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THE DIOPHANTINE EQUATION ax + by = cϊN Q(j5)
AND OTHER NUMBER FIELDS

DAVID ROSEN

Solving in rational integers the linear diophantine equation

(1) ax + by = c, (a,b)\c,a,by c, e Z

is very well known. Let d = (a, b), and put A = a/d, B = b/d, C = c/d,
then equation (1) becomes

(1') Ax + By+C, (A,B) = 19A,B,C, e Z.

The purpose of this note is to discuss the solutions of this equation when
A, By C are integers in Q(yf5) and the solutions are integers in β(\/J).
What makes the discussion interesting is that an algorithm which mimics
the continued fraction algorithm that solves the rational integer case can
be implemented.

A brief summary of the continued fraction algorithm for the rational
case is as follows: To solve (1'): find the regular simple continued fraction
for A/B; i.e.

A_^ 1
B - r° + rx + ̂

' • 1

which we write as A/B = (ro; rl9...,rn). Since A/B is rational, the
continued fraction is finite. The (m + l)th convergent of a continued
fraction is denoted by PJQm = (ro; rλ - rm). It A/B = P n /e w then the
penultimate convergent Pn_ι/Qn_ι provides a solution to Ax -f By = 1
because of the well-known relation.

(2) Λ β - i - β.Λ-i - (-1)
n + l

It suffices therefore to take x = (- l) n + 1 ρ Λ _ l 9 j = (-l)nPn-V To solve (1)
we take x = (- l) w + 1 dCQn_x and7 = (-1)M+1 J C P ^ ^

It is well known that the integers in Q(/5) have the form s + tλ9

where 5, ί e Z and λ = (1 4- /̂5*)/2. (See Hardy and Wright [1] or Niven
and Zuckerman [3] for a complete discussion of this algebraic number
field.) The elements in Q{^5) are of course the quotients of integers in the
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field. In order to mimic the solution procedure above we would require a
continued fraction development that essentially parallels the ordinary
continued fraction representation of real numbers, that is the elements of
Q(y[5) should have a unique finite continued fraction representation and
every other real number has a unique infinite continued fraction represen-
tation. Such a representation exists and the continued fractions will be
referred to as λ5-fractions [4].

These continued fractions were presented by the author in connection
with studies on the Hecke groups [4], and are one example of the more
general λ ̂ -fractions where λ = 2cos(π/q). It was shown in [4], that every
finite λ ̂ -fraction is an element in the algebraic number field Q(λq), and
Leutbecher [2] showed that only in the case q = 5, every element in
Q{fi) = <2(λ5) has a finite λ5-fraction. Hence a real number is an
element of Q(}f5) if and only if it has a finite λ5-continued fraction
representation and every real number has a unique λ5-fraction representa-
tion. Thus we will show that the algorithm that solves the rational integer
case (which is the case q = 3) will work in the β(/5~) case.

What are the λ ̂ -fractions? These are continued fractions of the form

r2λ +

where, in general, for fixed q, λ = 2 cos (iτ/q)9 q ̂  Z+ and q > 3, εz; = ± 1,
and η ^ Z + , / > 1, r0 e Z. The continued fraction is developed by a
nearest integer algorithm. If ξ is a real number we seek the nearest integral
multiple of λ. This means, if { } denotes the nearest integer, then we write
{£/λ} = r0, where we specify -1/2 < r0 — £/λ < 1/2; i.e. r0 is uniquely
determined by the inequality.

(3) roλ-j<ξ<roλ + ±.

Hence £ = roλ + ε1/ξ1, where it is seen that £x = εx/(£ — roλ) > 0, since
ελ > 0 if roλ < ξ and εx < 0 if roλ > ξ. If ξ = nλ + λ/2 = (n + l)λ -
λ/2, then because of inequality (3) r0 = n and εx = 1. Then roλ — λ/2 <
£ < roλ + λ/2 implies ξτ > 2/λ > 1 > λ/2 and hence rλ = {£i/λ} > 1.
Continuing in this way we find that £w > λ/2 which implies that rm > 1
(m > 1). Henceforth, λ-fraction will refer to λ5-fraction. The λ-fraction is
unique provided that the following few simple rules indicated in [4] are
obeyed.
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(i) If λ — 1/rλ occurs, then r > 2.

(ii) If

λ - J _

λ

occurs, then εx = ε2 = 1.

We point out that in

2
λ

(iii) If the λ-fraction terminates as

λ - 1 _ '
λ

then ε = 1. In β(^5~), λ — 1/λ = 1, which yields the equation

(4) λ2 - λ - 1 = 0.

A λ-fraction satisfying these criteria is called a reduced λ-fraction.

Similar criteria will yield unique λ ̂ -fractions. Because of (4) the rolled up

finite continued fraction produces the quotient of two polynomials in λ

which can be reduced to the form

(5) (a + bλ)/(c + rfλ), a, b,c,de Z.

This in turn can be put in the form

(6) (a' + b'\)/c'

by multiplying numerator and denominator by the conjugate of c 4- dλ,

which is (c + d) — dλ. One finds that a' = ac + ad — be, br = be — ad,

c' = c2 + cd — d2—the norm of c 4- d\.

As observed on p. 550 of [4] consecutive convergents Pn_ι/Qn_ι and

Pn/Qn of a λ-fraction satisfy a determinant relation similar to (2):

(7) PnQn-l - PnQn = ( " l ) " " ' ^ ' ' ' ^ = l

Finally we remark that the units in Q(]/5) are λ" which can be written

in terms of consecutive Fibonnaci numbers. If ¥„ is the Hth Fibonnaci
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number, then λn = Fn_1 + Fnλ. This can be proved as follows:
Let Fo = 0,Fl = l,F2 = l then λ1 = 0 + λ, λ2 = Fλ + F2λ = λ + 1,

which is a consequence of (4). By induction then ifλk = Fk_1 + Fk\9 then

λ*+1 = F^λ + Fkλ
2 = Fk +(Fk_1 + Fk)λ = Fk + Fk+1λ,

as desired. If n < 0 one determines first from (4) that 1/λ — λ — 1; hence
λ~2 = (λ — I ) 2 = 2 — λ. By induction, one determines that λ~" = -Fn+ι

+ Fnλ if n is odd and \'n = Fn+ι - Fnλ if n is even. To show that λ" is a
unit, we observe that the norm of Fk + Fk+ιλ is Fk + FkFk+ι — Fk+V But
the last expression is precisely the determinant relation (2) for the con-
secutive convergents. Fk/Fk+1, Fk+ι/Fk+2 of the regular continued frac-
tion (1;1,1 ) = λ. Thus each λ", n > 0, is indeed a unit. For n
negative = -m, the norm N(l/λm) = l/iV(λm) = ± 1 too, so λn is a unit
for all integers n. We now state and prove the main theorem.

THEOREM 1. Let p,q,r& Z(y[5), and suppose that, except for units,
p^q^r are relatively prime. Then the diophantine equation px + qy = r has
integer solutions in β(V^). If x0, y0 is a particular solution, then any other
solution has the form x = x0 -f- qt,y = y0 — pt. If(p, q) = d and d\r, then

is solvable in Q{}f5).

Proof. As in the rational integer case, we first solve px + qy = 1. This
is done by expanding p/q in its unique λ-fraction. The penultimate
convergent will supply the values for x and y. To sove px + qy = r
multiply the x and y values by r.

As in the rational case we note that if a particular solution is x0, y0

then an infinity of solutions is obtained using the usual trick namely
putting x = x0 4- qt, y = y0 - pt, which satisfies the equation for all
/ e Z(λ). Moreover if a and b is any solution e Z(i/5~), i.e., pa + qb = r
then a = x0 + gί, £> = >>0 - pi, for some t. This is clear because from
pa -\- qb = r and /?x0 + qy0 = r we obtain /?(x0 — tf) + q(y0 — b) =
0. Hence /?(x - α) = - # ( j 0 - 6). Since (p,q)"= 1, it follows that
/?|( j 0 — 6). Thus pi = y0 — b. But now /?(x — a) = -gp/, hence x — a =
-ql. This result has a bearing on the Hecke group Γ(λ) in determining
which solutions to px + ςy = 1 provide a substitution that belongs to
Γ(λ).

Finally, the last statement of the theorem follows easily from the first
statement since p/d, q/d, r/d are relatively prime.
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There is one wrinkle in this method which does not arise in the
rational case. The λ-fraction when rolled up and reduced to the form (5)
may not be identical with the original fraction unless a suitable unit is
factored out from numerator and denominator.

Consider the following example: Solve

(8) (3 + 7λ)jc +(5 - 2λ)jμ = 6 + 5λ.

One can verify that

5 - 2λ 20λ - 1

λ-J_

3λ

The right side, when rolled up and reduced using (4), becomes

487 + 788λ
97λ + 60 '

The numerator is (34 + 55λ)(3 + 7λ) and the denominator is

(34 + 55λ)(5 - 2λ), (55λ 4- 34 = λ1 0).

The penultimate convergent is

1 196λ + 100
5λ 20λ - j _ 20λ + 19 '

λ

Hence x = (20λ + 19) and y = -(196λ + 100) solves (487 + 788λ)x +
(97λ + 60) .y = 1. It follows that x' = (20λ + 19)(5λ + 6) = 214 +
315λ and y' = -(196λ + 100)(5λ + 6) = -(2656λ + 1580) solves
(487 + 788λ)jc' + (97λ + 60)/ = 6 + 5λ. Thus to solve (8) we incorpo-
rate the common unit factor (34 + 55λ) with x' a n d / . Then (3 + ΊX)x"
+ (5 - 2λ)y" = 6 + 5λ has as solution

x" = (214 + 315λ)(34 + 55λ) = 24601 + 39805X

^ y" = -(1580 + 2656λ)(34 + 55λ) = -(199800 + 3223284X).

Knowing one solution thus gives all solutions; x = x" + qt, y =
y" - pt where t e Z(/5) and we assume that (p,q) = 1.

It is interesting to observe here that solving one diophantine equation
automatically solves a class of equations. Recalling that the units λ" can
be written as integers in Z( /5) and noting that

λ " ( = FH_X + Fnλ) t imesλ- ( = Fn+ι - Fnλor -FH + ι + Fnλ) = 1
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then a solution topx + qy = n provides a solution to (Fn_1 + Fnλ)px' +
(/;_! + Fnλ)qy' = n. Clearly, the solution is x' = (Fn+1 - Fnλ)x, yr =
(Fn+ι ' Fnλ)y or χ> = (-Fn+ι + Fnλ)x, / = ( - ^ + 1 + ^λ)>>, depend-
ing on the parity of n. As an example, the equation

(7 + 10λ)x' +(-2 + 3 λ ) / = 6 + 5λ,

which is

λ(3 + lλ)x + λ(5 - 2λ)y = 6 + 5λ,

is solved by x' = 15204 + 24601X,/ = -(123484 + 199800Λ). This solu-
tion is obtained from (9) by dividing x" and y" by λ, i.e., multiplying by
λ - 1.

The above procedures could be extended to other number fields if a
suitable continued fraction representation were available. A continued
fraction representation for the number fields Q(2cos(π/q)) similar to the
foregoing was developed in [4], but as Wolfart showed [5] the only
possible q's for which all the rational elements in Q(λq) have a finite
λ ^-fraction are q = 3,5,9. It appears therefore that it is true only for the
fields q = 3 and q = 5; while for q = 9 the questions is still open. For
other values of q, equation (1) can be solved in Z(λq) provided a/b has a
finite λ^-fraction. The formal statement is:

THEOREM 2. If\q = 2 cos(π/q), q an integer > 4, then if a, b e Z(λ^),
then the diophantine equation az + by = 1 has solutions in Z(λq) if and
only if(a,b) = d and d\c, d is not a unit; and if a/b has a finite λ q-fraction
representation.

For q = 4, λ 4 = Jl 9 and for q = 6, λ6 = ]/3 . The finite λ4- and
λ6-fractions when rolled up have the form a4r /b or a/bjr9 r = 2,3. Thus
not all elements of Q(]fr) are realizable as finite λ 4 or λ6 continued
fractions. However, consider

7JC

We find the λ 4 continued fraction for 7/3]/2 which turns out to be
7/3/2 = τ/2 + 1/3^2. Clearly

Ei = J Ei = &

and 7 1 - yfl 3v̂ 2 = 1 so x = 1 and y = -yfl solves Ίx + 3\/2y = 1.

Hence JC' = 4 + 9i/2, y' = - γ/2(4 + 9i/2) = -(18 + 4i/2) solves the

original equation and of course there are an infinite of solutions of the
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form x" = 4 + 9i/2 + (18 + 4i/2 )ί, / ' = -(18 -f 4i/2) + (4 + 9i/2 )ί,
/ €= Z(λ 4 ) .

This same procedure will work for any of the algebraic fields
(2cos(π/q)). Examples can be easily found by first taking a finite
λ ^-fraction and using the numerator and denominator for the coefficients.
For example in λ7, compute

2 λ +

J _ 3λ2 - 1 3λ2 -
3λ

Inλ 7 ,

λ

so the rational elements will be of the form

aλ2 + bλ 4- c

dλ2 + e\+f'

The equation (6λ3 + λ)x -h (3λ2 - l)y = 1 is solved by x = 2λ, y =
-(2λ2 + 1), since

(6λ3 + λ)2λ +(3λ3 - 1) -(2λ 2 4- 1) = 6λ4 + λ2 -(6λ 4 4- λ2 - 1) = 1.

We remark that there are other ways of solving the linear diophantine
equation in Q(j5), but the algorithm presented above bears such a
striking similarity to the usual algorithm for the rational case that it gives
Q(^5) a special status. The author knows of no other algebraic field in
which a continued fraction can be similarly developed.

It seems that Pell's equation (x2 — dy2 = I) should also be solvable
in Q(^5) but there are still some difficulties in showing that Jd is a
periodic λ5-function. However, if {d is periodic then Pell's equations can
be solved as in the rational case
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