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NON-COMPACT SETS WITH CONVEX SECTIONS

MAU-HSIANG SHIH AND KOK-KEONG TAN

Two further generalizations of Ky Fan's generalizations of his
well-known intersection theorem concerning sets with convex sections
are obtained.

1. Introduction. Let / be an index set; in the case when / is finite,
it is always assumed that / contains at least two indices. Let {X7}/ e / be a
family of topological spaces and X:= ΠiGrXim For each i e /, set

Xi := Π xj ( s o

jΦir

and let/?,: X -> Xt and/?': X -» X1 be the projections. For each x e Xy we
writep)(x) = x{ andp'(x) = x'. For any non-empty subset K of X, we let

Our aim in this paper is to give two generalizations of the following
intersection theorem of Ky Fan [2] concerning sets with convex sections.

THEOREM 1. (Ky Fan.) Let Xv X2,...,Xn be n (> 2) non-empty
compact convex sets each in a Hausdorff topological vector space. Let
X:= ΠJLx Xt andAv A2,... ,An be n subsets of Xsuch that

(a) For each i = 1,2,..., n and any xt e Xi9 the section

is open in X\
(b) For each i = 1,2,... ,n and any x* e X\ the section

is convex and non-empty.
Then the intersection Π"=1 Ai is non-empty.

Theorem 1 is a unified account of game-theoretic results for arbitrary
w-person games and has several applications [2], [3]. In particular,
Tychonoff s fixed point theorem [11], Sion's generalization [10] of von
Neumann's minimax principle [8] and Nash's equilibrium point theorem
[7] are immediate consequences of Theorem 1.

473



474 MAU-HSIANG SHIH AND KOK-KEONG TAN

2. Infinite system. Ma [6] extended Theorem 1 to an arbitrary

system {^ f}/ G / of compact convex sets. In a recent paper, Ky Fan [5]

extends Ma's result by introducing an auxiliary family {1?,},^,. Ky Fan's

theorem can be further generalized to non-compact convex sets as follows:

THEOREM 2. Let {Ej}lGi be a family of Hausdorff topological vector

spaces. For each i e /, let Xf be a non-empty convex set in Er Let

X:= Π / e / Xj. Suppose {Ai}ιei and {5 ,} ,^ are two families of subsets of X

satisfying the following conditions:

(a) For each i e / and any x, e Xn the section

is open in X'.

(b) For each i e / and any x' e X\ the section

contains the convex hull of the section

(c) There exists a non-empty compact convex subset K of X such that

(c') for each i e / and any xι ^ K\ the section

At(x'):= {x,^*,.:^,,*')^,} Φ 0 and

(c") AT Π nf.e/^f-(y) # 0 /or eαcΛ j e ΛΓ\ AT.

7% /̂i /Λ̂  intersection Γ\i^ίBi is non-empty.

Proof. Let i e /. For any x' e K'9 we can find JC, G Λ̂  such that

xi e ^^x1") by (c'), so that x' G ̂ ^ X , ) ; thus Ki c L l ^ ^ ^ ί ^ ) . Since

each Ai(xt) is open in X1 by (a), by the compactness of K' (since each

projection p' is continuous), there is a finite subet {x l l ? x j 2 , . . . ,x/n } of ^

such that

(1) ΛΓ'c \jA,{xlk).
k = l

Let ί2, be the convex hull of Ki U {xfl, x / 2 , . . . 9xin }. Define ί2 := Π/e/Ω,

and ^ *= ^ Π ί l and 5,-:= 5f- Π Ω for each / e /. Since the projection/?7

is continuous and affine, Kt is compact convex for each i e /; it follows

that Ω, is a nonempty compact convex set in Ei for each i e /. Further-

more, we have:

(i) For each / e / and any xf. e Ωf , the section

is open in Ω7 by (a).
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(ii) For each i e / and any x7 e Ω7, the section

contains the convex hull of the section

A,(x'):= hGQ.

by(b).
(iii) For each / e / and any x7 e Ω7, the section

) { , ( , ) , } Φ 0 .

by (c'), (c") and (1).
For each i G / and any x7 G Ω7, we can find x, e Ω, such that

x, G 4f.(jc'*) by (iii), so that x7 G i^x,), it follows that Ω7 = U x e Ω ^(x,.);
since each At{x() is open in Ω7 by (i), by compactness of Ω', there is a
finite subset { ygl9 yl29... ,//w } of Ω, such that

Ω' = U Λ,{ylk).
k = l

Let /;1, /,2,... ,fim be a continuous partition of unity subordinated to the
covering { A,{yΛ)t A,(yl2),... ,A£ylm)} of Ω'. Then

(fjx1) = 0 forx' e Ω'\i,(>;,J, Λ = 1,2,...,w, ,

Σ //Λ(^'")
 = i f o r e a c h χ l e β /

A: = l

Define a continuous map φ,.: Ω7 -> Ωy by setting

Since fιk(x!) Φ 0 implies x' e >ί|.(<y/Λ), i.e. yιk G ̂ (x ' )* a n ^ s i n c e ^/(•x;/)
contains the convex hull of A^x') by (ii), we have

(2) φXx1) G ^ ( J C ' ) for each JC7 G Ω7.

Let C, be the convex hull of {yiV yi2,... ,yinh} then Ct c Ω r Denote by F{

the vector subspace of E/ generated by C/9 then F- is locally convex since it
is finite dimensional.

Now let C = Πje/C,-, then C is a non-empty compact convex subset
in the Hausdorff locally convex space YlteίFr Note that for each / G /,
we have C' c Ω7. Define ψ: C -> C as follows: For each x G C and each
i G /, write x = (x,, x7) G C, X C7, then ψ(x) := {^}/e/ is determined
by ^ : = φ^x') for each i G /. Clearly ψ is continuous. By Tychonoffs



476 MAU-HSIANG SHIH AND KOK-KEONG TAN

fixed point theorem [11], ψ has a fixed point z := {z,.}/e/ in C, so that for

each i G /, we have z, = ^ ( z ' ) G ^ ( Z 1 ' ) , by (2); it follows that z =

(zi9 z1) G JB,. c 2?, for each ι G /. Hence z G Π / e / ί / . This concludes the

proof of our theorem. D

Similar to [2], Theorem 2 has the following analytic formulation:

THEOREM 3. Let ( £ ' / } / e / be a family of Hausdorff topological vector

spaces. For each i G /, let X. be a non-empty convex set in Er Let

X:= Π/ez-X) and { ί z } / e / be a family of real numbers. Suppose that {fi}ier
and {#,-},• e / are two families of real-valued functions defined on X, satisfying

the following conditions:

(a) For each i G / and any x G Xi9 /)(*,-, JC1) is a lower semi-continu-

ous function of xι G A"1.

(b) For βtfc/ί Ϊ G / and any xι ^ X\ the set

contains the convex hull of the set

{x,eXι:f,{xl,x')>t,}.

(c) There exists a non-empty compact convex subset K of X such that

(c r) for each i G / and any xι G K\ there exists xt G Xt with fj(xi9 x')

> t. and

(c") for any y G X\ K, there exists x G AT w//Λ /^x , >;'") > f. /or α//

i e/.

Then there exists a point y G X such that gt(y) > tjor all i G /.

3. Finite system. By relaxing the compactness condition for X?%

and the convexity conndition for the sections of the ̂ 4/s in Theorem 1, Ky

Fan [5] generalizes Theorem 1 as follows:

THEOREM 4.(Ky Fan) Let Xl9 X29...,Xn be n ( > 2) convex sets each in

a Hausdorff topological vector space. Let X:= Πf= 1 Xt and Av A2,... 9An

be n subsets of X such that

(a) For each i = 1,2,... ,n and any xi G Xi9 the section

is open in X\

(b) For each i = 1,2,..., n and any x' G X\ the section

is non-empty.
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(c) For any x e X, at least q of the sections Aλ{xι), A2(x2),... ,An(xn)

are convex; where q is a given integer with 2 < q < n.

(d) There exists a non-empty compact convex subset K of X such that

n
κ n YlAi(yi) φ 0 foreachy e X\K.

i = l

Then at least q of the sets Al9 A2,... 9An have a non-empty intersection.

Theorem 4 can be improved as follows:

THEOREM 5. Let Xv X29...,Xn be n (> 2) convex sets each in a

Hausdorff topological vector space. Let X:= Y\%ιXi and Al9 A2,.. .9An,

Bv 2?2,... ,Bn be 2n subsets of Xsuch that

( a ) ^ . c l ί > / = l,2,...,/i.
(b) For each i = 1,2,... ,n and any xt e Xo the section

is open in X1.

(c) For any x e X,at least q of the sections Bλ(xι), B2(x2),... ,Bn(xn)

are convex; where q is a given integer with 2 < q < n.

(d) There exists a non-empty compact convex subset K of X such that

(d r) For each i = 1,2,...,« and for each x ^ K, the section

is non-empty and

(d^KΠΠ^AXy^Φ 0 foreachy e X\K.

Then at least q of the sets Bv B2,.. .,Bn have a non-empty intersection.

For n = 2, Theorem 5 was given in [9] together with an application to

von Neumann type minimax inequalities. The proof of Theorem 5 is a

slight modification of that in Ky Fan [5], hence we need the following

further generalization of the KKM mapping principle due to Ky Fan [5]:

THEOREM 6. {Ky Fan) Let Y be a convex set in a Hausdorff topological

vector space and let X be a non-empty subset of Y. For each x e X, let F(x)

be a relatively closed subset of Y such that the convex hull of every finite

subset {x l9 x 2 , . . . ,jcn} of X is contained in the corresponding union

Uf=1 F(xt). If there is a non-empty subset Xo of X such that the intersection

Π x e I F(x) is compact and Xo is contained in a compact convex subset of Y,

thenf\xeXF(x)Φ 0 .



478 MAU-HSIANG SHIH AND KOK-KEONG TAN

Proof of Theorem 5. For each x G l , let

F(x):= {y G X: (χ.9 yι) £ At for at least one index / ) ,

then F(x) is relative closed in ^ b y (b). By (d')> for eachy G K, for each

i = 1,2,.. .,«, there exists xi G ^ ( J O , s o Λat by setting JC =

(xl9 x29... 9xn) G ΛΓ, we have y ί F(JC) and it follows that K Π

Π x e Λ^F(jc) = 0 . On the other hand, by (d"), for each j> G X \ ^ , there

exists JC G AT such that (JC,, / ) G Λ. for all/ = 1,2,.. .,Λ, SO t h a t j ί F(JC);

it follows that ( X \ i ^ ) Π f l ^ F W = 0 . Hence Π x e Λ r F ( x ) = 0 and

Π , G A : F(JC) is compact, being a closed subset of the compact set K.

According to Theorem 6, there exist xa\ JC ( 2 ),. .. ,JC ( W ) G X, and non-

negative real numbers α ( 1 ), α ( 2 ) , . . . , α ( w ) with Σ ^ = 1 α ( / c ) = l such that

Σ Γ = i α W * ( / : ) ί U%=lF(xw). Let z := Σ ^ 1 α ( / c ) x ( / : ) : = (z,., z1") e ^ X Xί-

and let Pi(x{k)) = xjk\ Then (JC,(AC), z1") G >4. for all 1 < / < n and 1 < ik

< m, or x/

(/:) e Af(z') for all 1 < / < n and 1 < k < m. By (a), we have

(3) JC^ } G Λf.(z'') for all 1 < i < n and 1 < k < m.

By (c), at least q of the sections Bx{zι), B2(z2),.. .9Bn(zn) are convex.

Since z, = Σ ^ α ^ J c , ^ for / = 1,2,...,«, (3) implies that zi G J?.(Z'")

holds for at least q indices /. Thus z is a point common to at least q of the

sets Bv B2,.. .,Bn. This completes the proof. D

The following is an analytic formulation of Theorem 5:

THEOREM 7. Let Xl9 X2,...,Xn be n ( > 2) convex sets each in a

Hausdorff topological vector space. Let X:= Πf=1 Xt and {t i}
n

i^ ιbe a set of

n real numbers. Let { f t ) n

i = ι and {gi}
tJ=ιbe2n real-valued functions defined

on X satisfying the following conditions:

(a) f < gi on Xfor each / = 1,2,...,w.

(b) For each i = 1,2,...,/! and any xt G Xi9 ft(xi9x') is a lower

semi-continuous function ofxι e X1.

(c) For ύwy x ^ X, at least q of the functions g^y^ xι) are quasi-con-

cave functions ofyi G X.m

(d) 77ίere ex/.si5 a non-empty compact convex subset K of X such that

(d') For each i = 1,2,... ,n and any x* e K\ there exists xt e X. such

thatf(xn JC7) > ttand

(d")for eachy G X \ K, there exists x G K such thatf^x^ yι) > tjor

all i = 1,2,.. .,«.

77ιe/i there exists a point J E I such that gt{y) > tt for at least q

indices i in {1 ,2, . . . ,«} .
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