section certain torsion-free congruence subgroup of U is pointed out. I
will begin with recalling one or two facts about L.

(a) Notation. Members of L generally written ¢, o, 7,... always
operate on the right of their domain, which is the space V.

(b) Ideal of linear transformations of finite rank. If ¢ € L is such that
Vo is finite-dimensional then ¢ is a linear transformation of finite rank.
Let

(1) FL={¢eLldimVp < o0}.

Then % L is a 2-sided ideal of the ring L. By a result of Jacobson, every
subring 4 of L containing L is a primitive ring 4.

(c) Ring of linear transformations having adjoints. For V any non-
degenerate unitary space, the adjoint ¢* (if any) of ¢ € L is defined to be
the linear transformation ¢* of ¥ such that
(2) u-vp=up-v (u,veEV).

As is well-known, every linear transformation in % L has adjoint in &% L.
Generally, if ¢,, ¢, € L have adjoints in L, then so must be ¢¥, ¢, + ¢,
and ¢,¢,. Then:

(3) =9
(4) (¢, +¢2)" = of + ¢}
(5) (¢1¢2)* = ¢307.
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Hence, the set of linear transformations ¢ € L having adjoints is a
primitive subring of L. This ring is the domain of the partial operator
¢ — ¢*. I refer to the partial mapping ¢ — ¢* as to a partial involution
and to (L; ) as to partial involutorial ring.

(d) Unitary group U — U(V'). The partial involutorial ring (L; *) has a
unitary group (general notation: %( L; %)), which is the group of elements
¢ € L such that (i) ¢ is invertible (ii) ¢* is defined and (iii) ¢* = ¢'. This
group I will denote apart by U = U(V).

(e) Center of L. Recall that Z = center of D. Then L can be turned
into an algebra over Z, where the scalar multiplication z € Z, ¢ € L —
z¢ € Lis:

(6) z¢ = v > z(v9).
The algebra L is central in that Z(L) = Z1, where 1 = unity of D.
Incidentally, if z € Z, then taking * in D or * in L agree in that

(7) (z-1)*=z%-1.

DEerFINITION 2.1. Let 4 be any central algebra over the valued field
(Z; w). Assume that 4 carries a partial involution x — x* (partial anti-
automorphism whose domain is a subring of 4 such that x** = x for
every x € A and (z - 1)* = z* - 1). The binary relation & between A and
the group with infinity adjoined G* is said to be a (x-prevaluation) (resp.
strict x-prevaluation) if:

(i) For each pair0 # z € Zand g € G¥, z - 1Pg < w(z) > g (resp.

w(z) > g).

(i) For each triple x € 4, g, g’ € G¥#, if x#g and g > g’ then xPg’.

{(iii) For each quadruple x, x’ € 4, g, g’ € G¥#, if xPg and x'Pg’
then xx'#(g + g’).

(iv) For each quadruple as in (iii), x + x’#Min(g, g’).

(v) For each pair x, g € 4, G* with x* defined if x#g then x*2g.

(vi) xPg for every g € G if, and only if, x# = if, and only if x = 0.

The following examples will motivate Definition 2.1.

ExaMpLE 2.2. Let 4 be the Z-algebra D, relative to the ground
involution *. Denote by ---w > --- (resp. --- w > ---) the binary
relation between D and G* that is defined by

(8) xw>gew(x)=g
(9) (resp. xw > g & w(x) > g).
Then --- w> --- (resp. -+ w> ---)is a x-prevaluation (resp. a strict

x-prevaluation).
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ExampLE 2.3. Let D, be the division ring of right translations of D
viewed as an algebra over Z, relative to the involution
x5 =x&,
where 0 # s = s* is fixed and x® = sx*s~!. Denote by -+ w> ---
(resp. --- w> ---) the binary relation between D, and G¥* that is
defined by

(10) xgw =g 2w(u-vxg) =w(u-u)+w(v-v)+2g,

for every pair u, v in D, where u - v = usv*.

(11) (resp. xow > g < 2w(u - uvg) > w(u - u) + w(v - v) + 2g),

for every pair u, vin D such thatu - u # O and v - v # 0). Then --- w >
-+ (resp. +-- w> ---)isa *-prevaluation (resp. a strict *-prevaluation).

Example 2.1 is formal. Example 2.2 reduces to the preceding example
since, in effect, xw > g < xow > g and xzw > g & xw > g. Every 1-di-
mensional unitary space ¥V, which is non-degenerate, can be identified to
pD, relative to the coordinate form u - v = usv*, where 0 # s is any
element that is represented by the form in the sense s = v - v, somev € V.
Then L(V) = D, and the adjoint involution in L is precisely the one in
Example 2.2. By analogy with that example one is led to the

THEOREM 2.4. Let V be any non-degenerate elliptic space and let L be
the ring of linear transformations of V considered as an algebra over the
center Z of the ground division ring. Equip L with the partial adjoint
involution ¢ — ¢* and Z with the ground valuation w. Then:

(1) The binary relation --- w > --- between L and G* that is defined
by
(12) ow=ge 2w(u-vdp)=2w(u-u)+w(v-v)+2g,
for every pair u, v € V, is a *-prevaluation.

(2) The binary relation --- w > --- between L and G¥ that is defined
by
(13) ow>ge 2w(u-ve)>w(u-u)+w(v-v)+2g;

for every pair u,v € Vwithu-u +# 0,v-v # 0, is a strict *-prevaluation.

Theorem 2.4 is essentially evident. It is appropriate to add that the
linear inequality in (12) and its strict version in (13) contain as particular
cases the quadratic inequalities

(14) w(ue - up) > w(u-u) +2g,
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(15) w(uep - up) > w(u-u)+2g(u-u=+0),

respectively. Under the assumption V is 0-ellitpic, (14) (resp. (15)) implies
back

(16) 2w(u-vep) > w(u-u)+w(v-v)+2(g+¢)

(17) (resp. 2w(u - ve) > w(u - u) + w(v-v) + 2(g + &),
u-u#0,v-v+0).

For future reference notice that (12) (resp. (13)) implies equally

(18) w(u-up)>w(u-u)+g

(19) (resp. w(u - u¢) > w(u-u) +g,u-u+0).

DEFINITION 2.5. Let:
(20) L=L(Viw=)={¢eLlpw=>g} (geG*);
(21) L;=L;(V;w2)={¢EL|<;bw>g} (g€ G);

(22) L,=UL,={¢eLigeG*low>g}.
geGC

Refer to L, (resp. L;) as to a congruence ideal if, further, g > 0.
The following results are, again, formal results.

(23) L, (resp. L}) is an additive subgroup of L,
which is closed under *.
(24) gzg'=L,CL,, (resp. L] c L}).
(25) NL=NL =L, =0.
g€G g€eC
(26) L__ is a *-closed subring of L containing Z and

evidently L, for every g € G.

(27) LoL; (g€G).

(28) zL, = L, (z € 2).

(29) 2L =L, . (geG,0+z€ 2).
(30) Lg+ Ly © Litine.g)-

(31) LL,CcL,,,

(32) L+ L} C L.,y (8€G* g €G).
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(33) LL:cLl, (g€G* g €qG).
(34) L}L,cL},, (g€G,g eG¥).

For the rest of this section I will specialize to the congruence ideals L,
or L, where g > 0. They are indeed 2-sided ideals of the ring L,. By
construction, the members ¢ € L, are the linear transformations ¢ such
that

(35) 2w(u - ve) = w(u - u) +w(v-v).

I refer to such a ¢ as to a linear transformation increasing lengths. Indeed
as a special case of (15) one has the quadratic inequality

(36) wup - up) > w(u-u) (ueV).

In L, sits the 2-sided ideal L; of linear transformations ¢ strictly
increasing lengths since by construction ¢ € L if, and only, if,

(37) 2w(u - ve) > w(u - u) + w(v - v)

for every pair u, v with u - u # 0, v - v # 0. Relationship between L; C
L, c L__ will follow. Let me first recapitulate some of the facts:

THEOREM 2.5. Let V be any non-degenerate elliptic space. Then:
(1) The set L of linear transformations ¢ that increase lengths

2w(u-ve) 2 w(u-u)+w(v-v) (u,veV),

is a subrng of L, which is *-closed.
(2) In L, sits the 2-sided ideal of linear transformations ¢ that strictly
increase lengths:

2w(u-vep)>w(u-u)+w(v-v) (u-u+0,v-v+0)
(3) For each g = 0, L, (resp. L; ) is a 2-sided ideal of the rng L, which
is contained in Lj , if g > 0.
WD IfL_, =U,ccL,, then L_, is a *-closed subring of L containing Z
and evidently L.

A key result for the considered treatment of the tower Ly € L, C L__
will be the

THEOREM 2.6. Let (V,),o; be any orthogonal decomposition of V and
suppose that (g,) is a family in the value group such that g, > g for every
¢ € 1. If, further, V is a non-degenerate ¢ -elliptic space then

Lg+250(V) 2 @ Lg‘(V:)‘

el
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Proof. Let o, N L(V)),c € I. Let ¢ = @, _, ¢, It is to be shown that
¢ € L, (V). If ve Vthere is (v) such that v = X v;, where all v, = 0
but for finitely many indices. From ¢, € L (V)) follows w(v¢, - v¢,) >
w(v, - v,) + 2g,. Then

w(vg - vg) = 2 Lo, - v4) = Min (09, - v4)
> Mi}l(w(u‘ -v)) +2g = Mi?(w(vl -v)) — 2g.

Since (v,) is an orthogonal family in V and since V is gg-elliptic it
follows by a trivial adaptation of §1, (29) (Theorem 1.7, implication
2. = 3)) that

Min(w(v, - v,)) > 2( Yoo - vt) + 2¢,
giel el
so that

w(ve - ve) > w(v-v) + 2¢, + 2g,

for every v in V. From egg-ellipticity of V follows ¢ € L,,,, (V), as
desired. O

THEOREM 2.7. If the rng L, has some one-sided unity then L, is a
subring of L. Equivalently, V is O-elliptic.

Proof. For let ¢, be any right unity of the mgL,. If ¢ is any
projection (e.g. ¢ = ¢* = ¢* € L) with V, is finite-dimensional I assert
that ¢p¢, = ¢. For to begin with if V® = V¢ and V® = V(1 — ¢) then
V=VvV®e ¥V From Theorem 2.6 follows

LoD L, (V)@ L, (V®).

€9
Now V® has some orthogonal basis f,, i = 1,...,n. Using this basis one

can turn V' into a bi-space over D, relative to the right scalar multiplica-
tion
(38) v= Y x,f, AED->vA=) x\f.

=1 =1

Then L(V®) is a right vector space over D, relative to the scalar
multiplication

(39) 6 L(VY) AXeD->¢-A=v- (ve)A.
IfX =1, -\, then A € L(V®). I assert that in the ring L(V®)
Aw > (2¢, + w(A))
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follows. Forif v € V'V, then
ook = X NAs,(AN)T (s, =5+ f).
j=1

Thus
w(vA - vA) = 2w(A) + Min(w()\s )\4)) > 2w(A) + 2¢5 + w(v - v)

J7J)
giving
2w(u - vA) = w(u - u) + w(v-v) +2(2¢, + w(A)),

as desired.
Define A¢ to be the linear transformation on V'

v=0v, 00, v(A¢) =0\ 0.

For A # 0 with w(A) large enough it is clear that Ad¢ € L_,, (V}) &
L_,,(V;) hence, A¢ € Lo(V). Thus (Ap)¢, = A¢p. Hence if v = v; & v,,
then

v(A$) ey = (Ux‘}‘)‘ﬁo = 017\-

Since A is evidently an onto transformation of V® it follows that
v, = v, for every v; € VO or, ¢¢, = ¢, for every projection ¢ of the
space V' with ¢ of finite rank. Now, for every non-zero vector u in V if ¢,:
V — Vis defined by

1

ouu’

(40) vp, = (v - u)

u

then as is well-known and easy, ¢, is a projection of rank 1. Hence,
o, b0 = ¢, Or up, = u. As this holds for every u, ¢, = 1 follows; since
1 € L, Vs evidently O-elliptic. a

THEOREM 2.7. Let V be any non-degenerate elliptic space. Then:

(1) L__ is a primitive ring since, in fact, L__ contains all linear
transformations of finite rank.

(2) If V possesses some orthogonal basis then L is an order in the ring
L__ so that Lyis a prime rng.

Proof. (1) (8§83, Theorem 3.5, required). I will assume in what will
follow that if V is finite-dimensional then L__(V) = L. For general V
proceed as follows. Pick ¢ € # L. Put: ¢, = ¢ — ¢*, ¢, = ¢ — ¢*, V, =
Vi ¢t =1,2. Here, V* = Ker(¢,) and since V, is finite-dimensional it
follows that V=V, & V'. If ¢, = ¢/V, and ¢, = 0,. then evidently



26 M. CHACRON

o, = ¢, @ ¢, Since V, is finite-dimensional it follows that ¢, w > g for
some g € G (i = 1,2). By Theorem 2.5 follows ¢, € L__ so that 2¢ = ¢,
+¢,€L__.Sinceevidently1l/2€ L__, ¢ € L__ follows.

(2) Define a right scalar multiplication via the basis ( f,) of V' by
(41) v=3xf, AED->vA=) xAf.

el

Then define the right scalar multiplication
(42) 6L ANeED-> oA (vd)A.

By a trivial adaptation of the calculation in Theorem 2.7 point 2,
follows that if A = v — v\ then Aw > (2¢, + w(A)). Thus
(42) Aw > g = ¢hw > (g + w(d) + 2¢).

Given ¢ € L__ thereis g € G such that ¢w > g. Then for g’ large enough
g+ g +2e=0.If A €dis such that w(A\) = g’ # oo then A # 0 and
by the preceding ¢\ € L. Then for w(A) large enough follows

6 = ($A)X

where both ¢\, A € L. Hence L, is an order in L__ so that L, is a prime
mg. O

DErFINITION 2.8. Call ¢ € L medial or say ¢ preserve lengths, if
w(ve - v9) = w(v - v),
for everyv € V.

ExAMPLE 2.9. Let V be the left space D, relative to the coordinate
form

X -y = xsy*.

To say that ¢ € L is medial is to say that ¢ = x,, where x is a unit in the
valuation ring R.

THEOREM 2.10. The set M = M(V') of all medial transformations has
the following features.

(1) Foreach0 + z € Z,z - 1 € M if and only if w(z) = 0.

(2) M is a multiplicative monoid consisting only of right invertible
transformations ¢.

(3) M contains inverses (e.g. if ¢ € M and if ¢ is invertible in L then
¢t e M)

(4) Foreacho € L{,if¢ =1 + o, then ¢ € M.
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(5) For eachg € G, ML, C L (resp. ML; C L;).

(6) If ¢* exists in M then Lo C L, (resp. L; cL)).

(7) If V is finite-dimensional then M is a group.

(8) If V is O-elliptic then the group of invertible elements in M is also the
group of units of the ring L.

Proof. (1) To say that z - 1 is medial is to say that w(zv - zv) = w(v - v)
for each v € V; if, and only if, 2w(z) = 0 or w(z) = 0 (if v # 0).

(2) This is evident.

(3) This is, again, evident.

(4) From ¢ € L follows for each0 # v € V-

w(ve - ve)E(v-v); w(ve-v)=w(v-ve)>w(v-v).
By the strong triangle inequality follows
w(v - ve) +vo - v +(vo-ve)>w(v-v),
and by the special triangle equality follows
w(v-v+(v-ve+vo-v+ve-vo))=w(v-v)
or,
w(v(1 +0)-v(l + o)) =w(ve-ve)=w(v-v),

as desired.
(5) This is the same as showing that

TW> g = ¢Tw > g (resp. 7w > g = ¢1w > g)

for every triple 7, ¢, g € L, M, G. For instance, if 7w > g then for every
pair u, v # 0,

2w(u - v(e7)) = 2w(u -(ve)7).
If v = 0 then vep7T = 0 so that
2w(u-v(o7)) = w(u-u)+w(v-v)+2g.
If v¢ # 0 then,
2w(u - v(o7)) =2w(u -(ve)7) = 2(u - u) + w(ve - v$) + 2g
=w(u-u)+w(v-v)+2g

placing ¢7in L,.
(6) Again, if rw > g and ¢* € M then for u¢p* # 0,

2w(u - v1¢p) = 2w(u¢* - vr) > w(ue¢* - u¢*) + w(v - v) + 2g
=w(u-u)+w(v-v)+2g;
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while u¢* = 0 implies 2w(u - v7¢) = 2w(ud* - v7) = 00 > w(u - u) +
w(v-v)+ 2g.
(7) Let ¢ be any invertible medial transformation. Then for every

veV,
w(ve - vp) =w(v-v) = w(v-v).

Since V is O-elliptic it follows that

2w(u - vp) > w(u-u) +w(ve-ve) =w(u-u)+w(v-o)

>w(u-u)+w(v-v),

placing ¢ in L,. Since ¢! is medial then, again, ¢~' € L,. Hence ¢ is a

unit of L,. Conversely, let ¢ be a unit of the ring L,. For eachv € V,

w(v-v) =w((0675)¢ - (v67)¢) = w(ve™ -v¢™") (¢ € L)
>w(v-v) (¢'elL,).

Hence w(v - v) = w(ve™' - vé™). By symmetry, w(v - v) = w(ve - v9).
Hence ¢ and ¢! are medial transformations, as desired. O

The preceding theorem suggests that the medial transformations
behave as potential units of the ring L for, at least, the finite dimensional
O-elliptic spaces V.

THEOREM 2.11. Let V be any finite-dimensional non-isotropic unitary
space over the involutorial division ring D with characteristic + 2. Then:

(1) If ¢ € L = L(V) has adjoint ¢* and if ¢* = 0 then ¢ = 0.

(2) If o = ¢* is one-to-one then ¢ is invertible in L.

(3)If p = —¢* then 1 — ¢ is invertible in L.

Proof. (1) and (2) are well-known and easy.

(3) Let ¢ be as in the statement. If v € V is such that v¢$ = v then
v = v¢? follows so that

v-v=vp-vp="0(vp)p* =v-(—v¢p?)= —v-v

giving v - v = 0 or v = 0. This shows that 1 — ¢ is one-to-one. Repeating
for ¢ replaced by —¢ one gets that 1 + ¢ is one-to-one. Hence, 1 — ¢ =
(1 — ¢)(1 + ¢) is one-to-one. Since 1 — ¢ is symmetric it follows by 2.
that 1 — ¢? is invertible and, hence, 1 — ¢ is invertible. O

THEOREM 2.12. Let V be any finite-dimensional non-degenerate elliptic
space. Then:

(1) The subset M of medial transformations ¢ having medial adjoints ¢*
is a group (medial group) such that L = ¢L, = L, (resp. L;¢ = ¢L; =
L) forevery$ € Mandg € G.
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(2) If # is any right ideal of L, which is contained in L§ then
£ C Jac(Ly).

Proof. (1) Since both ¢, ¢* are medial and, hence, one-to-one, it
follows that ¢*¢ is one-to-one. From Theorem 2.11 follows that ¢*¢ is
invertible. Then ¢ is invertible. Similarly, ¢* is invertible. Also ¢! is
medial and has medial adjoint. The rest of the assertion follows readily
from Theorem 2.10.

(2) Let o € £. Since o € £ C Ly it follows that 1 + o is medial. Since
o* is defined, and, hence, o* € Lj it follows that (1 + 6)* =1 + o* is
medial. Thus 1 + 6 € M has inverse in M. If 1 + ¢’ is the inverse of
1 + o then

—o'=(1+d)oe(1+0o)L; C L§l

Hence o’ € Ly is a quasi-inverse of o. As this holds for every o € .# it
follows that # C Jac(L,). a

DEeFINITIONS 2.13. (a) By congruence subgroup of the unitary group I
mean any subgroup N of U of the form

N=Un(l+5),

for some 2-sided ideal £ of the rng L,,.

(b) The congruence subgroup
(44) N'=UNn(1+L,) (g=0)
is denoted by U,.

(c) The congruence subgroup
(45) N"=UNn(1+L}) (g=0)
is denoted by U,".

Two important congruence subgroups:
(46) U={¢<cU(s—1)w=0};
(47) U ={¢eU(s—-1w>0}.

Evidently, U, = U if, and only if, v is 0-elliptic. One can, of course, extend
formulas (45), (46) for g < 0; but, there is only little gain to do so for
what will follow here or elsewhere.

THEOREM 2.14. Let V be any non-degenerate elliptic space. The con-
gruence subgroups U, (resp. U;), g = 0, form a chain of normal subgroups
of the unitary group U such that:

DVg=g = U,CU,(resp. U cUyp);
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(i) NY, = NT;" = (1);

(iii) [U,, U] € U, (resp. [Uy, Ug1 € Ul ).

Proof. (0) U, (resp. U,") is a normal subgroup of U. For let ¢ € U,.
Then ¢ — 1 € L, C L,. Since ¢ has adjoint it follows that ¢* =1 € L,
and since ¢* = ¢, ¢! € U, follows. Let ¢, 6 € U,. Then

1-¢o=9¢(1-0)+(1-9)EdL, + L,.

Since ¢ € U C M, it follows that L, C L (Theorem 2.12, point (1)) so
that 1 — ¢o € L,. Thus ¢o € U,. Let r € U. Then 7L7' = L, (Theo-
rem 2.12, point 1.). Hence 'rU‘g'r'1 = U, and U,<U. For the assertion
U, <U use similar argument.

(i), (ii) This is evident.

(iii) Let me show, say, that ¢ € U,., 7 € U,’, together imply [¢, 7]
(= ¢ rl¢71) € U/, ... Indeed,

gtg

[¢, 7] = o7 (7 — 10)
=¢r (¢ —D(r—1) ~(r - 1)(¢ — 1))
€ ¢r (L, LLL,)

.CLY O

C ¢_17-1L+ g+g*e

g+g
THEOREM 2.15. (1) Each congruence subgroup U; with g = w(2), con-
sists only of unitary transformations ¢ that can be Cayley parametrised.
(i) Hence no ¢ € U, can reverse 0 # v € V and, consequently, U,
excludes any involution o + 1.

Proof. (1) It suffices to establish the theorem for g = w(2). Given

¢ € U,y andv € Vifo(l + ¢) =0but,v # O thensince¢p — 1 € L,
w(v(¢ —1)-v(¢ — 1)) > w(v-v) +2w(2),

follows; but, the left member of this inequality is precisely w(2v - 2v) =
w(v - v) + 2w(2). This shows that 1 + ¢ is one-to-one. Again ¢* € U, ,,
forces 1 + ¢* is one-to-one. By Theorem 2.12, 1 + ¢ is then invertible.
Let 7= (1 — ¢)/(1 + ¢). By construction, 7* is defined and 7* = —r.
Here, 1 + 7 is invertible as this follows from Theorem 2.12. Moreover,

¢ = (1 — 1)/ + 1), the usual Cayley parametrisation of the unitary ¢.
(ii) This is partly shown in (i) and partly evident. O

The following theorem is technical and will be used here and elsewhere.
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THEOREM 2.16. Let V be any non-degenerate elliptic space. Let € be the
partial operator of the ring L which is defined at ¢ € L if and only if 1 + ¢
is invertible and then

(48) ¢(¢) =202

1+¢°

If € ! is the partial operator of L which is defined at 1 € L if and only
if 1 + 7/2 is invertible and then

(49) € V(1) = —4=

then:

(1) €(% “!|7) = 7 and € "(6(¢)) = ¢ for every pair 7, ¢ with € ~*
and (1) defined.

(2) € (resp. € ') is one-to-one.

(3) ¥ is entirely defined at U, (resp. U,") for every q > w(2) (resp.
g = w(2)) and

%(U,) = £,(V) (resp. (U)f) = é’;)
where £, (V) = {T = —7* € L|tw > g} provided V is finite dimensional.
(4) € ! is entirely defined at £, (resp. k) and
€ 1(4,) = U, (resp. € (£7) = U}),

where g > w(2) (resp. g > w(2)) provided V is finite dimensional.

Proof. (1) and (2) are formal.

(3) and (4) If g > w(2) then for each ¢ € U," it is clear that ¢ € U,,,.
From Theorem 2.15 follows that 1 + ¢ is invertible. Thus %(¢) is defined.
If

_ _,1-9
T=%4(¢)=2 T+ 6
then by construction 7* = — 7. Also,
1-¢ 1—-9¢

T=2 = )
2+(o—-1) 1+((¢-1)/2)
From ¢ € U, follows (¢ — 1) € L; so that (¢ —1)/2 € L, C Lg.
Thus 1 + (¢ — 1)/2 € M so that
re ML} =L}
and, hence, 7 € #;.

Similarly if g > w(2) then for each ¢ € U,, 7 = €(¢) is defined and
TE £ .
8
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Conversely, if 7 € £; where g > w(2) then evidently € ! is defined
at 7/2. (In fact, 1 + 7 is invertible for every 1 = —7*). If ¢ = € (1)
then by construction ¢ is unitary and

T Sl V2 S " s

¢ 1—1_H_/2 —1+T/2€M;€gCMLg L,.
Thus ¢ € U,. Similarly if 7 € £, where g > w(2) then 7- ¢ = € "'(1) €
U,. O

g

THEOREM 2.17. Let V be any non-degenerate elliptic space, which is not
the 1-dimensional orthogonal space. For every g € G, the congruence sub-
group U, (resp. U;") is not the identity subgroup.

Proof. By Theorem 2.16 it suffices to show that £,(V') # 0 (resp.
£; (V) # 0). As a second reduction, since £, C £, it suffices to show that
x’;‘ # 0. As a third reduction, still, since from a trivial adaptation of
Theorem 2.6, follows that if V" is any orthogonal summand of ¥ then

£V)D 4, (VD) @0,

one may assume, further, that V is finite dimensional. By the same token
as soon as a given subspace V'@ of V verifies the theorem so will be all of
V. If then V is not orthogonal, then picking any 1-dimensional subspace
V® of V and observing that £; (V) # 0 the theorem follows. If, on the
other hand, V' is an orthogonal space one can quote Artin’s [1, Theorem
5.7]. To motivate the reader, let me give a direct proof. From finite-dimen-
sionality of V follows that L__(V) = L. Pick any 0 # 7 = —* (possible
since dim ;, V' > 2). Then 7w > g for some g,. Choose any 0 # z € Z = D
with w(z) large enough so as w(z) + g, > g. Thenzr € L} ., C L;. By

gow(2)
construction, 0 # zt = —(z71)*. O

THEOREM 2.18. Let V be any non-isotropic unitary space over the
*-valued division ring (D; *; w), which is finite dimensional but other than
the 1-dimensional orthogonal space. The following requirements are equiva-
lent.

(1) Thereis 0 # v € V and g € G such that if u € V then 2w(v - v) >
w(u-u)+ 2g.

(2) There is some 0 + ¢ € L and g € G such that pw > g.

(3) U, # 1 for some g € G.

(4) V is elliptic.

Proof. By Theorem 2.17, (4) = (3). Evidently, (3) = (2) = (1). As-
sume (1). Quoting [2, Theorem 1] or directly one can show that U acts
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irreducibly on V. Hence there is a basis of V of the form v, = v¢,, where
¢, =1, ¢,,...,9, € U. Given u € V there is a unique row vector u =
(x4,.-.,x,) over D such that u = ¥ x;v,. I proceed to establish that, if
u,, u, € Vthen

2w(uy - uy) = w(uy - uy) +2w(u,) + 2g,
where w(xy,...,x,) = Min,_; ,(w(x,)). Forletu, = (x,,...,x,). Then
2w(uy - x,0,) = 2w(uy - x;0¢;) = 2w(wp, - x;0)
= 2w(uyp; - v) + 2w(x,) = w(wp, - u0,) + 2w(x,) + 2g
=w(uy - uy) +2w(x,) +2g = wl(u, - uy) +2(w(u,) +g);
2w(u, - u,) = 2w(u1 . Zx,vi) > 21\/1iin(w(u1 - x,0,))

> wl(uy - uy) +2(w(u,) + g),

as desired. It remains then to show that for some g’ € G, 2w(u) >
w(u - u) +2g’, for every u € V. This can be readily seen from the
observations:

(50) u=(x4,...,x,)=(u-0vy,...,u-0,)T,

where T = (S'™*)71;

(51) w(u) 2 w(u-vy,...,u-v,) +w(T),

where w(7') is the minimum value of the entries in 7. 0O

As stated i Introduction, Theorem 2.18 is due to Artin in the
orthogonal case and the proof is inspired by Artin’s. The last item for this
section will be the treatment of roots of unity in the congruence subgroup
L;.

THEOREM 2.19. Let V be any non-degenerate elliptic space and let P be
the prime subfield of the ground division ring D. Then:

(1) If the valuation w induces the trivial valuation on P, then U; is
torsion-free.

(2) If w induces a non-trivial valuation on P then if p = charac(D) then
U, ) is torsion-free.

Proof. (1) It is to be shown first that if ¢ € L is algebraic over P
then, in fact, ¢ is nilpotent. For then there is a polynomial p(¢) over P
without constant term such that ¢" = p(¢)¢>" for some n. If 7 = p($)¢”"
then 7 is an idempotent transformation. Since w(P*) = w{r|0 # r € P}
is evidently contained in the medial group M it follows that + € L and,
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hence, 7 strictly decreases lengths. If now v # 0 for some v it would
follow

w(vr - v1) = w(vr? - v1?) > w(vT - v7),

a contradiction. This shows that ¥ = 0 so that 7 = 0 and, hence, ¢" = 0.

Let then o0 € U; be any root of unity. If ¢ = ¢ — 1 then by construc-
tion ¢ € Lj is algebraic over P. By the preceding ¢ is nilpotent. Now
evidently w(2) = 0 so that Ly = L, and, hence, ¢ is Cayley parametri-
sable. If o =(1 —17)/(1 + 7) with7= —7* then 7= (1 — ) /(1 + o)
is nilpotent. In view of Theorem 2.11, 7 = 0 or 0 = 1, as desired.

(2) To say that w/p is not trivial is to say that charac(D)=p # 0

(where D = R/J) but, charac(D) =0 so that w(p) is a well-defined
element in G.

Claim 1. Let 1 # ¢ € U;” be any root of unity. The multiplicative
order of ¢ is a power of p.

For let m be the multiplicative order of ¢. Let p” be the highest power
of p dividing m. Then m = p’l, where p + [. Suppose that [ # 1. If 6 = ¢*',
then o # 1 and o has order /. Moreover, o € U, for ¢ is a power of
¢ € Uy . Let 7 = ¢ — 1. From the relation o' = 1 follows ((o6 — 1) + 1)/
= (7 + 1)! = 1. Thus there are integers r,, r3,. . .,r,such that

i
I+ Z riTi = 0.
i=2
Dividing through the preceding equation by / this gives after factori-
sation by 7

!

1+ ) rl’Ti'l) =0 (r,.’ = ri/l).

i=2

T

Now, from ¢ € U; follows 1 =0 — 1€ L;. Hence 7' € L{ (i > 2).
Also,
1 i—1 /L+ 1 L+ 1L+ — L+ — L+

r;T E"ioe'l"ioc'l'o— wsn = Lo -
Hence, X! ,r7"! € L§. From this, if 7, = X! ,r7'"!, then 1 + 7, is
medial. By the basic equation, 7(1 + 7,) = 0. Now 1 + 7 is one-to-one
and 7 commutes with 1 + 7,. Hence 7 = 0 or, 6 = 1, a contradiction. This
shows that the order m of ¢ is a power of p, as desired.
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Claim 2. If w/P is the 2-adic valuation then U ,, is torsion-free.

Deny this claim. Pick 1 # ¢ € U, and let m # 1 be the multiplica-
tive order of ¢. By the preceding claim, m = 2" for some integer » # 0. If
o, = ¢>2H then ¢, # 1. Hence, ¢, is an involution belonging evidently to
U, 2, contradicting Theorem 2.15.

Claim 3. If w/p is the p-adic valuation with p odd then U,

() 1S
torsion-free so that U;’( 2 is torsion-free.

Deny this claim. There is 1 # ¢ € U, ,, with multiplicative order p.
If 7= ¢ — 1 and if the (?) are the usual binomial coefficients then from
¢? =1 follows

P\ 2 (p) P =
PT+(2)T + + » T 0.

Since p is prime, p|(?) follows for i = 2,...,p — 1. Dividing through
by p and isolating the last term this gives

1
-7 =71+ 1),
St = (1 + 1)

where 7, = —(r,7+ -+, 777%) and r,,....r, | are integers. Now
w(p) >0 for w(p) >0 and w/P is p-adic. Hence, U, ,, C U, . Thus,

v € Ly. From this 1, € L so that 1 + 7, is medial. In terms of lengths
the factor 1 + 7, can be thus neglected, that is,

w(o(7(1 + 1)) -o(7(1 + 1)) = w(vr - v0t).
Since (1/p)7? = (1 + 7,) it follows that

w(u—*r” . UlTP) =w(vr-v7);
p p

or,
w(or? - v7?) = w(or - v7) + 2w( p).
Restricting the preceding equality to V'V = V7 this gives
w(or? !l -vr? )y = w(v-v) + 2w(p),

for every v € V. Now, the restriction 7 of 7 to ¥ is evidently a
linear transformation of V. From r € L, ,, follows 7 € L, , (V™).
Hence (+M)?"' € L,_,),,,,(V") (Equation (33)). Thus

w(or? b -vr? ) >w(v-v)+2(p — 1)w(p)
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for every v € V™. Hence,
w(v-v)+2w(p)=w(v-v)+2(p—Dw(p).
If nowov # 0,v € VD, this gives

2w(p) = 2(p — Dw(p); 2(p) = (p — w(p); (p — 2)w(p) < 0.
However p is an odd prime. Thus p — 2 is a non-zero natural number. In
view of the relation w( p) > 0, (p — 2)w( p) > 0 follows, a contradiction.
This shows that V® =0 or Vr=0, thatis, r=0or,¢=7+1=1, a
contradiction. O

Question (open). Must U, be always torsion-free?

To conclude this section, let me make two side remarks. The informa-
tion about the normal subgroup structure of the unitary group as obtained
in Theorem 2.14 can be carried over (almost verbatim) to the normal
subgroup structure of the medial group M (that is, the group of units of
the medial semi-group M which have adjoints). The only difference arises
in the fact that while 6 — 1 nilpotent with ¢ € UJ(Z) implies ¢ = 1, one
cannot decide as neatly in the case 6 € M, ,,. As a result, in the preceding
theorem, roots of unity in M can occur when charac(D) = p # 0; these
are, of course, p roots of unity. If charac(D) = p and charac(D) = 0 then
M ,, is torsion-free. The second remark is of different nature. I stated in
the Introduction that my motivation in the ring L, arises equally from the
ring A that is spanned by U. In a continuation of this work I will show to
what extent A coincides with L, and/or L, and 4 have essentially the
same ideal structure.

3. Bounded orthogonal bases. In this section, the following situa-
tion will be analysed: Relative to a given orthogonal basis (f;) the
non-isotropic space V is such that for each unitary transformation ¢ the
matrix of ¢ is with entries from a fixed additive subgroup J, of the valued
division ring D. Special attention is given to the case g = 0. In that case
and assuming that 1/2 € R the results will be quite complete. I begin
with notations to be used throughout this section.

(a) Row finite matrix ¢. All matrices ® are row-finite matrices.
However, the number of rows of ® is any cardinal number. Thus ® =
[#,,]; <18 such that:

(0) ¢,, = entr, (®) € D;

(1) Foreachi € I, (¢j)je, is a nullary row vector over D.
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(b) Matrix of inner products S. Let (f;),;, be a fixed orthogonal basis
of V. I will consistently denote the inner product f; - f; by s,. Thus the
matrix of the inner products f; - f; is the diagonal matrix

(2) S = Diag{s;} e, (s;=1f- 1)

(c¢) Matrix involutions. The standard matrix involution tr.x is the
partial involution of the ring D, of all I X I row-finite matrices ® =
[4,,1, jer over D, which is defined at @ if, and only if, "€ D;,,. Then

(I)tr_* _ [ ;:] i’jEI-
The matrix of inner products S = Diag{s,},., induces a new partial
involution (S) of D, , which is defined exactly when tr.* is defined and
then

(3) (I)(S) — Sq)tr'*S—l.
Explicitly,
(4) entr, ;(®®)) = s.entr, (®)*s;'  (i,j€I).
(d) Matrix prevaluation. Let ---w > --- be the binary relation

between the Z-algebra D,,, and the group with infinity adjoined G*,
which is defined by

(5) Pw > g = entr; (®)w > g(alli,j € )
(e.g. w(entr,-,j(d))) >g,alli,je I).

Then --- w > --- is a *-prevaluation relative to the involution tr.*; but,
- w> --- is generally not a =-prevaluation relative to the matrix
involution (S). Hence it is better to refer to this case as matrix prevalua-
tion.
(e) Bounded basis (f). 1 shall say that the orthogonal basis (f) is
bounded if there is g, € G, which I call a bound for ( f;), such that

(6) w(s,) —w(s;) < g

for every pair i, j € I—Recall that s = f - f. Evidently every finite-dimen-
sional unitary space V over the x-valued division ring D has all its
orthogonal bases bounded, the case ¢ is the least bound for the given basis
(f) is noteworthy but not required in what will follow (unless otherwise
specified).

(f) Matrix of a linear transformation. Throughout the rest of this
section V stands for any non-isotropic unitary space over the *-valued
division ring. I will assume, further, that V' is equipped with the fixed
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orthogonal basis ( f;). To the vector v € V associate the nullary row vector
(7) v=(x)®v=Yxf.

iel
To ¢ € L associate the matrix of ¢, Mtrx(¢) (or ¢) € D, ; determined by
the equations

(8)  Row,(Mux(¢)) =(9,,),c, = fid=1(9,),c, (t€I).

DEerFINITION 3.1. I will call the basis (f,) e-elliptic, where ¢ € G is
fixed, if

9) Foreach¢ € U = U(V), Mtrx(¢)w > &.

THEOREM 3.2. Let V be any non-isotropic unitary space and let ( f;) be
any orthogonal basis of V. The following requirements are equivalent.

(1) (f;) is an elliptic basis (e.g. ([;);c; is €y-elliptic for some e, € G)

(2) V is an elliptic space and ( f,) is bounded.

Proof (1) = (2).

Claim 1. There is ¢, € G such that if (x,);., is any nullary row vector
over D, then
(10) I}/Li}lw(x,.six,.*) > w(jEIxjij;") + &.
If (x,) = 0 there is nothing more to show. If (x;) # 0 thenif v = ¥ x,f;
then v # 0 so that v- v # 0. Hence, the linear transformation o = o,
defined by

Uo=u- -v—
[ 2 ¥

is a projection of V (that is, 6> = 0 = 6*). Thus ¢ = 1 — 20 is a unitary
transformation of V. Let then &; be such that (f;) is eg-elliptic. By
definition, if ® is the matrix ¢ then ®w > ¢. Now, ® = 1 — 2 Mtrx(o).
From this follows

entr, (o) 2 e, —w(2) (i,jel),

where 0 = Mtrx(o).
A simple calculation shows that

entr, (¢) = (- x.f)) ——x,.

U-0V
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If e, = &, — w(2) then by the preceding,
w(s,) +w(x,) +w(x;) = w(v-v) + e
for i = j, this gives
w(x,s,x*) = w(v-v) + ¢

As this holds for every i € 1, it follows that

MinW(XLSth*) = W(U . U) +egy = W( Z x,s,xj") + g.

iel iel

Claim 2. Let g, be as in Claim 1. Then V is gg-elliptic.

Let (x,), (y,) be any two nullary vectors over D. For i € [ fixed:

2W(XI-S,»_))I*) = w(xisixi*) + W(ylS,y,*)

= 1}’2‘,’ w(xs,xr) + 1}'2‘,’ w(8,7).

The preceding inequality holding true for every i € I, it follows that
2 Min w( X, 8, X ) = Min (2w( x,s,y,*))
iel el

= E’E?W(x,ijj*) * %i?w(y"sfy’*)

v

W(ijij/*) + W(Zy/-sjyj*) + 2¢g,.

39

Given u, v € V it is clear that there are (x,), (y,) such that u = (x,),

v=(y)(eg u=2L1yf) Then
2w(u - v) = 2w(}:x,siy,*) > 2Min( x,s,y?)
> w( xjijj*) + W(Zy/sly,.*> + 2¢,
=w(u-u)+w(v-v)+2e,

and V is gg-elliptic.

Claim 3. (f,),<, 1s bounded.

For suppose that ( f;) is ej-elliptic. Taking up the calculation in Claim
1, in the case v = f, + xfj, where x is to be fixed later and i, j € I are such

that w(s) < w(s,), then

w(s;) +w(x) > w(x,.+xij*) +te,  (gg=1¢,— w(2)).
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Pick & > |gy|, where as usual |g)| = ¢, if ¢y > 0 and |go| = —¢, if
gy < 0. Put e, = 2¢;. I claim that co # g > ¢, implies w(s,) — w(s;) < 2g
+ ¢,. For, otherwise, for such a g € G, there is 0 # x € D such that
w(x) = —g. Then

w(xij*) =w(s;) —2g> (w(s,) +2g +¢) —2g

=w(s;,) + ¢ > w(s,).
By the special triangle equality follows
w(s, + xij*) = w(s,).
Then
w(s;) +2(x) = w(s,) + &;

—g = w(x) = g,. Equivalently, ¢ < —¢, < ¢, contrary to the relation
g > ¢&,. Hence the asserted implication holds. If g = ¢, this gives w(s;) —
w(s;) < sg; + & = 3¢ =¢,, as desired. Hence w(s;) > w(s,) implies
w(s;) — w(s;) < &,. Now, if w(s;) <w(s;) it is clear that since &, > 0,
w(s;) — w(s;) < &,. Therefore (f;) is bounded with bound &,.

(2) = (1). I will establish something more, namely,
(11) pWw>g=¢w>g+e — ¢,

where: ¢’ is a bound for (f,), &, is an index of ellipticity for V; ¢ =
Mirx(¢)—Recall that ¢w > g’ means w(entr, ;(¢)) > g’, for every pair
i,jel

Claim 1. If Vis gy-elliptic then for each nullary vector (x;) over D,

2¢, + w( Y x‘slxl*) > Mi}l(xtslxt*).
e

el

It suffices to apply inequality (22), Theorem 2.6, §2, for v, = x,f, (i € I).
Claim2.w2g=>@_4g2g+so—e’.
Put u; = f,¢. From ¢w > g follows
w(u; - u;) =w(fio- fid) 2 w(f;- f;) +2g = w(s;) + 2.

Now,

w(uL : ut) = W( Z ¢L]Sj¢:j)'

jer
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From Claim 1, follows
w5, 88y) = EQ?W(‘PUSJ ) = w(Loys0n) + 26
=w(u, - u;)+ 2¢ey = w(s;) +2g + 2¢,,
2w(,;) = 2(s;) — w(s;) +2g + 2¢,
> —¢ +2g+ 2> —2¢ + 2g + 2¢;
w(q)ij,) >g+eg— ¢,
as desired.

Claim 3. If ¢ € U then ¢pw > 2¢, — &'.
Since V is g-elliptic, it follows that

2w(u - vp) > wl(u-u)+w(ve-ve) + 2¢,
and since ¢ is unitary,

2w(u - ve) = w(u-u) + 2(ve - vo) + 2¢,

=w(u-u)+w(v-v)+ 2,

so that,
oW = g,.
By Claim 2,
ow > g, +(eg— &) =2¢y— ¢
follows. O

The proof of the preceding theorem revealed few facts that are
appropriate to separate for future reference. This is the content of

REMARKS 3.3. Let (f;) be any orthogonal basis of the non-isotropic
unitary space V. Then:
(a) If Vis g-elliptic and if ¢, is a bound for ( f;), then

(12) dw > g=ow>(g+¢e—g).

(b) If V is g-elliptic then for every nullary vector (x;) over D,

(13) w( hy x,-s,-x;“) —2g, < Mi}l(w(x,s,x;")) .
e

iel
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(c) Conversely, if the preceding inequality holds then ¥ automatically
verifies a generalized Cauchy-Schwarz inequality. In effect, V is (g,)-
elliptic.

I proceed to a converse of inequality (12) in Remarks 3.3.

THEOREM 3.4. Let V be any non-degenerate &g -elliptic space with
orthogonal basis (f,) bounded by ¢,. If ¢ € L is such that ¢w > g, then
ow > g + 2¢g, — & follows.

Proof. As a first reduction, one can replace the asserted relation by
the quadratic inequality

w(ve - ve) = w(v-v)+2(g+e—¢g).

This readily follows from gy-ellipticity of V. As a second reduction, one
may assume V is finite-dimensional. The argument to that effect runs as
follows. If v is the row vector of v € V and v¢ that of v¢, then for u = v¢
it is clear that o _

U= u.
By construction, u is a nullary vector over D. If F/) is the usual (i, j)

standard matrix in D;,; and ¢,; = entr, ;(¢) then evidently there is a
finite subset /; of / such thatif ®' =¥, _, E(“)¢,; then

u=uv¢.

If ¢’ € L is such that ®" = Mtrx(¢’), then v¢’ = v¢ follows. By
construction, @’ = ¢'w > g. If the assertion can be shown for ¢ replaced
by ¢’ then evidently

w(ve - vep) =w(vy - ve') =w(v-v)+2(g+¢e — ).

Hence one can replace ¢ by ¢". If V@ is the subspace that is spanned by
the f, as i ranges over I;, then without loss of generality v € VD, by
construction ¥P¢’ € ¥, and (f,),c, is, again, orthogonal with bound
g, Since V'V is finite-dimensional the asserted reduction follows. Hence in
what follows I can be taken to be a finite set, say, I = {1,2,...,n}. Let
S = Diag{s,,...,s,}. Then

06 v =v9S(v9"),
so that

w(ve - vgp) = w(%s(v_(p)tr.*).
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Observing that if w(®) is the minimum value of the entries of ® then w is
sub-multiplicative one gets

w(0gS(0¢)") = w(09S(08)"") = 2w(v8) + w(s).
Hence,
w(vg - v) = ww(ve) + w(S) 2 2w(p) + 2w(9) + w(S).
If v = ¥ x, f,, then by Remarks 3.3b) follows

Minw(x,s,x*) > W(lestxt*) +2¢5=w(v-v) + 2¢,.
If w(S) is the maximum value of the diagonal entries in S (all # 0), then
2w(v) + w(S) = Minw(x,s,x*) = w(v - v) + 2¢,.
Hence,
w(ve - v¢) = (w(v - v) +2e5 = W(S)) + 2w(¢) + w(S)

> w(v-v) +2g — 2(S) + w(S) +2g
=w(v-v)+2¢ +(w(S)—w(S)) +2g
>w(v-v)+2e,— ¢ + 28
> w(v-v)+ 2 — 2¢ + 2g
=w(v-v)+2g+e—g),

as desired. O
Combining (12) with Theorem 3.4:

THEOREM 3.5. Let V be any non-degenerate ¢ -elliptic space and let ( f;)
be any orthogonal basis, which is bounded by ¢,. Then:

l.ow > = ow > g (=g + 2¢, — ¢);

2.¢ow>g = ow > g;where ¢ is the matrix of ¢ and ¢w > g means
w(entr,;( ¢)) > g for every pairl,j € L N

COROLLARY 3.6. Under the assumptions in Theorem 3.5, if g,, 8, € G
are such that |g, — g,| > 2(& — 2¢y) then L, # L, .

Proof. Assume, say, g, > g + 2(¢ — 2¢,). If now L, = L, define
8 = & — 2¢&y + &. If (J;) [, is the additive subgroup of I X I matrices
® € D,,, such that each entry of ® belongs to J; then by Theorem 3.5,
point 2. follows Mtrx“(ng) ix1 € Lg. Also, by Theorem 3.5, point 1.
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follows Mtrx~(J,)) 2 L, . Thus

Mirx (), Mt (Jg) e
Hence,
(Jsz) IxI > (ng) IxI1:
Thus,

Jg, 2 T3
From this g, < g;. Recalling that g, = g, + 2¢, — ¢, and g, = g; — 2¢,
+ g, then
8~ & < (—2¢ +¢),
which is a contradiction. a

In the course of the proof of the preceding corollary, certain matrix
approximation of the additive subgroup L, was offered; namely,

(14) Mux(L,) > (J;),,, (8=g-2¢+¢).

One can offer related bound for the congruence subgroup U, of the
unitary group U. For observe that the passage from ¢ € (L; %) to Mtrx(¢)
€ (D, ;; (S)) is an isomorphism of partial involutorial rings. Hence

(15) Mtrx(U) = %(D,y,;(S)) (= Unitary group of (D, ;; (S))).

Related to the congruence subgroup U, (resp. U;") is the additive
subgroup X (V') (resp. 9{; (V)) which, I recall, is the set of skew-symmet-
ric transformations y = —¢* such thaty € L (V) (resp. ¢ € L;(V)).

REMARK 3.7. In the partial involutorial matrix ring D, ; relative to
(S), the matrix ® is skew-symmetric if, and only if, ® is of the form

(17) d =53,
where 2 is a row and column finite matrix such that
(18) St = -3,

Proof. From (18) follows
o) = (§3)F = §(3*5)s! = —S=.

Conversely, if @5 is defined then ® is both row and column finite
and then

(19) ) = SPrrsl = — .
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If = = S~1®, then by construction ® = S and,
St =gl = —§°1@ (from (19)) = - =. O
THEOREM 3.9. Let V be as in Theorem 3.5. Assume, further, that V is

not the 1-dimensional orthogonal space. If g,, 8, € G are such that |g, — g,|
> 3¢ — deqandif g, g, > w(2) then U, # U,.

Proof. Let #,( Dy ; (S)) be the additive subgroup of skew-symmetric
matrices ® relative to (S) such that ®w > g. From Theorem 3.5, point 2.,
follows

(20) Mtrx( £, (V)) 2 (Dps (S)),
where g = g — 2¢, + &. From the cited theorem point 1. follows
(21) Mtrx(X#,(V)) € H(Dyys (5)),
where g = g + 2¢, — . Assume that X (V') = 2, (V). Applying (20) to
g = g, and (21) to g = g, this gives

Ky (Dyes; (8)) € Mux( £, (V) = Mux( £, (V) € H, (Dyyp5 (S)).
From Remark 3.7 follows

Ho(Dpypi (8)) = { SZE* = —2(SZ)w > g}

When the ground involution * in D is the identity mapping then by
hypothesis dim , V' > 2. In that case choose 2 of the form

0 x
-x 0

where w(s;x) and w(s,x) > g;. By construction, SZ € X, (D, ; (S)).

Hence, S2 € X, (D;,;(S)) and so, w(s;x) and w(s,x) > g,. What I

have shown is that

{w(slx) > g {W(slx) = 8
E—2

w(s,x) = &2

2= @ 0;

(22) (x € D).

w(sw) 2 g
Now |w(s;) — w(s,)| < &. If then x is such that w(x) = g, — w(s;) + ¢,
then
w(six) =2 +& >3
and
w(s,x) = w(x) + w(s,) = g + & +(w(s,) - w(s,))
28 te—g=g.
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From (22) follows w(s;x) = g, + & = g,. Hence,
gl+el=g1—280+2_£1Zgz+2£0—el.

or,

(23) g — 8, = 4ey— 3¢5 8, — g = 3¢ — b,

By symmetry,
81 — 8 < 3g — 4,

contradicting the hypothesis |g, — g,| > 3¢, — 4e,.
When the ground involution * in D is not the identity mapping one
can choose in that case 2 to be of the form

S=[x]®o0,

where x* = —x. By a trivial adaptation of the preceding argument
follows |g, — g,| < 2¢ — 4¢,, which contradicts again the hypothesis.
This shows that X, (V) # X, (V). Since g;, t, > w(2) it follows from
Theorem 2.16, §2, that U, + U,. a

The proof of the preceding theorem evidenced the fact that the
smaller the bounds ¢, & the better the matrix counterparts of L, U, will
be. Hence, it seems desirable to work out still further the special case
where the basis (f,) is O-elliptic which means, I recall, every unitary
transformation ¢ of V has matrix over the valuation ring R. From
Theorem 3.2, the space V' automatically verifies a generalized Cauchy-
Schwarz inequality where the index is not less than —w(2). When1/2 € R,
then V' becomes O-elliptic and the bound & for ( f,) should be quite small
since by the cited theorem |w(s,) — (s;)] < 2g for each positive g € G. In
the theorem to follow it is shown that indeed & can be taken to be either 0
or else, ¢ is the first positive element in G. This is the

THEOREM 3.10. Let V be any non-isotropic unitary space with orthogonal
basis (f,). If 1/2 € R and if the basis is O-elliptic then:

(1) Vis O-elliptic.

(2) The basis ( f;) is bounded by €, where either ¢ = Q or else ¢ is the first
positive element in the value group G.

Proof (of (2)). If the basis ( f;) is uniform in the technical sense all the
f; have same lengths there is nothing more to prove. If to the contrary
there is a pair i, j € I such that f; and f; have distinct lengths then
[w(s,) — w(s;)| # 0. Since |w(s;) — w(s;)| < 2g for every g > 0 it follows
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that if ¢ = |w(s;) — w(s;)| then ¢ is the first positive element of G if
g, €& 2G; otherwise, 1/2¢, is the first positive element of G. In both cases,
G has definitely a first positive element ¢ and what is left to show is that
the case ¢ € 2G can be dismissed. For assume, say, w(s,) = w(s;) + 2e.
Evidently V has dimension at least 2. Pass to the 2-dimensional subspace
V' ® spanned by f; and f,. Then ¥'® has orthogonal complement in V. by
standard argument, (£, f;) is then a O-elliptic basis for the space V®. Put
v =x,f,+ x,f;, where x,;, x, € D are to be fixed later. Writing out the
matrix of the projection 7 induced by v one gets for matrix of 7 the
following matrix:

* 1 k
R
(24) Mitrx(7) =

Since by hypothesis w(2) = 0 it follows as observed earlier that
Mitrx(7)w > 0 and, hence, w(entr, ,(Mtrx(7))) > 0. Since V is a O-elliptic
space one knows in that case that (Theorem 1.7, §1, equality (29))

w(v-v)= w(xls,.x{" + xziji}‘) = Min(w(xlsix{“), w(xzij;‘)).

If x,, x, are such that w(x,) = 0, w(x,) = — & then one should get for
such x;, entr, ,(7) € R. Equivalently,

w(s;) + w(x;) +w(x,) = w(v - v).

Now,
w(xzij’z") =2w(x,) + 2(s;) = —2¢ + w(s;)
= (—2e) +(2(s,) + 2e) = w(s;)
= w(s,) + 2w(x,) = w(xs,x¥).
Hence,
Min(w(xls,-x{"), w(xzij;‘)) = w(s;).
Thus,

w(v - v) = w(s,).
Substituting for w(v - v) in the preceding inequality this gives
w(x;) +w(x,)=0 or 0—¢=0,
which is nonsense. O

THEOREM 3.11. Conversely, let V be any non-degenerate O-elliptic space
—w(2) need not be 0. If ()<, is any orthogonal basis with bound €, where
¢ = 0 or ¢ is the first positive element in G, then (f;),; is a O-elliptic basis
for V.
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Proof. 1t is to be shown that if ¢ € U then Mtrx(¢) € R, ,. I will
show something more, namely, if ¢ is integral (e.g. ¢ € L,) then Mtrx(¢)
€ R, Forlet ¢ € L. Then ¢ increases lengths. Hence, for eachi € I,

w(fio - fi9) = w(s)).

If ¢,; is the (i, j) entry in the matrix ¢ of ¢ then as in the proof of
Theorem 3.2, point 1, Claim 2, one has

sk 3 £3
w(,,8,9%) = IZIEII}W((onon )

= w( 2 by ,) = w(fip - fip) = w(s,).
I

HE

Hence,
2W(¢ij) > w(s;) —w(s;) = —e

If e =0 from 2w(¢,;) > 0 follows w(¢;;) = 0. If & is the first positive
element of G, then by the usual arithmetic argument from 2w(¢,;) > —¢
follows w(¢, ;) = 0, as desired.

If now ¢ is any unitary matrix then from O-ellipticity of ¥ follows
¢ € L,so that Mtrx(¢) € R, ;. o

To recapitulate the foregoing theorems in the special case under
consideration:

THEOREM 3.12. Let V be any non-isotropic unitary space. Suppose that
1/2 € R and let (f)) be any orthogonal basis of V. The following require-
ments are equivalent.

(1) V is O-elliptic and ( f,) has bound & with ¢ either Q or else ¢ is the first
positive element in G.

(2) If & is unitary transformation then the matrix of ¢ is over the
valuation ring R in D.

(3) If ¢ increases lengths (e.g. w(v¢ - vdp) = w(v - v) for every v € V')
then Mtrx(¢) is over R.

(4) (¢w = ¢+ = Mtrx(¢)w > g) and (mtrx(¢p)w > g = ¢w > g — ¢).

Although Theorem 3.12 point 4. asserts that the prevaluations - -- w
> ---and --- w> --- can be identified up to ¢, still, in the inequality

(23) Mirx(¢p)w > g = ow > g — &,

it would be wrong to drop the term —e. For if one neglects it, then w and
w would be isomorphic *-prevaluations. Hence w would be an (S)-preva-
luation; by inspection, this happens exactly when S has all its diagonal
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entries with same values. Equivalently, the basis ( f) is uniform (i.e. all f,
have same lengths). Because of the residual term —e¢ one has less control
on the strict prevaluation --- w > --- and it is again wrong to infer that
¢w > g implies ¢w > g. The kind of information which is lacking here is
how one can decide whether or not ¢ € L, looking at the matrix of ¢.
This problem will be solved in what will follow; but, first some additional
notations and definitions.

(g) Uniform and mixed bases.
Without loss of generality the index set I can be turned into a linearly
ordered set such that

(24) izj=w(s)=w(s).

By construction, if E = {w(s,)},<,, then either

(25) #E =1 (uniform basis),

or

(26) #E =2 (mixed basis)
In the case the basis is uniform, put

(27) I,=I, I=2.

In the case the basis is mixed, put

(28)  1,={ieIlw(s)=Min(E)}, I,={ieIw(s)=Min(E)}.

By construction, I is the ordinal product of the ordered subsets I, and I,.
As a memonic device for the considered matrix constructions to follow let
me make the

(h) Convention. Given g = —¢, 0, or ¢ let
Je = R, .ifg= —eor0,
J, ifg=c¢.

For instance, if G is the ordered additive group of integers then:
J°=R; Jt=17;
and by convention,
J1=R.

There shall not be confusion in what will follow with inverses of fractional
ideals.
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(1) w-Matrix. By w-matrix, I mean any I X I matrix W over the value
group G such that if w;; = entr; (W), then:
(i) If G has no first positive element then w;; = 0 for every pair
i,j € I.(0 = zero of G);
(ii) If G has a first positive element ¢, then w;; = —¢,0 or ¢, and;
(i) i = j=w; =0

(v) Wi = —W;, (i,j €1).

(j) The ring R,,. Given the w-matrix W over G denote by R,, the
subset of matrices ® = [¢,;];  such that

. € RY (alli,jeI),
® € Dy

By inspection, R, is a subring of D, ,, which is closed under the partial
matrix involution (S).

(k) The ideal Jy,. Given the w-matrix W, denote by W™ the I X I
matrix over G such that if w;; = entr; ;(W) then

w

o e[
ijo

ifw,; #0,
ifw,; = 0.
Define J,, to be the subset of matrices ® = [¢,,], ;< such that
{¢ij eR% (alli,jel),
®e D,
By inspection, J, is a (S)-closed 2-sided ideal of the ring R ,,.

(31)

(1) Illustration. Every orthogonal basis ( f;) of the non-isotropic space
V such that ( f;) is bounded by the considered & gives rise to the w-matrix
w = w((f;)), where
(32) Wij=W(Si)—W(Sj) (se =fi fe-keT).
Hence, if I is the ordered segment I = {1,2,3,4}, I, = {1,2} and I, =
{3,4}, then:

O 0:—8 — & £ 8'_6 — &

0 01 —& —¢ L le g1 —e —¢
W=|--—--—- St ; Wi=|-eoode o ;

e €, 0 0 e & & €

e €1 0 0 £ &1 E €

R RIR R J Ji R R

R RIR R J JiR R
R, =|---—--- bo— e ; Jy=|----- N

J JI! R R J JJ J

J JIR R J JiJ J
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That, again, R, is an (§)-closed subring of D, ; and J, is an (S)-closed
2-sided ideal of R, this is also a consequence of the

THEOREM 3.13. Let V be any non-degenerate O-elliptic space with
orthogonal basis (f;);c, and suppose that either ( f,) is uniform or (f)) is
mixed (e.g. (f;) is bounded by € where either ¢ = 0 or & = lst positive
element of the value group G). If W is the corresponding w-matrix (w;; =
entr, (W) = w(s;) — w(s)), s, = fi - fi) then:

(1) The ring R, of all row-finite I X I matrices ® = [¢,;] with ¢,; € J "
is isomorphic to the ring L, of linear transformations ¢ increasing lengths.

(2) The ideal J,, of all row-finite I X I matrices ® = [¢,;] with¢,; € J "5
is isomorphic to the ideal L of linear transformations ¢ strictly increasing
lengths.

Proof. Claim 1. Mtrx(L,) C Ry,

From Theorem 3.2 implication (2) = (1), claim 2, follows that if
¢ € L, then if Mtrx(¢) = [¢,;] then 2w(o,;) = w(s,) — w(s;) = w;;.

If w;; < 0 then J™ = R and, hence, ¢,; € J™. If w;; > O then w,; = ¢
so that 2w(¢,;) = &. From this w(¢,;) > € and, consequently, ¢, € J =
R"u.

Claim 2. Turn V into a right vector space over the division ring D
using the basis ( f;) as follows:

U=inf,‘, AED'—)UA=ZXi}\f;.

el el

Given 0 # A € D, let A: ¥ — V be the linear transformation sending v to
vA. Thenw(A\) > g = Aw > g.
This was established in §2, Theorem 2.7, point 2. inequality (27)".

Claim 3. For 0 # A € D, i, j € I fixed let $“: V — V be the linear
transformation sending v = X x, f, onto v¢§*/) = x,A f;. Then Mtrx(¢{”)
= EGD), and ¢ € L, (resp. ¢'* € L) as soon as A € J™ (resp.
A e Jw).

That the matrix of ¢{"/ is the standard (i, j) matrix E/) times A this
is formal. Choose A € J ™ (resp. A € J*>). The assertion is equivalent to
¢§"/) increases (strictly increases) lengths. Let then 0 v € V. If v =
Y.<rx,f then

w(v-v) = w( Y xkskx,’f) = Minw(x,s.x}) < w(x;5,x*);
Pyt kel
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w(vGD - plind)) = W(x,)\f,- - x;Mf))
= w(xA(f - £)(xA)*) = 2w(x,) + 2w(A) + w(s,)
w(x,5,x%) + 2w(X) + w(s;) — w(s,)
> w(v-v) +(2w(A) —w,;).

From the preceding inequality all that is left to show is that 2w(A) —
> 0 (resp. 2w(A) — w,; > 0). Now, in the case A € J"», w;; < 0, then

2w(}\) —w,; > 2w(A) > 0; -

= w(x,s,x, ) +2w(A) +w;, >

Wij =
Wi =
in the case A € J™s, w,; > 0, then w(A) 2 & so that

2w(}\)—w >2e—e=¢>0.

ij =
This shows that ¢/ increases lengths. In the case A € J* when w;; =0,
2w(A) — w;; = 2w(A) follows and then w;; = & so that w(A) > ¢, whence
2w(A) — w;; > 0; whenw,; = —ethen2w(A) —w;; = 2w(A) + e > ¢ > 0;
when w,; = ¢, then 2w(A) — w,; > & > 0. This shows that ¢/ strictly
increases lengths, as desired.

Claim 4. R, C Mtrx(L,) so that R, = Mtrx(L,).

Let ¢ € R,,. Thereis ¢ € L with ® = Mtrx(¢). It is to be shown that
¢ € L, or, it is the same, ¢ increases lengths. Put v = X x;f. The
equation ve = v’, v' € V translated into matrix equation is now v = v’
Since v’ is nullary vector over D there is a finite set I, of I such that if
® =%, E*)¢, then p® = v'. By construction, ¢,, € J*, i,j € I,. If
o) = Mtrx'l(E(’ f)) then ¢\ = ¢(’ /), where A,; = ¢,; € J™. By the
preceding claim, qb" Ne L, If ¢ = Mtrx (@) then ¢ =X e ¢(’ N e
L,. Since v = v¢’ it follows that w(ve - vo) = w(ve’ - v¢') = w(v - v) for
every v € V, as desired.

Claim 5. J,, = Mtrx(Ly).

For the inclusion J,, C Mtrx(Lg) use a similar argument as in the
preceding claim based on claim 3. For the inclusion Mtrx(Lg) C Jy,
proceed as follows. From ¢ € L; follows

2w(e;;) > w(s;) —w(s;) = w,.

When w,; = 0 then w(¢;;) > 0 follows glvmg w(¢;;) = esothatp,, €J =
JYi, Whenw <Othen¢,, € R=J" =J"™ Whenw < 0 then 2w(¢, ;)
<w; 1mp11es 2w(e;;) = 28 so that w(¢,;) > ¢ whence ¢, €J=J"=
o) i
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DEFINITION 3.14. (Residue matrix module W.) Let W be any w-matrix
over G. Given ® € R, denote by ®,, the I X I matrix over the residue

division ring D such that

(32) entr, (®,)=0, if w,, # 0.
32 -
entr, (®,)=entr, (®)+J, ifw, =0.

I refer to @, as to residue matrix modulo W.
For instance, if W is as in Illustration (/), then if ® = [¢, ],_, 4>
then

- |
b1 P12 ! 0
— |
|
R R S |
0 : ¢'33 ?er
E a3 Dug
where @,.j = ¢,, + J. Hence,
DD 0
. |p D! o
(33) (RIXI)W B A== [ = Dyyy @ Dy
0 ;D D
' D D

where @ is the block diagonal sum and Diag,(D) is the ring of 2 X 2
diagonal matrices over D (= R/J).

THEOREM 3.15. Let V be as in Theorem 3.13. Denote by D, the block
diagonal sum of the ring D 1ox 1, 0f row-finite I X I, matrices over the residue
division ring D, and the ring D, x1, of row-finite I, X I, diagonal matrices
over D (if I, = @ then discard the rzght summand Diag, ( D)). Then:

) Ru/y = (RAT) = D,

(2) Lo/Lg = Dy,

Proof. Given ¢ € L define E)W to be the residue matrix modulo W of
the matrix of ¢. As ¢ ranges over R, the matrix of ¢ ranges over R,
(Theorem 3.13)). Hence ¢,, ranges over D . Now, <;(>W =0  Mtrx(¢) e
J,, = (¢) € Ly (Theorem 3.13). Since qb <;bW is a ring homomor-
phism

L,/Li =D,

follows, which also shows that R,,/J, = D,, as this can be checked
directly. O
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From the preceding theorem one can deduce several new facts about
the pair L, D L, some of which are of global meaning. Here are some.

COROLLARY 3.16. (i) Ly is an intersection of maximal ideals in L and,
consequently, Ly D Jac(L,). (ii) Hence, Ly N % ¥ = Jac(L,) N F L.

Proof. (1) by Theorem 3.15,
Lo/Ly = Ry/Jy = (R/J)W= Bw = I_)IOXIO ® _D_I xI,

€ €
= DI(,xI0 X Dlexlt'

Now l_),ox 7, 18 primitive and so is Blsxl; Thus D, is semi-primitive.
Hence L,/Lg is semi-primitive. Equivalently, L is an intersection of
maximal ideals. (ii) follows from the preceding and §2, Theorem 2.12. O

COROLLARY 3.17. Ly is a prime ideal if, and only if L§ is primitive.
Equivalently, some (and, hence, all) orthogonal basis of V which is bounded
by & is uniform.

_ Proof. 1f Ly is a prime ideal then L,/L; is a prime ring. Hence,
Dy, = Dy . p, X Dy, is prime; if, and only if, I, = &. Equivalently, (f;)
is uniform. O

COROLLARY 3.18. Ly is a maximal ideal if and only if V is finite-dimen-
sional and every orthogonal basis of V which is bounded by ¢ is uniform.

Proof. 1f L;{ is maximal then Dy =D, ,, = D, is a simple ring.
Hence, I is finite so that V is finite-dimensional. O

COROLLARY 3.19. (i) If V is finite-dimensional then Ly = Jac(L,). (ii)
Conversely, if Ly = Jac(L,) and if V possesses a uniform basis necessarily
V is finite-dimensional.

Proof. (i) follows from Corollary 3.16. (ii) From the equality L; =
Jac(L,) and the isomorphisms Ly, =R, ;. Ly =J; ., = Jac(R); ;.
follows the equality Jac(R; ., ) = Jac(R), .. Since evidently R contains
no nilpotent elements it follows by Patterson’s [14, Theorem 1] that I, is a
finite set. Equivalently, V is finite-dimensional. ]

Question (Open). If Ly = Jac(L,) must V be finite-dimensional?
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COROLLARY 3.20. Let V be any non-degenerate O-elliptic space with
some orthogonal basis ( f;) which is bounded by &, where as usual ¢ = 0 or
else ¢ is the first positive element in the value group G. Then the prime ring
L, contains in its lattice of 2-sided ideals an isomorphic copy of the positive
cone of G.

Proof. When the basis ( f;) is uniform the result is evident. Assume to
the contrary that (f;) is mixed so that ¢ is the first positive element in G.
Extend the convention about J* to J;, specifically, put:

(34) Jo=J=J, J=J. (g=0).

Define (J,), (and (J,)y,) similarly to R, (and J,, respectively). Thus
® = [¢,,] € (J,) y if, and only if,

® R,
(35) " :
entr,’j(CI)) N J," (¢, jETI).
Exactly as for the case g =0 one can show that Mtrx(L,) =
(J) wMtrx(L,) = (J,) ). Since (J,) y, = (Jp)y < g = g’ this makes it
clear that g € G"— L, is a dual isomorphism of ordered sets from G*
into Lat.(L,). O
Since this section began with an assumption about the unitary group
U = U(V) it seems appropriate to close it with information that can be
derived about this group. In what will follow I will deal with a certain
matrix representation of U over the residue division ring D = R/J, where
I will assume that, again, ¥ has some orthogonal basis (f;), which is
bounded by & with either ¢ = 0 or ¢ = 1st positive element of G. The
unitary version of Corollary 3.22 will be left to upcoming §4.

THEOREM 3.21. Let V be any non-degenerate 0-elliptic space possessing
some orthogonal basis ( f,), which is bounded by ¢, where either € = 0 or € is
the first positive element in the value group G. If W is the w-matrix
associated to (f,) and if #>: U — D, is the mapping sending ¢ € U onto
Mtrx(¢),, the residue matrix modulo W of the matrix of ¢ relative to the
basis, then M * is a representation of U over D such that:

(1) Ker(A>) = Uy';

(2) Im( A ) is a subgroup of unitary matrices of the unitary group of
I_)W, relative to the partial matrix involution (S) of EW induced by (S).

Proof (1) lgecall that 0 — 0, = Mtrx(o),, is a ring homomorphism
from L, onto D, with kernel precisely L; (Theorem 3.15). Since V is
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0O-elliptic, it follows that U C L, so that . * is the restriction of ¢ — o,
to U and, hence, # * is a group homomorphism from U into the group of
invertible matrices in D,,. Now

Ker(#£>*)=(1+Ker(6 > 0,))NU=1+L{)NU=U;.

(2) The ring L, carries a partial involution * which can be identified
to the partial matrix involution (S) of the ring R ;. Since J,,, is (.5)-closed
it follows that D, = R, /J,, carries a partial involution (S). By construc-
tion # > takes U onto %(R,: S)) and %(R,,;(S)) is mapped onto a
subgroup of %(D,,; (S)) under the residue homomorphism ® - ®,,. O

The following theorem is fairly formal.

THEOREM 3.22. The unitary group of the ring EW relative to the induced
involution (S) is of the form

%(EW; (§)) = %(—D_onlo; (‘§0)) X %(BIEXIE; (i))’

where (S,) takes ®g = [¢,;+ J], jc; onto B = [siofis;t + 1, jer,
(when @, is both row and column finite) and, similarly, (S,) takes @, =
[‘PT, + J]i,jelE onto (I)((g‘) = [si(p;jisj_l + J]i,jel;

THEOREM 3.23. Let V be any non-degenerate 0O-elliptic space and
suppose that the R-module V,, has an orthogonal basis (f,) all of whose
members are medial vectors. If, further,1/2 € R, then the normal subgroup
€F (U) of unitary transformations ¢ such that ¢ — 1 is of finite rank maps
onto the corresponding subgroup €% (U) of D.

_ Proof. It is to be shown first that the group homomorphism ¢ € U —
¢ € U extends to an onto homomorphism ¢ € L, » 6 € L = L(V). For
if 6 € L itis clear that Vo C V,and V; 6 C V; . Hence if

o=10v+ - vo +
43 o Vo Vo

then ¢ — & is a ring homomorphism from L, into L with correspondence
of the adjoint involution in L, and L respectively. To show that ¢ — & is
onto proceed as follows. If € L then using the basis (f,) = (f, + V') of
V lift & to a linear transformation o, of the R-module ¥, sending f, onto
f,6. By construction o, maps V¥, into ¥V . Extend g, to a linear transfor-
mation o of V by the rule

(44) (Av)o =A(voy) (A€ D,veT,).



NON-ISOTROPIC UNITARY SPACES 57

Given any u € V, there is A, € D such that A ju is medial (§1, Theorem
1.7). Then (A ju)o € ¥, so that
w((Aou)o -(Aqu)s) = 0
or,
w(uo - uo) = —2w(Ay) = w(u - u).
Thus ¢ € L,. Hence 6 — & maps L, onto L, as desired.

Next I will show that each ¢ € ¥#(U) maps onto ¢ € FFU).
Indeed, ¢ maps onto ¢ € U. To say that ¢ € ¥F(U) is to say ¢ — 1 is of
finite rank. Equivalently, Mtrx(¢ — 1) has all its entries zeros but for a
finite subset of I X I ( finite matrix). Relative to the induced basis ( f) it is
clear that Mtrx(¢ — 1) is, again, co-finite. Thus ¢ € €F(U).

It remains to show that each ¢ € ¥F(U) lifts to a unitary transfor-
mation ¢ € CF(U).

Let ¥V be the image of ¢ — 1. By construction, ¥ @ is a finite-dimen-
sional subspace of V. By §1 Theorem 1.11, ¥® lifts to a finite-dimen-
sional orthogonal summand V» of V. Denote by ¥® the orthogonal
complement of ¥® and by V® the orthogonal complement of V! in V.
By the cited theorem V® maps onto V. I distinguish two cases.

Case ¢ is a symmetry. Here ¢* = ¢ implies

(I) = —1',7(1) @ 17(2).

If ¢ = —1,0 @ 1,0 then ¢, extends in a unique way to the symmetry ¢
of V. Hence ¢ has been lifted to the symmetry ¢ in L,. By construction, ¢
is co-finite.

Case 1 + ¢ is non-singular. Here, ¢ can be Cayley parametrized. If

F=(1-¢)/(1+ ¢),then

Vi=V

1-3)=7(1-23)=7W.
1+¢( ¢) = V(1 - ¢)

Then 7 = 7/V® & 0pe. Repeating the argument to the effect Ly (V)
maps onto L(V) for V replaced by DV " one readily gets that 7/V ® lifts
to a skew-symmetric transformation 7, of DV". If 7= 1, & 0 then
T = —71* € L, maps onto 7. By construction, V7 = DV{" is finite-dimen-
sional. If ¢ = (1 — 7)/(1 + 7) then ¢ € U maps onto ¢ and

V(1 - ¢) = V(%)(-zf) — V(2r) = Vr = DV,

Thus ¢ is co-finite.
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For general ¢ € U, by standard argument ¢ = ¢,$,, where ¢, is a
symmetry and ¢, is such that 1 + ¢, is non-singular. One can, further,
choose both ¢,, ¢, to be co-finite. It suffices then to lift separately ¢,, ¢,
to ¢,, ¢, co-finite. Then ¢ is lifted to the co-finite unitary ¢,, ¢,. ]

COROLLARY 3.24. If V is as in Theorem 3.23 then M*: U — D, is a
matrix representation of U over the residue division ring D = R/J with the
following features.

(1) Ker (M) = Uy

(2) If M*% is the restriction of M* to the normal subgroup €#(U) of
co-finite unitary transformations in U then

Ker(M*%) = €#(U) N(1 + Jac(L,)).

(3) €#(U ) maps onto ‘gﬁ( D, X Ips (SO)) the normal subgroup of unitary
matrices ® in D, x 1, Such that ¢ —1 is a finite matrix.

Question. (Open.) What is the status of Corollary 3.24 in the case of
mixed basis? Also, if U maps onto the unitary group of D, must V be
finite-dimensional?

4. Normal subgroups of the projective group. Let V be any finite-
dimensional non-degenerate elliptic space. Denote by U©® the unitary
group, U, by UV = [U, U], the derived unitary group and by U (", the rth
derived unitary group

(1) u”=[ur-v,ucb  (r=1).

Let PU(" stand for the factor group U” /U N Z. I refer to PUY as to
the projective derived unitary group, in short, the projective group of V.
Let lat(PU(") stand for the lattice of normal subgroups of the group
PU™,

Given g € G, associate to g the normal subgroup U, of U. To U, and
r > 0 correspond the normal subgroup US” = [US ™D, U VY if r>1
and U® = U, To U” corresponds the normal subgroup PU." =
U /UM N Z of PUY. This section is concerned with the nature of the
mapping g — PUg(’), where g ranges over a suitable open segment of G.
Of particular importance is the special case r = 1. The work is organized
as follows.

4.1: Equalizers of the mapping g — U, and of related mappings.

4.2: The mapping g —» PUS for dim, ¥ > 1.

4.3: The mapping g - PU for dim , V = 1.

4.4: The general mapping g — PUg(’).



NON-ISOTROPIC UNITARY SPACES 59

4.1. Equalizers of the mapping g — U, and of related mappings.

Throughout the rest of this section the mapping g = U, and the
derived mappings g — PU;’), will all be restricted to the open segment
(w(2), =) of G. To simplify the writing let me make the

DeriNITION 4.1.1. (1) The mapping g € (w(2), =) = U, from
(w(2), =) into lat(U) is denoted by =,
(2) The mapping g € (w(2), =) = PU” € lat(PU") is denoted by
Pz,.
(3) The mapping g € (w(2), ) = US” € lat(U") is denoted by
Pr,.
The equalizer of, say, m, is the subset of pairs (g, g,) such that
7o(81) = 7y(g,). Facts about the equalizers of =, and m; will be collected
in this subsection with a view to apply the results to subsections 4.2 and
4.3. One more mapping is in order.

DerFNITION 4.1.2. Let 2 (w(2), =) — lat((V)) be the mapping
sending g € (w(2), —) onto the additive subgroup

A= {o=—¢* € Llow = g}).
As observed and established in §2, Theorem 2.16:

Facts 4.1.3. (a) Let € be the partial operator of L = L(V') which is
defined at ¢ € L if and only if 1 + ¢ is invertible and then

(o) =2(1-¢)/(1+4¢).

Let & ! be the partial operator of L which is defined at ¢ € L if and only
if 1 + o0/2 is invertible and then

% o)=(1-0/2)/(1 +0/2).
Then €, ¥ ' areone-to-oneand €% ' =1, = ¢ 1o ¥
(b) ¥ is entirely defined at my(g) and €(7y(g)) = 2,(g) for every
g > w(2)
(c) € ! is entirely defined at 2y(g) and € "}(Z,(g)) = m(g) for
every g > w(2).

Fact 4.1.4. 7, as well as the derived mappings =, pm,, pm,... are
dual order homomorphisms of ordered sets.

Facts 4.1.3, points (b) and (c) tell us that =, factors through € !,
7, = € ~' o 2. Hence 7, and =, have the same equalizers.
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Question. (Open.) If 2;: (w(2), —) — lat(¥) is the mapping sending g
onto (2,(g), 2,(g)), the Lie commutator subgroup of 2,(g) and if
m =g € (w(2), =) = [7,(8), my(g)], the commutator subgroup of the
unitary subgroup m,(g), does it follow that 7, = € ~' o 2,? that =, and =,
have same equalizers?

I do not know general answers to the preceding questions. Some
partial results tending to affirmative answers will be established.

Recall that if M is the set of medial transformations ¢ of V" such that
¢* exists and ¢* is medial then M is a group (medial group of V') all of
whose members ¢ are such that

(3) ¢Lg = Lg¢f= Lg (g = G)'
Equivalently,
(4) YELSGEG Yyw2godyw2g e Yow > g.

DEerFINITION 4.1.5. T will say that ¢,, ¢, € L = L(V') are equivalent
(notation: ¢, = ¢,) if
by = WP1Ks,
for somep, € M (i = 1,2).
As a corollary to the preceding definition:

Fact4.1.6.If ¢, = ¢, thenforeveryg € G,ow > g < ¢,w > g.

Fact 41.7. If 0,0’ € my(g), then for [o,0’] = 6 6" 's6’ and for
(¢, ¢") = ¢¢' — ¢'¢p where ¢ = €(0), ¢ = €(0'):

(1) €¢(o,0’]) =[0,0'] - 1;

@ [o,0']—1=(9,9).

Proof. (1) I will show more generally that if 0 € 7y(g), theno — 1 =
%(o0) or,6 — 1 = ¢, where ¢ = ¥(0). By construction,

_ 1-9/2 —¢
— 1 = 1 1= /" {1 =0 v
o—1=%7"(¢)-1 1762 ""13¢2°
By construction, g > w(2). From o € 7,(g) follows ¢ = %(0) € Z,(g)
and, hence, ¢ € L, so that /2 € L,_ , C Ly . From §2, Theorem 2.10
follows that 1 + ¢/2 is medial. Since ¢/2 has evidently adjoint which
must be in LJ it follows that (1 + ¢/2)* is medial. Thus 1 + ¢/2 € M.
Then

—1= —_1__
° _(1+¢/2)¢
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with —1/(1 + ¢/2) € M for —1 € M and 1 + ¢/2 € M. Hence, 6 — 1
= ¢
2) [o, 0'] —1=0"%""0,0")=(0,0") (Uc M)

1-¢/2 1-¢'/2
1+¢/271+¢/2

= (¢ 4¢), ¢ (9)) =

=(—q-+—~3—— —14—-—3-)
1+ ¢/2° 1+ ¢ /2

1 1 )
1+¢/27 1+ ¢ /2

a1 ( 1 2) 1
1+¢/2\1+¢ /2" 2|1+ ¢/2

g1 ( 1 ¢) 1
1+¢/2\1+¢ 2 7)1 +¢/2

) 1 ( 1 ¢) 1
1+¢/2\1+¢ /2 " )1+¢/2

_, 1 1 ( 1+¢) 1 1
1+¢/214+¢,2\7 2 J1+¢/21+4¢,2

_ 1 1 1 1
1+¢/21+4¢,2 1+¢/21+¢/2°

As before, from ¢, ¢' € X, g > w(2), follow 1 + ¢/2,1 + ¢’ /2 € M, so
that

(¢,9)

(0,0")=(9,9).
Thus
[0,0'] =1 =(0,0") = (¢,9¢),
as desired. o

Fact 4.1.8. Let (g, §,) be in the equalizer of = (e.g. [U,,U,]=
S UL D T2 = g € (w(2), =) = (20(8), Z(8))(= (K, X)) then

2.(8) € 2(28,); 2(82) € 2(28)-
Proof. Let ¢, ¢’ € 2(g,). lf 6,06" = € X(¢), € '(¢) then 0,0’ €

7o(g1)- Thus [0, 0'] € m(g)) € mo(81) = m(8,) = [U,,, U, 1€ U, . (82,
Theorem 2.14, (iii)). Equivalently, [0, 0] — 1w > 2g,. By Fact 4.1.7,

.

g
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(¢,9") = ([0,0'] = 1)w > 2g, giving (¢, ¢")w > 2g,, so that (¢,¢') €
2,(2g,). As this holds for every pair ¢,¢ € 2,(g;), it follows that

2.(8;) € Z4(2g,)- By symmetry, 2,(g,) C Z,(2g))- O
Fact419. Leta, 0’ € U, If

y=[lo,0'], 0]
and if ¢, ¢’ = €(0), ¢(0’), then
y—1=p(¢,¢)pr(d, &) s + pald, ¢ )ps(o, ¢)pe
+p,((9, ¢), &) g

for some p, € M.

Proof. Since [0, 0'] € [U, ), U, )] © U,y it follows that

1—1¢/2
[0, 0] = € (#([0/0'])) = € 1) = 15155
where t/2 = (1 — [0,0')) /(1 + [0,6’]).Ift, = 1 — [0, 6’], then

__h
(5) 1/2=5— -
From Fact 4.1.7 applied to [0, 6’] and ¢’ follows
v=[lo,0'],0’] —1=(1,¢),
where

1-0) ,(Q-0)
1+0) (1+0)

¢, ¢ = €(a), €(c’)=2
Now,

7\ _ tl | tl /
(t9¢)— (22_t1’¢)—2(2_t1’¢)

2 A 2 ,
s

1 , 1 1 N1
—42—t1(¢’2_t1)2—t1_42-t1(t1’¢)2—t1
_ 1 ’ 1—t1
—42(1—t1/2)(t1’¢)2( 2 )

1 1

=i ad T
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From t, = 1 — [0, 0’] and [0, 0'] € U,,, follows ¢,/2 € Ly . Since t,/2
has adjoint it follows that 1 — ¢, /2 € M, giving

vy=(6,¢)=(1,¢).
Here,
(,¢) = (1 ~[o0,0'],¢)
=(¢,[0,0’] —=1) = (¢, 067%"(0,0"))
= (¢,07%" ) (0,0’) + a7 %" (¢, (0,0")).

Since ¢’ evidently commutes with ¢’ it follows that

(2, ¢) =(¢,0)e" (0,0") + 0% (¢, (0,0") =7 + 1,

where 7, = (¢, 610’ '(0,6") and 7, = 6 %6’ (¢, (0, 6")).

Now,
, , 1+ ¢/2 ;L 2
, 2 _ 1 B N
—(¢’1—¢/2)_21—¢/2(1 ¢/2’¢)1—¢/2

1 ) 1 )
= 1_—¢/5(¢,4>)‘1“:;7§‘E (¢, 9).
From Fact 4.1.7, (0, 0’) = (¢, ¢’) follows. Thus

1 1 o/—l ’ (¢ ¢/) ’
¢/2 _ ¢/2 31 ’ L)
where p}, p, € M. Since 1/(1 — ¢/2) and ¢’ € M it follows that for some

By g5 B3 € M,

s )T =573

"=

= P‘l(‘i’a ‘V)Hz(‘i” 4’,)“3

(¢' L e — . )
1+ ¢ 21 +0/2°7 7 1+ 6/21 + ¢/ /2

Also,

(¢, (0,0"))

. (¢’ L (4, ¢) ) L
1+¢2\7 ' 1+¢/2°7 " 1 +¢/2]1+¢ /2’

/’ 1 ( /) 1 )
1742 "% 1T5g2
1 , 1

(continues)
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+;(¢’(¢¢’)) L1 (¢,9)
1+¢2\ 9\ %11 46/2 7 1+¢2\"

1 (1+¢) 1

1+¢/2\ 2,¢ |1+9/2
11 N L1
=§m(¢,¢)m(¢,¢)l—+m
(6, ¢) (¢, ¢) s
21+¢/2 %1142\ "% 17142
(¢, (9, ¢)) s
1+¢/2 9\ ®®) 10
1 N L1
Ty I CR Ik pary A CR L praprwy

(¢ (6, ¢))
1+¢/2 9\ "%

Therefore (¢’, (o, 6”)) can be written in the form

(¢',(0,0") = w9, 8)ns(8, ¢ + 17(¢, (¢, ¢)) s
where the p, € M, which completes the proof. O

Recall that if D,,, is the ring of n X n matrices over D, where n is a
finite integer, then if w: D,,, » G* is the mapping sending ® =
[¢.,]i <., j<» Onto w(®) defined by

(6) W(Q) = ijMin n(w(¢ij)),

,,,,,

then w is a vector valuation of D, , over D, which verifies the submulti-
plicative property

(7) w(®,®,) 2 w(®,) +w(®,) (2, €D,y,).

Evidently, for every ® € D, , and g € G¥,

(8) Pw > g = w(®)>g,

where --- w > --- is the usual matrix prevaluation on D,,, (®w > g

means w(entr, ,(®)) > g for every pair i, j = 1,...,n). By standard argu-
ment w verifies the generalized triangle inequality

©) w[Te)> Min (x0)

and w verifies the special triangle equality
(10) w(®,) # w(®,) = w(®, + ®,) = Min(w(®,), w(®,)).
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Fact 41.10. Let V be any n-dimensional non-degenerate O-elliptic
space and let ( f;) be any fixed orthogonal basis of ¥, which is bounded by
some ¢’ in G. Given ¢ € L, let
(11) w(9) = w(Mtrx(¢)).

Then:
(1) If ¢ = ¢/, then [w(¢) — w(¢')] < 2¢'.
(2 Ifo, 0’ € U, and if ¢, ¢’ = €(0), €(0’) are such that
(9, ¢) > w((9,¢), ¢') + 5¢
then if y = [[o, 6'], 6'], then

lw(y — 1) — w((¢, ¢), ¢)

< 4¢’

Proof. 1. Since V is 0-elliptic it follows that if 7w > g then Mtrx(7)w
> g — ¢ and that if Mtrx(7)w > g then 7w > g — & (§3, Theorem 3.5). In
terms of the vector valuation w(7) this means that

(12) w2g=w(r)2g—¢ (g€0C).
(13) wit)2g=mw>g—-¢ (gei).

Let then ¢ = ¢'. If g = w(¢), then

wig)=g=g=9¢w=2g—¢.

Since ¢’ = ¢ it follows that ¢'w > g — ¢’ so that w(¢') > g — 2¢ or,
w(¢') + 2¢" = w(¢). By symmetry, w(¢) + 2¢’ > w(¢’). Thus |w(¢) —
w(¢')| < 2¢, as desired.

(2) From the preceding fact follows

y—1=(n+mn)+m,
where
= P1(¢a 4’,)!"2(4’, ‘V)P-p T, = P‘4(¢, 4’,)#5(‘1” ‘1’,)“6»

3= ”7((¢, ¢/)> ¢,)I~Lg
with all the p; in M. Thus from (1) follows
(14) w(y = 1) —w((n + ) + )| < 2¢.
Now,
= (¢’ ‘I/)I"'Z((p’ ¢/)
Thus from, again, (1)

w(m) = w(o, ¢)uy (o, ¢) — 26" = 2w((9, ¢)) + w(p,) —2¢,
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and, since, p, is medial and, hence, p,w > 0 it follows that w(p,) > —¢
so that

w(n) = 2w((¢,¢)) — 3¢’ > w((9, ¢), ¢') + 5¢' = 3¢’
> w((9,¢), ¢) + 2¢.
By the same token,
w(n,) > w((s, ¢), ¢) + 2¢.
By the generalized triangle inequality follows
(15) w(n + 1) > w((e,¢),¢) +2¢.
Now, from
7 =p:((9,¢), &) s
follows
(16) w(n) <w((e,¢),¢) +2¢ <w(m + ).
By the special triangle equality follows
w((m + 1) + 1) = w(m).
In view of (14)
lw(y — 1) — w(n)| < 2¢

follows. Thus

lw(y = 1) —w((s,¢), ¢)]

<lw(y = 1) —w(n)|+|w(n) —w((¢, ¢), ¢)
< 2e + 2¢e = 4¢,
as desired. O

Fact 4.1.11. (a) If (g;, g,) is in the equalizer of Pm, then (g;, g,) is in
the equalizer of ;.

(b) If (g, 8,) is in the equalizer of P, then:

(1) [m1( 81> m(81))] C mo(28, + 81);

(i1) [7(83), mo(82)] C (281 + &)

Proof. (a) To say that Pm,(g,) = Pm,(g,) is to say that
(g ) (U N Z) = my(8,)(UN Z).
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Then
m(g) = [m(81), 70(81)] = [m(8)(U N Z), mo(81)]
= [7(2,)(U N Z), mo())] = [m0(82). mo(21)]

= [770(81), ‘770(82)] = [770(82), 770(82)] =m(g,).
(b) To say that Pm,(g,) = Pm(g,) is to say

m(g)(UP N Z) = m(g)(UV N Z).

Then
[m(81), mo()] = [m(g)(U® N Z), m(g))]
= [m(g)(UP N Z), mo(8))] = [m(8,). 70(8)]
< [70(282), mo(81)] © m(28, + &1)-
Similarly,

[Wl(gz)’ '”0(82)] C m(2g; + 8,)-

Fact 4.1.12. Let V be any non-degenerate O-elliptic space and let V'’
be any orthogonal summand of V. If # is one of the mappings 7, = m,(V),
Pz, = Pny(V), Pmy = Pm, = (V), m,..., and if #’ is the corresponding
mapping relative to the space V’, then the equalizer of #is contained in
that of # .

Proof. (¥=m,, Pm,) Assume that my(g;) = 7,(g,). Since V is
O-elliptic it follows by §2, Theorem 2.6 that if g € G, then
L(V)DL(V')®1.
Thus
Ug(V) D U(V) + 1.
Then
U(V)el=(UWV)e1)nUlr).
From 7,(g;) = my(g,) follows
m(g)@1=U,(V)e1l=(U(V)e1)ny, (V)
= (Ur) +1) N U, (V) = 75(g,) @ 1

and, consequently, 75(g,) = 75(g,)-
Assume that V'’ # V and that Pm,(g,) = Pm,(g,). This means that

U, (Z-1nU)=U,(Z-1nU),
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where 1 = identity mapping of V. Denote by 1’ the identity mapping of
V’. It is to be shown that

uwv)(z-vnu)=0,")-(z-1nUW)).
Let 6’ € U, (V') and let z € Z be such that z - 1’ € U(V”). Equivalently,
z is a central unitary in the ground division ring (D; *). If 6, = ¢’ © 17,
where 1”7 = identity mapping of V’*, then o, € U,(V) e 1" c Uy (V).
Thus 6y (z-1) € U, (V) - (Z-1 N U) = U, (V)-(Z- N U). This means
that for some o, € U, (V) and some z,, a central unitary element in
(D; %),
0,(z-1)=0,(z,-1).
From the preceding equation follows
Ve, =z,V'0,=V'0,(z,-1)=V'6,(z,- 1) =z,V'o, =V’
and
V'ite,=V''e(z,-1)=V' 0(z-1)=V"".

Thus o, = o, ® 0,’, where o, = 0,/V’ and o) = 0,/V". Moreover, if
V” e V't then

20orr _ I2 — ,—L.
V0o, =V 0y =2,V Z,0,

= z;%"z0, = z;'z0"0, = z3'z2v".
This means that o;” = z;'z - 1, where 1” = identity mapping of V'*.
Therefore,
zo,=2(6’®1")=z=(a’®1”")(z-1)
=0,(z,- 1) = z,(0; ® z;%21”).
Then zo; = z,0,, and, hence
of (2-1) =03(z,- 1),

where o; € U, (V') for 0, € U, (V) and o; = 0,/V’, and z, is a central
unitary. Thus

of(z-1)e U (V) (znUW)).
As this holds for each pair o] € U, (V') and z € %(D; *) N Z it follows
that
Uy (znu))cu (v)-(znUum)).
By symmetry,
UV (znu)cu, (v)-(znur)).
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Therefore

p7s(g) = Pry(g,),
as desired. O

4.2. The mapping g — PU for dim, V > 1.

Generally the mapping Pm = g € (w(2), =) = PUV € laf(PUY)
has a non-trivial equalizer even when dim,V > 1. Here is an example
where P, is constant.

REMARK 4.2.1. If V is the 2-dimensional orthogonal space then P, is
the constant mapping. In fact, =, is the constant mapping.

Proof. Pick any orthogonal basis f, f, of V. If s, = f - f,,i = 1,2, and
A = 5,55 then by inspection, ¢ € U & ¢ = Mtrx(¢) is of one of the
following types.

(A) Qa—}\b Z' (deto = 1);
(18) o=|7, Pl (detg=-1).

Thus 1 + ¢ is invertible if and only if det ¢ = 1. Since the set of matrices
¢ as in (17) form an abelian normal subgr—oup of invertible matrices and
since 1 + ¢ is invertible for every ¢ € U, where g > w(2), it follows that
U, is abelian so that m(g) = 1 for every g > w(2). O

THEOREM 4.2.2. Let V be any non-degenerate 0O-elliptic space with
dimension > 1. Assume that V is of one of the following types.

(1) V is a non-orthogonal space containing some non-zero orthogonal
vectors f, and f, such that

(19) w(fy - fi) = w(fs- o) < ne,
where n is any fixed natural number and ¢ is either the zero of or else the first
positive element in G.

(2) V is an orthogonal space containing a triple of non-zero orthogonal
vectors f,, f,, f5 such that

(20) w(fi ) =wlf f)l<ne  (ij=123),
where n and € are as in 1.

Then:

(3) There is an isomorphism vy of the chain G into G* such that y o P,
(=8€ G [Uyy Uy l/IU, U1 N Z) is a dual isomorphism from G™
into lat.(P[U, U)), the lattice of normal subgroups of the projective special
unitary group.



70 M. CHACRON

Proof. Case where V is as in 1. To say that V' is not orthogonal is
evidently to say that the ground involution * is not the identity mapping.
Thus if 0 # s = s* € D then the co-gredient involution sending x € D
onto x® = sx*s~! is, again, not the identity mapping. Without loss of
generality one may assume that if s, = f; - f,, i = 1,2, then w(s;) < w(s,).
Since 0 # s; = s+ it follows that (s;) is not the identity mapping. If
0 # k € D is such that k € #(D;(s,)) then so are 2k and k™' in
X' (D; (s,)). Hence one can find k; € X (D; (s,)) such that if g, = w(k,)
then co # g, > w(2). Let y: G — G be defined by

(20) v(g) = 8o + 2mg,
where m > 1 is a natural number to be fixed later. If g € G and x’ € D is
such that w(x’) = g then
go + 28 = wlk;) + 2w(x’)
= w(k,) + w(x'x"®V) = w(x’klx'(s‘)),
where x’k,x"®Y N A°(D; (s,)). Thus
8o+ 28 € w(H (D3 (s,)))-
Therefore
¥(G*) € w(H (D (s1)))
and by construction,
v(G*) € (w(2), =).

Thus yeo Pm is a well-defined dual homomorphism from G* into
lat.(P[U, U)). It remains to show that y o Pm, is one-to-one. In view of
Fact 4.1.12 one may assume that V' is the subspace that is spanned by f;
and f,. Hence ( f, f,) is an orthogonal basis of V, which is bounded by
g = ne.

Let then g;, g, € Y(G™) be such that Pm(g,) = Pm(g,). It is to be
shown that for m large enough (m depending only on (n,€))g, = g,

follows. Pick x € D such that w(x) =g, + ne =g, + ¢ and #'= —k®
such that w(k) = g, + 2¢’ (possible since

g +2e =g +2ne€y(GY) +2G6=0c g, +2G c w(X(D;(S))))).
Define ¢, ¢' € L(V') by the matrix equations

0 X
(21) Mtrx(qb) = _s2x1s1—1 0
(22) Mirx(¢) =|K O

o ol
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By construction, ¢ and ¢’ are skew-symmetric transformations and by
inspection,

w(¢) (=w(Mtrx(9))) =g + ¢
w(¢') =g +2¢'.
From the preceding relations follows that
¢, ¢ €A, (V);

in fact, ow > (g; + &) —¢ and ¢w> (g, +2¢)—¢&' =g +¢ =g,
Since g; > w(2) it follows that if 6,06’ = ¥ '(¢), ¥ '(¢’) then o, ¢’ are
well-defined unitary transformations of V and that ¢, ¢’ € U, (V).

Now, by inspection

(23) w((¢,¢)) = w(9) + w(¢) = 2g, + 3¢,
(24) w((¢,¢), ) = w($,¢) + w(¢) = 3g, + 5¢.

To ensure the inequality
2w((9, ) > w((#, ¢), ¢') + 5¢'
it suffices then to ensure that
4g, + 6¢’ > 3g, + 10¢’
or,
8, > 4¢ = 4ne.

If e = 0, then g, = g, + 2mg > 0 will follow for g > 0 and g, > w(2)
> 0.

If € is the first positive element in G then g, = g, + 2mg > 4ne as
soon as

g t5% =g,
By symmetry, g, + 5¢’ > g,. Thus
g, — g2l < 5¢.

If € = 0 then ¢’ = ne = 0 giving g, = g,. If ¢ is the first positive element
in G then since g, g, € Y(G") = g, + 2mG™ it follows that g, — g, # 0
implies |g; — 8,] = 2me > 6ne = 6¢’, contradicting the preceding
inequality. This shows that g, = g,, as desired. Therefore y o P, is
one-to-one as soonasy = y,, = g — g, + 2mg is such that m > 3n.

Case V is an orthogonal space as in 2.
Take y = y, = g = w(2) + 2ng (g € G™). This is an isomorphism of
G*into G™. It is to be shown that y o P, is one-to-one.
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Now, from g > w(2) follows —1 & U, and, consequently, —1 &
m,(g) € U,. Thus m(g) N([U,U]N Z) > m(g) N {1, -1} = (1). From
this 7, and P, have same equalizers. Thus y o 7; and y o Pm; have same
equalizers. It remains then to show that y o 7, has trivial equalizer. In view
of Fact 4.1.12, one may assume that ¥ is spanned by the vectors f, as in
the statement of 2. Without loss of generality if s, = f, - f;, then w(s;) <
w(s,) < w(sy).

Pick any x € D such that w(x) = g, + ¢’ (¢/ = ne). Determine ¢, ¢’
€ L(V) by their matrix equations

0 x: 0

(25) Mirx(¢) =| =57 01 0],
0010
0 Oi x

(26) Mtrx(¢') =|__ 0 0! 0]
— 557z 010

By inspection, ¢, ¢’ are skew-symmetric transformations of V such that

(27) w(o) =g +¢,
(28) w(¢) =g +¢,
and
0 0 i 0
(29) w(($, ¢)) = w 0 0 _i — 5,57 x?
0 sysix2l 0

= w(¢) + w(¢) + w(syst).

Since the basis (f}, f,, f;) is bounded by & = ne it follows that ¢, ¢’ €
K, (V). In view of Fact 4.1.8, (¢, ¢')w > 2g, follows, and, consequently,

w((¢,¢)) =28, — ¢
Thus
28, + w(sys) = w((e, ¢)) = 28, — ¢
or,
2g, +2¢ =28 +w(s,s{) +& =2g,58 +€ =g,

By symmetry, g, + ¢ > g,. Thus g, — g,| <& . Ife=0thene’ =ne=20
follows giving g, = g,. If € is the first positive element in G then g, # g,
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implies |g, — g,| = 2ne = 2¢’ > ¢/, contradicting the inequality |g;, — g,|
< ¢'. This shows that y, e P, is one-to-one, which concludes the proof. O

COROLLARY 4.2.3. If V is as in Theorem 4.2.2 then the positive cone G*
of the underlying value group G can be dually embedded in lat(PU®), the
lattice of normal subgroups of the projective derived unitary group PU® =
[U,U)/[U, Ul N Z.

Proof. For y o P, is a dual homomorphism of ordered sets.

COROLLARY 4.2.4. If V is as in Theorem 4.2.2 then vy o Pm, is a dual
one-to-one homomorphism from G* into lat.(PU©), the lattice of normal
subgroups of the projective unitary group PU® = U/U N Z.

Proof. For the equalizer of y o Pm, is contained in the equalizer of
y o m,. The latter is contained in the equalizer of y o P,. O

4.3. The mapping g > PU for dim, V = 1.

Will the restriction dim,, ¥ = 1 make the treatment of the mapping
g~ U, U,J/IU, U] N Z easier? As it turns out it is the reverse that
happens to be true. I suggest as an explanation the following. Theorem
4.2.2 was established by making explicit use of skew-symmetric transfor-
mations ¢ and ¢’ with prescribed values relative to the vector valuation w
and such that

(28) w(od’ — ¢) = w(o) + w(¢).

(See equations (21)-(26), (29)). In dealing with the simplest instance of
1-dimensional space V, namely the space ,D, relative to the form x - y =
xy*, (28) means that for certain skew-symmetrics ¢, ¢" in (D; *) with
prescribed values w(¢) = g, w(¢') = g/,

(29) w(oe — ¢'9) = w(e) + w(¢).

I do not know of any standard construction of such pairs ¢, ¢" for the
given *-valued division ring D As a matter of fact there is a clear-cut class
of division rings D possibly infinite dimensional, in which, equality (29)
never occurs even if ¢, ¢ are any elements in D (see [10] or [4]).

Such division rings D have commutative residue division rings D.
Reversing the trend, I will assume in what will follow that dimzl_) > 4,
where Z = center(D) and 1 /2 exists in D.
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THEOREM 4.3.1. Let (D; *; w) be any *-valued division ring. Assume
that 1 /2 exists in the valuation ring R and that the residue division ring D is
of dimension over its center exceeding 4. For each pair of skew-symmetrics o
and T one can find symmetric units u and v in R such that if 6’ = uou and
7/ = vTU then

w(eo'r — 76’) = w(a’) + w(1’).

Proof. Deny the conclusion of the theorem. In particular,
w(or — 16) # w(o) + w(71).
Thus 6 # 0 and 7 # 0. Then
w(or — 16) = w(a7(1 —[r, 6]))
=w(a) +w(7) +w(l —[7,0]) # w(s) + w(7)

so that w(1 — [7, o]) # O. Since [, o] is in R, it follows that w(1 — [T, o])
> 0 and, hence,

(30) [7,6] =1 (modJ).
I proceed to show that
(31) (vu®)" = uu® (mod J),

where u is any symmetric unit in R, and a® = b~lab (a, b € D). By
standard properties of group commutators, if ¥ is any symmetric unit in
R, then

[utu, o] = [u,0]"[ru, o] = [u, 6] ™[7, 0] “[u, o].

Since (-)* x € R — x"is an inner automorphism of the ring R preserving
evidently J it follows that

[7,6]*=1*=1 (modJ),
giving

luru, 0] = [u, 0] ™[u, o].
By (30) applied to the pair uTu and o it follows that

[u,06]™[u,6] =1 (modJ).
Conjugating by u~! the preceding congruence:
[u,0][u,06]" =1 (modJ).

Equivalently,

[u,0]" = [0, u]"".
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Now,
[0, u]*" = ulo, u]u™ = uo‘u"louu?
=usulo = [ul, 0].
Thus
[u,0]"=[u", 6] (modJ).
Here

[u,0]"=[u",0"] = [u", o]0, 7]]

= [u", o, 7]][u", 0] = [u",1][u", 0] = [u", o]
and, consequently,
[, 0] = [u, 6] (modJ),
or,
(u) (07 'u's) =u(o'u"'e) (modJ).

Left multiply the preceding congruence by u~! and right multiply the
resulting congruence by (o~ 'u"o)~!. After replacing u by u~! one gets
precisely (31).

I proceed to show that the inner automorphisms (o) and (7) induce
equal automorphisms on the residue division ring D. Congruence (31) is
evidently true if u is a symmetric in J. Thus (31) holds true for u any
symmetric in R and, consequently, (31) holds true if u is replaced by
1 + u. This substitution gives

((T+u)(1+uo) =1 +u+u+uu)’
=1+(u+u") +(uw)r (1 +u)1+u°)
=1+(u+u®)+(uu)
so,
(32) u+u = (u+u).
Reversing the roles of o and 7 in (32):
(33) u+u =(u+u)’.

Now, from [0, 7] = 1 follows u°" = u™. Subtracting (33) from (32) and
eliminating congruent terms, it follows that

u’—u"=u" — u.
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Since 1/2 exists in R, it follows that u° — u” = 0 or u° = u”, for every
u = u* in R. Since D is of dimension exceeding 4 over its own center it
follows by a well-known theorem of Dieudonné that D is generated by its
symmetrics. Thus x° = x” for every x € R.

I will show next that (-)“ is of period 2 (or less) modulo J and that

(34) uu’=u’u  (u=u*€R).
Indeed, in (33) replacing (-)" by () this gives

2 2
u+u°=u’+u’,; u=u’.

Same substitution in (31) gives
u-u’=(uu®)’ = uu” =u°- u.

I proceed to show that (-)° is, in fact, the trivial automorphism
modulo J.

Replacing u by u + v in (34) where u and v are symmetrics in R and
eliminating congruent terms it follows that

(35) w’ + vu’ = uv + vu.
Now,
(v°)* = (67 0)* = ov*o™! = 6 v*o = ¢ lvo = v°.
Thus v° is symmetric modulo J. Thus one can replace v by v° in (35). Then
uv + v°u’ = u’ + vu,
equivalently,
(36) w — vu= (uw — vu)’,

for every pair of symmetrics 4 and v in R. Since the residue division ring
D is of dimension over its center exceeding 4 it follows by a well-known
theorem of I. N. Herstein that D is generated by Lie commutators of
symmetric elements in D. From (36) follows that (-)° is the identity
automorphism modulo J.

It is now easy to reach a contradiction. For let u, v be symmetric units
in R. By the preceding

I
<

If o is replaced by uou this gives
b= 0t = (%) = (0)°) (0 = 0¥

Thus vu? = u?v, for every pair of symmetric units « and v in R. A final
linearization on u shows that the symmetrics in D commute contradicting
thus the dimension of D (Dieudonné). O
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THEOREM 4.3.2. Let (D; *; w) be as in Theorem 4.3.1. For each pair of
non-zero skew symmetrics 6 and T as in the conclusion of Theorem 4.3.1
there is some symmetric unit u of the valuation ring R such that if v’ = uou
ortuand o’ = ot — 70, then

w(er’ — 17'0’) = w(a’) + w(7’).

Proof. Deny the conclusion of the theorem. Repeating the argument
in the proof of (30) for o replaced by o’ and 7 replaced by 7’ it follows
that

[6’,7] =1 (mod J).

By construction, 7’ can be replaced by o as well and by ur’u for every
symmetric unit # in R. Repeating the argument in the proof of (31) for o
replaced by o’ and 7 by ur’u it follows that

(37) w® = (wu®)” (' =oor7),
for every symmetric u in R. Denote by c the element u - u";and by ¢ the
image of ¢ in D. I proceed to show that ¢ & Z, the center of D, for some u.

For if ¢ always belong to Z then replacing u by 1 + u and eliminating
gives u + u° € Z. From the identity
(38) u> —u(u+u”)+uu” =0
follows that # is quadratic over Z for every symmetric # in D. By standard
argument D would be 4-dimensional (at most) over Z, which is ruled out.
Pick any ¢ = uu® such that ¢ € Z. For each symmetric unit v in R,
the inner automorphisms ( )*°* and ( )™ preserve ¢ modulo J; it suffices
to choose 7’ = vov, vTv successively and to quote (37). It follows that
(v ™), (ve~'v), (v'rv7!), (vov) all preserve ¢ modulo J. Thus the
product of these automorphisms preserve ¢ modulo J. Since

(v ) (ve )(v o) (vov) = v, o]0

it follows that (-)*"[™°) preserves ¢ modulo J. B
I will show next that [7, 6] maps onto a central element in D. For
[0, 0] is a unit in R. Thus if § is the image of [, o] in D then the relation

vir, 6l —

c =c
implies

[¢, 57%0] = 1,
for every non-zero symmetric & in D. Equivalently, § commutes with ¢° for

every non-zero symmetric o in D.ByL N. Herstein’s [10, Theorem 6.1.1]
follows that 8 € Z; in view of the fact that ¢ & Z.
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Now 8 = [, 6] # 1, the unity of D. For if § were the unity of D, then
[7,06] =1, so that
w(o’) = w(or — 70) = w(or(1 — [, 6]))
=w(ar) + w(l —[7,0]) > w(a) + w(7),

contrary to the equality w(e’) = w(o) + w(7). Thus 1 = [7, o] is a unit in
R and evidently 1 = [7, 0] maps onto a central element in D. If x € R,
x & J it is to be shown that

xtmel= x,

For

X = (1~ [r,0])" x(1 ~[r,0])
= ~[r, o) (1 ~[r,0])

=T [, o) M —[r, 0.

Since 1 — [, 6] € Z it follows that (1 — [, 6]) 'x(1 — [, 6]) = X giving

xirol = %
equivalently
(39) xtined=x,
From the preceding congruence follows that for each symmetric unit u
in R

4 0T—1T0 er(l—[7,0]) — (uor)(l ) =

u® =u =u u°".

In view of (37),

T —

uu® = uu® = (uu
— u'r'(ua‘r—ra)"" u'r(uof)"" — (uuo‘r)"".

Since the preceding congruence holds for both cases 7" = ¢ or 7/ = 7 it
follows that if y = o7 then

(40) uu” = (uu)’.

In the preceding congruence replace ¥ by 1 + u and eliminate con-
gruent terms. This gives u + u” = (u + u?)” or, u = u”". Returning to
(40) and replacing u”’ by u, one has uu” = u'u. Exactly as in the proof of
Theorem 4.3.1, argument following (36) one deduces from the preceding
congruence that y induces the identity automorphism of D. Thus from
(37) follows

2 —

ul=uuo T = (uuof—-ro)“" = (uua-r)"" = u2’,’
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By one more linearization argument follows that u = «™. Since 7’ can be
replaced by vov one deduces that the symmetrics in D commute, which is
a contradiction. 0O

THEOREM 4.3.3. Let (D; *; w) be any *-valued division ring such that
1/2 exists in the valuation ring R. Let ¢,, ¢,, ¢; be three non-zero
skew-symmetrics such that

() w(9y) = () = w(s) > 0, where if g = w(s,), then g # oo;

(i) w($ry — bsy) = 28;

(il)) w( P19, — d291) b3 — d3(P19, — H191) = 38.

Puto,= (1 — ¢,/2)/(1 + ¢,/2) (i = 1,2, 3). Then the o, are unitaries in D
such that

(iv) w(eo,) = g(i=1,2,3);

) w(lloy, 03}, 5] — 1) = 3g.

Proof. (iv) At the risk of repeating slightly the calculations in Fact
4.1.7, point 1, one has
1- ‘15:/ 2
(i

_¢i

1=1+qf>,./2’

giving
w(o; — 1) = w(¢;) + w(l + ¢,/2) = w(s,),
for since w(¢,) > 0 and w(1/2) = 0 it follows that w(1 + ¢,/2) = 0.
(v) Represent [g,, 6,] in the form
[ow o] = 15175
Indeed, the preceding equation can be solved for ¢/2 provided [0y, 6,] #

—1. If [0y, 0,] were central then (iii) would be obviously violated. Thus
[0,,0,]# —1.Ift; =1 — [0y, 0,] then

4L
2 - tl ’
From trivial adaptations of Facts 4.1.7 and 4.1.9 follows that if y =
[[017 02], 03] then

1/2 =

Wiy - 1) = w((-é—}-t— qs)) = (11, 93)) = (83, 007" (01, 03).

Now,
(¢3$ 01_102—1(01’ 02)) = (4’3: 01-1)62—1(019 02) + Of1(¢3, ¢51)(019 02)

+01_1°2-1(¢3,(°1> 02)) =mt7n+tn,
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where

= (¢3, 01—1)02-1(01’ 02), Ty = °f1<¢3a 02—1)(01’ 02)»

T3 = 0 02_1(‘1’3,(01’ 02))-
Now

W(Tl) = W(¢3a 01_1) + W((ol, 02))
= W((¢3, ‘1’1)) + w((¢l’ ¢2)) > 4g;
w(T,) > 4g. Also,
W(”'3) = W(¢3,(°1’°2))

and

(¢5,(01,0,)) = | ¢ - (4, 1) :
3, (07, 0, Y1 —¢,/21—6¢,/2 V1 —6,/21— ¢,/2

=1+ +7+7+7,
where

= (85 (8. 6)) T .
BT T4 21— g2 0 00T T g 2

has value w(¢;, (¢,, ¢;)) = 3g and all other terms 7/, i # 3, have values at
least 4g. By the special triangle equality follows

w(¢3, 01-102-1(01, 02)) = W('T3’) = 3g,
SO
W(Y - 1) =3g= w((¢1, ¢2)a ¢3)- a

THEOREM 4.3.4. Let (D; *; w) be any *-valued division ring such that
1/2 exists in the valuation ring R in D and the residue division ring D has
dimension over its own center exceeding 4. Denote by % the unitary group of
D, P¥® the factor group (%, %)/|%, %) N\ Z and PUD the subgroup
(%, %,)/|%, %N Z, where U, = {u€ U|w(u—1)=g)}. Then g —
P " is a dual embedding of the positive cone G* of G into the lattice of
normal subgroups of the group PU ©.

Proof. By inspection, %, is a normal subgroup of % which decreases
as g increases. Hence g —» P%, is a dual homomorphism from G* into
lat.(P% V), the lattice of normal subgroups of the group  ® /% ® N
Z(# = [%, %])—One can also observe that %, is of the form U (V") for
an appropriate space V.
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I proceed to show that if g > 0, then the subgroup [[%,, %,], Z,]
contains some unitary y such that w(y — 1) = 3g. To begin with, I assert
that %, contains some unitary ¢ such that w(e — 1) = g. Since g > 0 =
w(2) it suffices to find some skew-symmetric ¢ in D such that w(¢) = g.
For then if 6 = (1 — ¢/2)/(1 + ¢/2) then w(o — 1) = w(¢) = g. Deny
the assertion about ¢. This means that w(¢) # g for every skew-symmetric
¢ in D. Pick a € D such that w(a) = g. Since w(a — a*) = w(a) +
w(l — a*a*) and since a — a* is skew-symmetric it follows that
w(l —a'a*) # 0. Since 1 —a'a* € R, it follows that a™la* =1
(mod J), for every a € D such that w(a) = g. If ¢ is any unit in R then
w(at) = w(a) = g. Hence, (at)'(at)* = 1 (mod J). Then

ta t*a* = (ar) Wat)* = 1.
Left multiplying the preceding congruence by ¢ this gives

a‘t*a* =t (modJ).
Thus
a 't*a = a't*a*(a*a) = a t*a*(a7a*) " =11 = 1.

Changing ¢ to t* this gives a™'ta = t* or t* = t*. If a is replaced by at,,
where ¢, is another unit in R then

(¥ =19 =% = (ta)'l = p*h
As this holds for every pair of units ¢’ and #; it would follow that
R/J = D is commutative, which is nonsense. This shows that there is
¢ = —¢* such that w(¢) = g. Apply Theorem 4.3.1 to the pair o, = ¢,,
T, = ¢,. There are u and v symmetric units such that if ¢, = u¢u and
o, = vov then w(($y, ¢,)) = w($,;) + w(¢,). By construction ¢, and ¢,
are skew-symmetrics and w(¢,) = w(¢,) = w(¢) = g. Apply now Theo-
rem 4.3.2 to the pair o, = ¢;, 7, = ¢, to get a third skew-symmetric ¢,
such that w((¢,, ¢,), ¢;) = 38, where ¢; = u'p,u or v'¢,0” for some sym-
metric units ¥’ and v’ in R. Again, w(¢;) = w(¢;) or w(¢,). Since
w(¢,) = w(o,) = git follows that w(¢;) = g. If

0, = (1 - ¢i/2)/(1 + ‘;bi/z)
then by Theorem 4.3.3, the o, are all unitaries such that w(o;) = w(o,) =
w(o,) = g and w([[0,, 6,], 0; — 1]) = 3g, as desired.

It is now easy to establish the one-to-one requirement about the
mapping g = P% . For if P =PuD then [[%,, %, %, ]=
Hz,,u,) %,) If the o, are chosen as in the preceding then since
Yy =lloy, 0] 0] €%, %,]) ¥,] it follows that y € [[%,, %, ] %,] C
Usg, +g- Thus w(y — 1) = 2g, + g, and, consequently, 3g; = w(y — 1)
> 2g, + g giving 2g, > 2g, or g > g,. By symmetry g, > g and,
hence, g, = g,, which completes the proof. O
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Theorem 4.3.4 can be put to work for the considered 1-dimensional
spaces V. At no extra cost in the arguments the results apply to any
O-elliptic space V. This is the

THEOREM 4.3.5. Assume that ( D; *; w) is such that (i) 1/2 € D and (ii)
dim 75 > 4. If V is any O-elliptic non-degenerate space over D then
Pm, =g e (0,>)~[U,u,)/[UUIN Z is a dual isomorphism from G*
into lat(PUD), the lattices of normal subgroups of the projective derived
unitary group of V.

Proof. By Fact 4.1.12, it suffices to establish the theorem in the case
dim , V' = 1. As a second reduction, to show the theorem in the latter case
it is the same as showing Theorem 4.3.4 for = replaced by the co-gredient
involution (s), where s is any non-zero element in D which is represented
by the form. Indeed, for such an s it is clear that V' = , D (up to isometry),
relative to the form x - y = xsy*. Here L = L (D) = D, x% = x$’ and
Xgw = g © w(x) = g. From this 7,(g) = (%,(D;(s))). Since x = x4 Is
an isomorphism from (D;(s)) onto (L;*) with correspondence of the
subgroups m,(g) and %,(D; (s)) it follows that the relations
[7,(8), mo(&g1)] = [m(82), mo(81)], and [7,(8,), mo(82)] = [m1(81)s 7o(82)]
are equivalent to the corresponding relations where m,(g), m,(g) are
replaced respectively by %, (D;(s)), [%,(D;(s)), %,(D;(s))]. Since the
former relations follow from the relation Pm,(g,) = Pm(g,). (Fact 4.1.11)
and since g, = g, follows from the former relations (see the proof of
Theorem 4.3.4) it is now evident that Pw, is one-to-one provided
(D; (s); w) has the same qualification as (D; *; w). Indeed, w remains an
(s)-valuation and the residue division ring has not changed. O

Question. (Open.) Is g > PU/" again one-to-one where g >0 and
(D;+; w)issuch that1/2 € D and dim>D > 47 If yes, what if D # Z?

The assumption D # Z cannot be dropped if one is to establish that
g = U, is one-to-one—let alone g — Pu!”. This is underscored in the

ReEMARK 4.3.8. Let D be any finite-dimensional-valued division ring
such that D is the real field and G is the ordered additive group of
integers. Assume, further, that D carries an involution of the first kind.
Then (D; *; w) is a *-valued division ring for which g — %, (D; ) is not
one-to-one on each open segment (n, —).

Proof. The involution * automatically verifies the assumption w(x*)
= w(x) as this was observed earlier in §1 (Dieudonné). Since D is the real
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field it follows that the induced involution of D is the identity. Equiva-
lently 0 & w(XX'(D;*)), where w(X'(D; (%)) = {w(x)|x = —x* € D}.
Since w(X'(D; %)) + 2z C w(X'(D; )) it follows that w(X(D; *)) con-
sists only of odd integers. If r, is the least positive integer then
w(X'(D; %)) = ry + 2Z. If (n, =) is any open segment then for some m
large enough r, = ry, + 2m € w(X'(D; *)) follows. By construction, if
X, =X, (D;+) and X, (D; =) then X, =, where x, = r, + 1. Hence,
U, = %U,, where r; # r, and r,, r, € (n, =). Thus g = %, is not one-to-
one, where g € (n, —). O

4.4. The general mapping g € PUS"). Denote by =, the mapping
sending g € (w(2), ~) onto U{” and by Pm, the one sending g onto
PU" = m,(g)/U"” N Z. Only a scratch of results will be offered here.
Yet, I will have to rely on my work [5], which deals with the normal
subgroup structure of PU("), where V is any non-isotropic unitary space
over a division ring D containing at least elements. I will begin with a list
of exceptional cases labelled cases (A) through (C):

Case (A). V is a unitary space of dimension 1, dim, D < 4 and ( D; %)
is commutative.

Case (B). V is 2-dimensional orthogonal space.

Case (C). V is 1-dimensional and dim , D = 16.
There follow results established in [4].

Fact 4.41 ([4]). Let V be any non-isotropic unitary space over a
division ring D containing at least 7 elements and suppose that ¥ is not as
in cases (A) or (B). If N is any normal subgroup of the unitary group U of
V then:

(1) If N is abelian then, in fact, N C Z.

(2) If N is not abelian then the centralizer of N in L is precisely Z.

Fact 4.4.2 ([4]). Let V be as in Fact 4.4.1. If N is any normal subgroup
of U such that [N, N] C Z then, in fact, N C Z.

Fact 4.4.3 ([4]). Let V be as in Fact 4.4.1 and suppose, further, that V'
is not as in Case (C). If N and N’ are normal subgroups of U such that
NNN cZthenNcC ZorN’' C Z.
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Fact 444 ([4]). Let V' be as in Fact 4.4.3. If N is any normal subgroup
of U not contained in Z and if N’ is a normal subgroup of a normal
subgroup of U such that [N, N]C Zthen N’ C Z.

If V is any non-degenerate elliptic space it is clear that V is non-iso-
tropic and that the ground division ring D contains at least 7 elements. In
fact, since the valuation w is not trivial it follows that D cannot be
algebraic over a finite field. Thus Facts 4.4.1 through 4.4.4 will apply. To
apply them to the congruence subgroups U, one is hinted (see Fact 4.4.1)
to find the centralizer of U, in L. From Fact 4.4.1, C(U,) = Z unless
Ug C Z. By an adaptation of §2, Theorem 2.17, one can show the first part
of the

THEOREM 4.4.5. Let V be any nondegenerate elliptic space, which is not
as in Cases (A) or (B). Then:

(1) The mapping Pm, = g € (w(2), =) = lat(U,/U N Z) assumes
non-trivial values.

(2) The mapping Pm, = g U”/UP N Zisasin1(r=0)

(3) The range of P, is an infinite chain of lat.( PU").

Proof. (1) To say that PU, # 1 is to say that U, ¢ Z, which holds for
everyg € G.

(2) To say that PU{” =1 is to say that U{” c Z. By Fact 4.4.2
follows U{"~V c Z. Step by step U, C Z follows, which is ruled out.

(3) By construction Range( Pr,) is a chain in lat.(PU"). I claim that
the infimum of Range( Pw,) is the identity subgroup of PU(". For let PN
be this infimum. Then

N= N U(ZnUD).
g>w()

Now,

[N,Nlc N [U"(ZnUD),u(ZnUu0)]

g>w(2)

= N [y”yel= N yrve N
g>w(2) g>w(2) g>w(2)
= ﬂ Ug= 1.

8€G

Thus N is abelian. Since N is a normal subgroup it follows from Fact 4.4.1
that N € Z so that PN = N/U” N Z = 1. If now Range(Pm,) were
finite then since Range(P,) is a chain it would follow that this set has a
first member, say, PU{"” = PN = 1, contradicting 2. O
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THEOREM 4.4.6. Let V be any non-degenerate elliptic space other than in
cases (A), (B) or (C). If 1 # PN is any member of lat(PU ") and if PX is
any member of Range(w,) then PN N PX # 1.

Proof. Deny the conclusion of the theorem. For some normal sub-
group N of U, N ¢ Z, and some g > w(2), PN N PU{"” = 1. Equiva-
lently, [N, U{"] € Z. Now C(U/") = Z and N<U " <U. From Fact 4.4.4
follows N C Z, a contradiction. O

As an application of the foregoing theorems:

THEOREM 4.4.7. Let V be any non-degenerate elliptic space other than in
cases (A), (B) or (C) and assume that one at least of the following require-
ments hold true.

(1) * is an involution of the first kind.

(2) The restriction of w on Z is the trivial valuation.

(3) D is finite-dimensional over its center.

Then for every natural number r # O the projective group PU " contains
no torsion normal subgroups # 1.

Proof. It suffices to find some torsion-free member of Range(w,)
(Theorem 4.4.6). Define g, to be the element 0 in G if charac(D) # 0; if,
to the contrary, charac(D) = 0, let g, = w(g), where p = charac(D). If
g1 > max(gy, w(2)) then by §2, Theorem 2.19, U, is torsion-free. It is to
be shown that PU," is torsion-free, where r # 0. For let ¢ € U{" be such
that ¢™ € Z.

Case 1. Here UN Z = {1, —1} so that ¢ is a root of unity. Thus
¢ = 1. Thus PU." is torsion-free.

Case 2. 1f ™ = z € Z then since ¢™ € U, it follows that (z — I)w >
g, > 0. Equivalently, w(z — 1) > 0 (§2, Theorem 2.4.2.). Thusz — 1 =0
or z = 1. Thus ¢ = 1 and, hence, PU" is torsion-free.

Case 3. By standard argument U N Z consists only of roots of
unity. From ¢™ € U{” c U™ follows that ¢ is a root of unity. From this
¢ = 1 so that Pu{" is torsion-free. O

THEOREM 4.4.8. Let V be any non-degenerate elliptic space other than in
cases (A) or (B). Every torsion normal subgroup of U is central.
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Proof. For let N be any torsion normal subgroup of U. If g, is defined
as in the proof of Theorem 4.4.7, then U, is torison-free. Thus N N U, =1
and, hence, N c C(U,) = Z. O

Question. (Open.) Does Theorem 4.4.7 carry over for any ground
division ring D? What about the case r = 0?
To close let me add one more question.

Question (Open.) Is the range of =, large enough so as for every
Z ¢ N < U, PN > PUS", some g > w(2) (r # 0)?

The preceding question can be answered in the negative in case » = 0.
This uses a counterexample in [3].
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