## NON-COMPACT SETS WITH CONVEX SECTIONS

MAU-HSIANG SHIH AND KOK-KEONG TAN

Two further generalizations of Ky Fan's generalizations of his well-known intersection theorem concerning sets with convex sections are obtained.

**1.** Introduction. Let I be an index set; in the case when I is finite, it is always assumed that I contains at least two indices. Let  $\{X_i\}_{i \in I}$  be a family of topological spaces and  $X := \prod_{i \in I} X_i$ . For each  $i \in I$ , set

$$X^{i} := \prod_{\substack{j \neq i \\ j \in I}} X_{j} \qquad \text{(so that } X = X_{i} \times X^{i}\text{)},$$

and let  $p_i: X \to X_i$  and  $p^i: X \to X^i$  be the projections. For each  $x \in X$ , we write  $p_i(x) = x_i$  and  $p^i(x) = x^i$ . For any non-empty subset K of X, we let  $p_i(K) = K_i$  and  $p^i(K) = K^i$ .

Our aim in this paper is to give two generalizations of the following intersection theorem of Ky Fan [2] concerning sets with convex sections.

THEOREM 1. (Ky Fan.) Let  $X_1, X_2, ..., X_n$  be  $n \ (\geq 2)$  non-empty compact convex sets each in a Hausdorff topological vector space. Let  $X := \prod_{i=1}^n X_i$  and  $A_1, A_2, ..., A_n$  be n subsets of X such that

(a) For each i = 1, 2, ..., n and any  $x_i \in X_i$ , the section

$$A_i(x_i) \coloneqq \left\{ x^i \in X^i \colon \left( x_i, x^i \right) \in A_i \right\}$$

is open in  $X^i$ .

(b) For each i = 1, 2, ..., n and any  $x^i \in X^i$ , the section

$$A_i(x^i) := \left\{ x_i \in X_i : \left( x_i, x^i \right) \in A_i \right\}$$

is convex and non-empty.

Then the intersection  $\bigcap_{i=1}^{n} A_{i}$  is non-empty.

Theorem 1 is a unified account of game-theoretic results for arbitrary *n*-person games and has several applications [2], [3]. In particular, Tychonoff's fixed point theorem [11], Sion's generalization [10] of von Neumann's minimax principle [8] and Nash's equilibrium point theorem [7] are immediate consequences of Theorem 1.

2. Infinite system. Ma [6] extended Theorem 1 to an arbitrary system  $\{X_i\}_{i \in I}$  of compact convex sets. In a recent paper, Ky Fan [5] extends Ma's result by introducing an auxiliary family  $\{B_i\}_{i \in I}$ . Ky Fan's theorem can be further generalized to non-compact convex sets as follows:

THEOREM 2. Let  $\{E_i\}_{i \in I}$  be a family of Hausdorff topological vector spaces. For each  $i \in I$ , let  $X_i$  be a non-empty convex set in  $E_i$ . Let  $X := \prod_{i \in I} X_i$ . Suppose  $\{A_i\}_{i \in I}$  and  $\{B_i\}_{i \in I}$  are two families of subsets of X satisfying the following conditions:

(a) For each  $i \in I$  and any  $x_i \in X_i$ , the section

$$A_i(x_i) := \left\{ x^i \in X^i : \left( x_i, x^i \right) \in A_i \right\}$$

is open in X'.

(b) For each  $i \in I$  and any  $x^i \in X'$ , the section

$$B_i(x^i) := \left\{ x_i \in X_i : \left( x_i, x^i \right) \in B_i \right\}$$

contains the convex hull of the section

$$A_i(x^i) := \left\{ x_i \in X_i : \left( x_i, x^i \right) \in A_i \right\}.$$

(c) There exists a non-empty compact convex subset K of X such that (c') for each  $i \in I$  and any  $x^i \in K^i$ , the section

$$A_i(x^i) \coloneqq \left\{ x_i \in X_i \colon \left( x_i, x^i \right) \in A_i \right\} \neq \emptyset \text{ and}$$

(c")  $K \cap \prod_{i \in I} A_i(y^i) \neq \emptyset$  for each  $y \in X \setminus K$ . Then the intersection  $\bigcap_{i \in I} B_i$  is non-empty.

*Proof.* Let  $i \in I$ . For any  $x^i \in K^i$ , we can find  $x_i \in X_i$  such that  $x_i \in A_i(x^i)$  by (c'), so that  $x^i \in A_i(x_i)$ ; thus  $K^i \subset \bigcup_{x_i \in X_i} A_i(x_i)$ . Since each  $A_i(x_i)$  is open in  $X^i$  by (a), by the compactness of  $K^i$  (since each projection  $p^i$  is continuous), there is a finite subet  $\{x_{i1}, x_{i2}, \ldots, x_{in_i}\}$  of  $X_i$  such that

(1) 
$$K^{i} \subset \bigcup_{k=1}^{n_{i}} A_{i}(x_{ik}).$$

Let  $\Omega_i$  be the convex hull of  $K_i \cup \{x_{i1}, x_{i2}, \ldots, x_{in_i}\}$ . Define  $\Omega := \prod_{i \in I} \Omega_i$ and  $\tilde{A_i} := A_i \cap \Omega$  and  $\tilde{B_i} := B_i \cap \Omega$  for each  $i \in I$ . Since the projection  $p_i$ is continuous and affine,  $K_i$  is compact convex for each  $i \in I$ ; it follows that  $\Omega_i$  is a nonempty compact convex set in  $E_i$  for each  $i \in I$ . Furthermore, we have:

(i) For each  $i \in I$  and any  $x_i \in \Omega_i$ , the section

$$\tilde{A}_i(x_i) \coloneqq \left\{ x' \in \Omega^i \colon (x_i, x') \in \tilde{A}_i \right\}$$

is open in  $\Omega^i$  by (a).

474

(ii) For each  $i \in I$  and any  $x^i \in \Omega^i$ , the section

 $\tilde{B}_i(x^i) \coloneqq \left\{ x_i \in \Omega_i \colon \left( x_i, x^i \right) \in \tilde{B}_i \right\}$ 

contains the convex hull of the section

$$\tilde{A}_i(x^i) \coloneqq \left\{ x_i \in \Omega_i \colon \left( x_i, x^i \right) \in \tilde{A}_i \right\}$$

by (b).

(iii) For each  $i \in I$  and any  $x^i \in \Omega^i$ , the section

$$\tilde{A}_i(x^i) := \left\{ x_i \in \Omega_i : \left( x_i, x^i \right) \in \tilde{A}_i \right\} \neq \emptyset.$$

by (c'), (c'') and (1).

For each  $i \in I$  and any  $x^i \in \Omega^i$ , we can find  $x_i \in \Omega_i$  such that  $x_i \in \tilde{A}_i(x^i)$  by (iii), so that  $x^i \in \tilde{A}_i(x_i)$ , it follows that  $\Omega^i = \bigcup_{x_i \in \Omega_i} \tilde{A}_i(x_i)$ ; since each  $\tilde{A}_i(x_i)$  is open in  $\Omega^i$  by (i), by compactness of  $\Omega^i$ , there is a finite subset  $\{y_{i1}, y_{i2}, \dots, y_{im_i}\}$  of  $\Omega_i$  such that

$$\Omega' = \bigcup_{k=1}^{m_i} \tilde{A}_i(y_{ik}).$$

Let  $f_{i1}, f_{i2}, \ldots, f_{im_i}$  be a continuous partition of unity subordinated to the covering  $\{\tilde{A}_i(y_{i1}), \tilde{A}_i(y_{i2}), \ldots, \tilde{A}_i(y_{im_i})\}$  of  $\Omega^i$ . Then

$$\begin{cases} f_{ik}(x^i) = 0 & \text{for } x^i \in \Omega^i \setminus \tilde{A}_i(y_{ik}), k = 1, 2, \dots, m_i, \\ \sum_{k=1}^{m_i} f_{ik}(x^i) = 1 & \text{for each } x^i \in \Omega^i. \end{cases}$$

Define a continuous map  $\phi_i: \Omega^i \to \Omega_i$  by setting

$$\phi_i(x^i) = \sum_{k=1}^{m_i} f_{ik}(x^i) y_{ik} \quad \text{for } x^i \in \Omega^i.$$

Since  $f_{ik}(x^i) \neq 0$  implies  $x^i \in \tilde{A}_i(y_{ik})$ , i.e.  $y_{ik} \in \tilde{A}_i(x^i)$ , and since  $\tilde{B}_i(x^i)$  contains the convex hull of  $\tilde{A}_i(x^i)$  by (ii), we have

(2) 
$$\phi_i(x^i) \in \tilde{B}_i(x^i)$$
 for each  $x^i \in \Omega^i$ .

Let  $C_i$  be the convex hull of  $\{y_{i1}, y_{i2}, \dots, y_{im_i}\}$ ; then  $C_i \subset \Omega_i$ . Denote by  $F_i$  the vector subspace of  $E_i$  generated by  $C_i$ ; then  $F_i$  is locally convex since it is finite dimensional.

Now let  $C = \prod_{i \in I} C_i$ , then C is a non-empty compact convex subset in the Hausdorff locally convex space  $\prod_{i \in I} F_i$ . Note that for each  $i \in I$ , we have  $C^i \subset \Omega^i$ . Define  $\psi: C \to C$  as follows: For each  $x \in C$  and each  $i \in I$ , write  $x = (x_i, x^i) \in C_i \times C^i$ , then  $\psi(x) := \{y_i\}_{i \in I}$  is determined by  $y_i := \phi_i(x^i)$  for each  $i \in I$ . Clearly  $\psi$  is continuous. By Tychonoff's fixed point theorem [11],  $\psi$  has a fixed point  $z := \{z_i\}_{i \in I}$  in C, so that for each  $i \in I$ , we have  $z_i = \phi_i(z^i) \in \tilde{B}_i(z^i)$ , by (2); it follows that  $z = (z_i, z^i) \in \tilde{B}_i \subset B_i$  for each  $i \in I$ . Hence  $z \in \bigcap_{i \in I} B_i$ . This concludes the proof of our theorem.

Similar to [2], Theorem 2 has the following analytic formulation:

THEOREM 3. Let  $\{E_i\}_{i \in I}$  be a family of Hausdorff topological vector spaces. For each  $i \in I$ , let  $X_i$  be a non-empty convex set in  $E_i$ . Let  $X := \prod_{i \in I} X_i$  and  $\{t_i\}_{i \in I}$  be a family of real numbers. Suppose that  $\{f_i\}_{i \in I}$ and  $\{g_i\}_{i \in I}$  are two families of real-valued functions defined on X, satisfying the following conditions:

(a) For each  $i \in I$  and any  $x_i \in X_i$ ,  $f_i(x_i, x^i)$  is a lower semi-continuous function of  $x^i \in X^i$ .

(b) For each  $i \in I$  and any  $x^i \in X^i$ , the set

$$\left\{x_i \in X_i: g_i(x_i, x^i) > t_i\right\}$$

contains the convex hull of the set

$$\left\{x_i \in X_i: f_i(x_i, x^i) > t_i\right\}.$$

(c) There exists a non-empty compact convex subset K of X such that (c') for each  $i \in I$  and any  $x^i \in K^i$ , there exists  $x_i \in X_i$  with  $f_i(x_i, x^i) > t_i$  and

(c'') for any  $y \in X \setminus K$ , there exists  $x \in K$  with  $f_i(x_i, y^i) > t_i$  for all  $i \in I$ .

Then there exists a point  $\hat{y} \in X$  such that  $g_i(\hat{y}) > t_i$  for all  $i \in I$ .

3. Finite system. By relaxing the compactness condition for  $X_i$ 's and the convexity conndition for the sections of the  $A_i$ 's in Theorem 1, Ky Fan [5] generalizes Theorem 1 as follows:

THEOREM 4. (Ky Fan) Let  $X_1, X_2, \ldots, X_n$  be  $n (\ge 2)$  convex sets each in a Hausdorff topological vector space. Let  $X := \prod_{i=1}^n X_i$  and  $A_1, A_2, \ldots, A_n$ be n subsets of X such that

(a) For each i = 1, 2, ..., n and any  $x_i \in X_i$ , the section

$$A_i(x_i) := \left\{ x^i \in X^i : \left( x_i, x^i \right) \in A_i \right\}$$

is open in  $X^i$ ,

(b) For each i = 1, 2, ..., n and any  $x^i \in X^i$ , the section

$$A_i(x^i) \coloneqq \left\{ x_i \in X_i \colon \left( x_i, x^i \right) \in A_i \right\}$$

is non-empty.

(c) For any  $x \in X$ , at least q of the sections  $A_1(x^1)$ ,  $A_2(x^2)$ ,..., $A_n(x^n)$  are convex; where q is a given integer with  $2 \le q \le n$ .

(d) There exists a non-empty compact convex subset K of X such that

$$K \cap \prod_{i=1}^{n} A_i(y^i) \neq \emptyset \quad \text{for each } y \in X \setminus K.$$

Then at least q of the sets  $A_1, A_2, \ldots, A_n$  have a non-empty intersection.

Theorem 4 can be improved as follows:

THEOREM 5. Let  $X_1, X_2, \ldots, X_n$  be  $n \ (\geq 2)$  convex sets each in a Hausdorff topological vector space. Let  $X := \prod_{i=1}^n X_i$  and  $A_1, A_2, \ldots, A_n$ ,  $B_1, B_2, \ldots, B_n$  be 2n subsets of X such that

(a)  $A_i \subset B_i$  for i = 1, 2, ..., n.

(b) For each i = 1, 2, ..., n and any  $x_i \in X_i$ , the section

$$A_i(x_i) := \left\{ x^i \in X^i : \left( x_i, x^i \right) \in A_i \right\}$$

is open in  $X^i$ .

(c) For any  $x \in X$ , at least q of the sections  $B_1(x^1)$ ,  $B_2(x^2)$ ,...,  $B_n(x^n)$  are convex; where q is a given integer with  $2 \le q \le n$ .

(d) There exists a non-empty compact convex subset K of X such that (d') For each i = 1, 2, ..., n and for each  $x \in K$ , the section

$$A_i(x^i) := \left\{ x_i \in X_i : \left( x_i, x^i \right) \in A_i \right\}$$

is non-empty and

(d")  $K \cap \prod_{i=1}^{n} A_i(y^i) \neq \emptyset$  for each  $y \in X \setminus K$ . Then at least q of the sets  $B_1, B_2, \ldots, B_n$  have a non-empty intersection.

For n = 2, Theorem 5 was given in [9] together with an application to von Neumann type minimax inequalities. The proof of Theorem 5 is a slight modification of that in Ky Fan [5], hence we need the following further generalization of the *KKM* mapping principle due to Ky Fan [5]:

THEOREM 6. (Ky Fan) Let Y be a convex set in a Hausdorff topological vector space and let X be a non-empty subset of Y. For each  $x \in X$ , let F(x) be a relatively closed subset of Y such that the convex hull of every finite subset  $\{x_1, x_2, \ldots, x_n\}$  of X is contained in the corresponding union  $\bigcup_{i=1}^{n} F(x_i)$ . If there is a non-empty subset  $X_0$  of X such that the intersection  $\bigcap_{x \in X_0} F(x)$  is compact and  $X_0$  is contained in a compact convex subset of Y, then  $\bigcap_{x \in X} F(x) \neq \emptyset$ .

*Proof of Theorem* 5. For each  $x \in X$ , let

$$F(x) := \{ y \in X : (x_i, y^i) \notin A_i \text{ for at least one index } i \},\$$

then F(x) is relative closed in X by (b). By (d'), for each  $y \in K$ , for each i = 1, 2, ..., n, there exists  $x_i \in A_i(y^i)$ , so that by setting  $x = (x_1, x_2, ..., x_n) \in X$ , we have  $y \notin F(x)$  and it follows that  $K \cap \bigcap_{x \in X} F(x) = \emptyset$ . On the other hand, by (d"), for each  $y \in X \setminus K$ , there exists  $x \in K$  such that  $(x_i, y^i) \in A_i$  for all i = 1, 2, ..., n, so that  $y \notin F(x)$ ; it follows that  $(X \setminus K) \cap \bigcap_{x \in K} F(x) = \emptyset$ . Hence  $\bigcap_{x \in X} F(x) = \emptyset$  and  $\bigcap_{x \in K} F(x)$  is compact, being a closed subset of the compact set K.

According to Theorem 6, there exist  $x^{(1)}, x^{(2)}, \ldots, x^{(m)} \in X$ , and nonnegative real numbers  $\alpha^{(1)}, \alpha^{(2)}, \ldots, \alpha^{(m)}$  with  $\sum_{k=1}^{m} \alpha^{(k)} = 1$  such that  $\sum_{k=1}^{m} \alpha^{(k)} x^{(k)} \notin \bigcup_{k=1}^{m} F(x^{(k)})$ . Let  $z := \sum_{k=1}^{m} \alpha^{(k)} x^{(k)} := (z_i, z^i) \in X_i \times X^i$ and let  $p_i(x^{(k)}) = x_i^{(k)}$ . Then  $(x_i^{(k)}, z^i) \in A_i$  for all  $1 \le i \le n$  and  $1 \le k$  $\le m$ , or  $x_i^{(k)} \in A_i(z^i)$  for all  $1 \le i \le n$  and  $1 \le k \le m$ . By (a), we have

(3) 
$$x_i^{(k)} \in B_i(z^i)$$
 for all  $1 \le i \le n$  and  $1 \le k \le m$ .

By (c), at least q of the sections  $B_1(z^1)$ ,  $B_2(z^2)$ ,..., $B_n(z_n)$  are convex. Since  $z_i = \sum_{k=1}^m \alpha^{(k)} x_i^{(k)}$  for i = 1, 2, ..., n, (3) implies that  $z_i \in B_i(z^i)$  holds for at least q indices i. Thus z is a point common to at least q of the sets  $B_1, B_2, ..., B_n$ . This completes the proof.

The following is an analytic formulation of Theorem 5:

THEOREM 7. Let  $X_1, X_2, ..., X_n$  be  $n \ (\geq 2)$  convex sets each in a Hausdorff topological vector space. Let  $X := \prod_{i=1}^n X_i$  and  $\{t_i\}_{i=1}^n$  be a set of n real numbers. Let  $\{f_i\}_{i=1}^n$  and  $\{g_i\}_{i=1}^n$  be 2n real-valued functions defined on X satisfying the following conditions:

(a)  $f_i \le g_i$  on X for each i = 1, 2, ..., n.

(b) For each i = 1, 2, ..., n and any  $x_i \in X_i$ ,  $f_i(x_i, x^i)$  is a lower semi-continuous function of  $x^i \in X^i$ .

(c) For any  $x \in X$ , at least q of the functions  $g_i(y_i, x^i)$  are quasi-concave functions of  $y_i \in X_i$ .

(d) There exists a non-empty compact convex subset K of X such that

(d') For each i = 1, 2, ..., n and any  $x^i \in K^i$ , there exists  $x_i \in X_i$  such that  $f_i(x_i, x^i) > t_i$  and

(d'') for each  $y \in X \setminus K$ , there exists  $x \in K$  such that  $f_i(x_i, y') > t_i$  for all i = 1, 2, ..., n.

Then there exists a point  $\hat{y} \in X$  such that  $g_i(\hat{y}) > t_i$  for at least q indices i in  $\{1, 2, ..., n\}$ .

Acknowledgment. The writing of this paper is inspired by Ky Fan's paper [5]. We would like to thank Professor Ky Fan for providing us with a preprint of his paper [5].

## References

- [1] F. E. Browder, The fixed point theory of multi-valued mappings in topological vector spaces, Math. Ann., 177 (1968), 283-301.
- [2] K. Fan, Sur un théorème minimax, C. R. Acad. Sci. Paris, Groupe 1, 259 (1964), 3925-3928.
- [3] \_\_\_\_\_, Applications of a theorem concerning sets with convex sections, Math. Ann., 163 (1966), 189–203.
- [4] \_\_\_\_\_, Fixed-point and related theorems for non-compact convex sets, in: Game Theory and Related Topics (Edited by O. Moeschlin and D. Pallaschke), North-Holland, Amsterdam, (1979), 151–156.
- [5] \_\_\_\_\_, Some properties of convex sets related to fixed point theorems, Math. Ann., 266 (1984), 519-537.
- [6] T. W. Ma, On sets with convex sections, J. Math. Anal. Appl., 27 (1969), 413-416.
- [7] J. Nash, Non-cooperative games, Ann. Math., 54 (1951), 286-295.
- [8] J. von Neumann, Zur Theorie der Gesellschaftssiele, Math. Ann., 100 (1928), 295-320.
- [9] M. H. Shih and K. K. Tan, A geometric theorem with applications to the von Neumann type minimax inequalities and fixed point theorems, to appear.
- [10] M. Sion, On general minimax theorems, Pacific J. Math., 8 (1958), 171-176.
- [11] A. Tychonoff, Ein Fixpunktsatz, Math. Ann., 111 (1935), 767-776.

Received January 12, 1984. This work was partially supported by NSERC of Canada under grant A-8096.

Chung Yuan University Chung-Li, Taiwan

AND

Dalhousie University Halifax, Nova Scotia Canada B3H 4H8