THE DIOPHANTINE EQUATION ax + by = c IN $Q(\sqrt{5})$ AND OTHER NUMBER FIELDS

DAVID ROSEN

Solving in rational integers the linear diophantine equation

(1) ax + by = c, $(a, b)|c, a, b, c, \in Z$ is very well known. Let d = (a, b), and put A = a/d, B = b/d, C = c/d, then equation (1) becomes

(1') Ax + By + C, $(A, B) = 1, A, B, C, \in Z$.

The purpose of this note is to discuss the solutions of this equation when A, B, C are integers in $Q(\sqrt{5})$ and the solutions are integers in $Q(\sqrt{5})$. What makes the discussion interesting is that an algorithm which mimics the continued fraction algorithm that solves the rational integer case can be implemented.

A brief summary of the continued fraction algorithm for the rational case is as follows: To solve (1'): find the regular simple continued fraction for A/B; i.e.

$$\frac{A}{B} = r_0 + \frac{1}{r_1 + \dots + \frac{1}{r_n}} + \frac{1}{r_n}$$

which we write as $A/B = (r_0; r_1, ..., r_n)$. Since A/B is rational, the continued fraction is finite. The (m + 1)th convergent of a continued fraction is denoted by $P_m/Q_m = (r_0; r_1 \cdots r_m)$. If $A/B = P_n/Q_n$ then the penultimate convergent P_{n-1}/Q_{n-1} provides a solution to Ax + By = 1 because of the well-known relation.

(2)
$$P_n Q_{n-1} - Q_n P_{n-1} = (-1)^{n+1}.$$

It suffices therefore to take $x = (-1)^{n+1}Q_{n-1}$, $y = (-1)^n P_{n-1}$. To solve (1) we take $x = (-1)^{n+1} dCQ_{n-1}$ and $y = (-1)^{n+1} dCP_{n-1}$.

It is well known that the integers in $Q(\sqrt{5})$ have the form $s + t\lambda$, where $s, t \in Z$ and $\lambda = (1 + \sqrt{5})/2$. (See Hardy and Wright [1] or Niven and Zuckerman [3] for a complete discussion of this algebraic number field.) The elements in $Q(\sqrt{5})$ are of course the quotients of integers in the

field. In order to mimic the solution procedure above we would require a continued fraction development that essentially parallels the ordinary continued fraction representation of real numbers, that is the elements of $Q(\sqrt{5})$ should have a unique finite continued fraction representation and every other real number has a unique infinite continued fraction representation. Such a representation exists and the continued fractions will be referred to as λ_5 -fractions [4].

These continued fractions were presented by the author in connection with studies on the Hecke groups [4], and are one example of the more general λ_q -fractions where $\lambda = 2\cos(\pi/q)$. It was shown in [4], that every finite λ_q -fraction is an element in the algebraic number field $Q(\lambda_q)$, and Leutbecher [2] showed that only in the case q = 5, every element in $Q(\sqrt{5}) = Q(\lambda_5)$ has a finite λ_5 -fraction. Hence a real number is an element of $Q(\sqrt{5})$ if and only if it has a finite λ_5 -continued fraction representation and every real number has a unique λ_5 -fraction representation. Thus we will show that the algorithm that solves the rational integer case (which is the case q = 3) will work in the $Q(\sqrt{5})$ case.

What are the λ_a -fractions? These are continued fractions of the form

$$r_0\lambda + \frac{\varepsilon_1}{r_1\lambda + \varepsilon_2}$$

 $r_2\lambda + \frac{\varepsilon_2}{r_2\lambda + \varepsilon_2}$

where, in general, for fixed $q, \lambda = 2\cos(\pi/q), q \in Z^+$ and $q \ge 3, \varepsilon_i = \pm 1$, and $r_i \in Z^+$, $i \ge 1$, $r_0 \in Z$. The continued fraction is developed by a nearest integer algorithm. If ξ is a real number we seek the nearest integral multiple of λ . This means, if $\{ \}$ denotes the nearest integer, then we write $\{\xi/\lambda\} = r_0$, where we specify $-1/2 \le r_0 - \xi/\lambda < 1/2$; i.e. r_0 is uniquely determined by the inequality.

(3)
$$r_0\lambda - \frac{\lambda}{2} < \xi \le r_0\lambda + \frac{\lambda}{2}.$$

Hence $\xi = r_0 \lambda + \epsilon_1/\xi_1$, where it is seen that $\xi_1 = \epsilon_1/(\xi - r_0\lambda) > 0$, since $\epsilon_1 > 0$ if $r_0 \lambda < \xi$ and $\epsilon_1 < 0$ if $r_0 \lambda > \xi$. If $\xi = n\lambda + \lambda/2 = (n + 1)\lambda - \lambda/2$, then because of inequality (3) $r_0 = n$ and $\epsilon_1 = 1$. Then $r_0\lambda - \lambda/2 < \xi \le r_0\lambda + \lambda/2$ implies $\xi_1 \ge 2/\lambda > 1 > \lambda/2$ and hence $r_1 = \{\xi_1/\lambda\} \ge 1$. Continuing in this way we find that $\xi_m > \lambda/2$ which implies that $r_m \ge 1$ ($m \ge 1$). Henceforth, λ -fraction will refer to λ_5 -fraction. The λ -fraction is unique provided that the following few simple rules indicated in [4] are obeyed.

(i) If $\lambda - 1/r\lambda$ occurs, then $r \ge 2$. (ii) If

$$\frac{\frac{\varepsilon_1}{\lambda - \frac{1}{2\lambda} - \frac{1}{\lambda} + \varepsilon_2}}{\frac{1}{2\lambda} - \frac{1}{\lambda} + \varepsilon_2}$$

occurs, then $\varepsilon_1 = \varepsilon_2 = 1$.

We point out that in $Q(\sqrt{5})$,

$$\lambda - \frac{1}{2\lambda - \frac{1}{\lambda}} = \frac{2}{\lambda}.$$

(iii) If the λ -fraction terminates as

$$\frac{\varepsilon}{\lambda-\frac{1}{\lambda}},$$

then $\varepsilon = 1$. In $Q(\sqrt{5})$, $\lambda - 1/\lambda = 1$, which yields the equation

$$\lambda^2 - \lambda - 1 = 0.$$

A λ -fraction satisfying these criteria is called a *reduced* λ -fraction. Similar criteria will yield unique λ_q -fractions. Because of (4) the rolled up finite continued fraction produces the quotient of two polynomials in λ which can be reduced to the form

(5)
$$(a+b\lambda)/(c+d\lambda), \quad a, b, c, d \in \mathbb{Z}.$$

This in turn can be put in the form

(6)
$$(a'+b'\lambda)/c'$$

by multiplying numerator and denominator by the conjugate of $c + d\lambda$, which is $(c + d) - d\lambda$. One finds that a' = ac + ad - bc, b' = bc - ad, $c' = c^2 + cd - d^2$ —the norm of $c + d\lambda$.

As observed on p. 550 of [4] consecutive convergents P_{n-1}/Q_{n-1} and P_n/Q_n of a λ -fraction satisfy a determinant relation similar to (2):

(7)
$$P_n Q_{n-1} - P_n Q_n = (-1)^{n-1} \varepsilon_1 \varepsilon_2 \cdots \varepsilon_n = 1.$$

Finally we remark that the units in $Q(\sqrt{5})$ are λ^n which can be written in terms of consecutive Fibonnaci numbers. If F_n is the *n*th Fibonnaci

number, then $\lambda^n = F_{n-1} + F_n \lambda$. This can be proved as follows:

Let $F_0 = 0$, $F_1 = 1$, $F_2 = 1$ then $\lambda^1 = 0 + \lambda$, $\lambda^2 = F_1 + F_2 \lambda = \lambda + 1$, which is a consequence of (4). By induction then if $\lambda^k = F_{k-1} + F_k \lambda$, then

$$\lambda^{k+1} = F_{k-1}\lambda + F_k\lambda^2 = F_k + (F_{k-1} + F_k)\lambda = F_k + F_{k+1}\lambda,$$

as desired. If n < 0 one determines first from (4) that $1/\lambda = \lambda - 1$; hence $\lambda^{-2} = (\lambda - 1)^2 = 2 - \lambda$. By induction, one determines that $\lambda^{-n} = -F_{n+1} + F_n\lambda$ if *n* is odd and $\lambda^{-n} = F_{n+1} - F_n\lambda$ if *n* is even. To show that λ^n is a unit, we observe that the norm of $F_k + F_{k+1}\lambda$ is $F_k^2 + F_kF_{k+1} - F_{k+1}^2$. But the last expression is precisely the determinant relation (2) for the consecutive convergents. F_k/F_{k+1} , F_{k+1}/F_{k+2} of the regular continued fraction $(1; 1, 1 \cdots) = \lambda$. Thus each λ^n , n > 0, is indeed a unit. For *n* negative = -m, the norm $N(1/\lambda^m) = 1/N(\lambda^m) = \pm 1$ too, so λ^n is a unit for all integers *n*. We now state and prove the main theorem.

THEOREM 1. Let $p, q, r \in Z(\sqrt{5})$, and suppose that, except for units, p, q, r are relatively prime. Then the diophantine equation px + qy = r has integer solutions in $Q(\sqrt{5})$. If x_0, y_0 is a particular solution, then any other solution has the form $x = x_0 + qt$, $y = y_0 - pt$. If (p, q) = d and d|r, then

$$\frac{p}{d}x + \frac{q}{d}y = \frac{r}{d}$$

is solvable in $Q(\sqrt{5})$.

Proof. As in the rational integer case, we first solve px + qy = 1. This is done by expanding p/q in its unique λ -fraction. The penultimate convergent will supply the values for x and y. To sove px + qy = r multiply the x and y values by r.

As in the rational case we note that if a particular solution is x_0 , y_0 then an infinity of solutions is obtained using the usual trick namely putting $x = x_0 + qt$, $y = y_0 - pt$, which satisfies the equation for all $t \in Z(\lambda)$. Moreover if a and b is any solution $\in Z(\sqrt{5})$, i.e., pa + qb = rthen $a = x_0 + qt$, $b = y_0 - pt$, for some t. This is clear because from pa + qb = r and $px_0 + qy_0 = r$ we obtain $p(x_0 - a) + q(y_0 - b) =$ 0. Hence $p(x - a) = -q(y_0 - b)$. Since (p, q) = 1, it follows that $p|(y_0 - b)$. Thus $pl = y_0 - b$. But now p(x - a) = -qpl, hence x - a =-ql. This result has a bearing on the Hecke group $\Gamma(\lambda)$ in determining which solutions to px + qy = 1 provide a substitution that belongs to $\Gamma(\lambda)$.

Finally, the last statement of the theorem follows easily from the first statement since p/d, q/d, r/d are relatively prime.

There is one wrinkle in this method which does not arise in the rational case. The λ -fraction when rolled up and reduced to the form (5) may not be identical with the original fraction unless a suitable unit is factored out from numerator and denominator.

Consider the following example: Solve

(8)
$$(3+7\lambda)x + (5-2\lambda)y = 6+5\lambda.$$

One can verify that

$$\frac{3+7\lambda}{5-2\lambda} = 5\lambda + \frac{1}{20\lambda - \frac{1}{\lambda - \frac{1}{3\lambda}}}$$

The right side, when rolled up and reduced using (4), becomes

$$\frac{487+788\lambda}{97\lambda+60}$$

The numerator is $(34 + 55\lambda)(3 + 7\lambda)$ and the denominator is

 $(34 + 55\lambda)(5 - 2\lambda), (55\lambda + 34 = \lambda^{10}).$

The penultimate convergent is

$$5\lambda + \frac{1}{20\lambda - \frac{1}{\lambda}} = \frac{196\lambda + 100}{20\lambda + 19}.$$

Hence $x = (20\lambda + 19)$ and $y = -(196\lambda + 100)$ solves $(487 + 788\lambda)x + (97\lambda + 60)y = 1$. It follows that $x' = (20\lambda + 19)(5\lambda + 6) = 214 + 315\lambda$ and $y' = -(196\lambda + 100)(5\lambda + 6) = -(2656\lambda + 1580)$ solves $(487 + 788\lambda)x' + (97\lambda + 60)y' = 6 + 5\lambda$. Thus to solve (8) we incorporate the common unit factor $(34 + 55\lambda)$ with x' and y'. Then $(3 + 7\lambda)x'' + (5 - 2\lambda)y'' = 6 + 5\lambda$ has as solution

(9)
$$\begin{aligned} x'' &= (214 + 315\lambda)(34 + 55\lambda) = 24601 + 39805\lambda \\ y'' &= -(1580 + 2656\lambda)(34 + 55\lambda) = -(199800 + 3223284\lambda). \end{aligned}$$

Knowing one solution thus gives all solutions; x = x'' + qt, y = y'' - pt where $t \in Z(\sqrt{5})$ and we assume that (p, q) = 1.

It is interesting to observe here that solving one diophantine equation automatically solves a class of equations. Recalling that the units λ'' can be written as integers in $Z(\sqrt{5})$ and noting that

$$\lambda^n (= F_{n-1} + F_n \lambda) \text{ times } \lambda^{-n} (= F_{n+1} - F_n \lambda \text{ or } -F_{n+1} + F_n \lambda) = 1$$

then a solution to px + qy = n provides a solution to $(F_{n-1} + F_n\lambda)px' + (F_{n-1} + F_n\lambda)qy' = n$. Clearly, the solution is $x' = (F_{n+1} - F_n\lambda)x$, $y' = (F_{n+1} - F_n\lambda)y$ or $x' = (-F_{n+1} + F_n\lambda)x$, $y' = (-F_{n+1} + F_n\lambda)y$, depending on the parity of *n*. As an example, the equation

$$(7 + 10\lambda)x' + (-2 + 3\lambda)y' = 6 + 5\lambda,$$

which is

$$\lambda(3+7\lambda)x+\lambda(5-2\lambda)y=6+5\lambda,$$

is solved by $x' = 15204 + 24601\lambda$, $y' = -(123484 + 199800\lambda)$. This solution is obtained from (9) by dividing x'' and y'' by λ , i.e., multiplying by $\lambda - 1$.

The above procedures could be extended to other number fields if a suitable continued fraction representation were available. A continued fraction representation for the number fields $Q(2\cos(\pi/q))$ similar to the foregoing was developed in [4], but as Wolfart showed [5] the only possible q's for which all the rational elements in $Q(\lambda_q)$ have a finite λ_q -fraction are q = 3, 5, 9. It appears therefore that it is true only for the fields q = 3 and q = 5; while for q = 9 the questions is still open. For other values of q, equation (1) can be solved in $Z(\lambda_q)$ provided a/b has a finite λ_q -fraction. The formal statement is:

THEOREM 2. If $\lambda_q = 2\cos(\pi/q)$, q an integer ≥ 4 , then if $a, b \in Z(\lambda_q)$, then the diophantine equation az + by = 1 has solutions in $Z(\lambda_q)$ if and only if (a, b) = d and d|c, d is not a unit; and if a/b has a finite λ_q -fraction representation.

For q = 4, $\lambda_4 = \sqrt{2}$, and for q = 6, $\lambda_6 = \sqrt{3}$. The finite λ_4 - and λ_6 -fractions when rolled up have the form $a\sqrt{r}/b$ or $a/b\sqrt{r}$, r = 2, 3. Thus not all elements of $Q(\sqrt{r})$ are realizable as finite λ_4 or λ_6 continued fractions. However, consider

$$7x + 3\sqrt{2} y = 4 + 9\sqrt{2}$$

We find the λ_4 continued fraction for $7/3\sqrt{2}$ which turns out to be $7/3\sqrt{2} = \sqrt{2} + 1/3\sqrt{2}$. Clearly

$$\frac{p_2}{q_2} = \frac{7}{3\sqrt{2}}, \quad \frac{p_1}{q_1} = \frac{\sqrt{2}}{1},$$

and $7 \cdot 1 - \sqrt{2} \cdot 3\sqrt{2} = 1$ so x = 1 and $y = -\sqrt{2}$ solves $7x + 3\sqrt{2}y = 1$. Hence $x' = 4 + 9\sqrt{2}$, $y' = -\sqrt{2}(4 + 9\sqrt{2}) = -(18 + 4\sqrt{2})$ solves the

original equation and of course there are an infinite of solutions of the

form $x'' = 4 + 9\sqrt{2} + (18 + 4\sqrt{2})t$, $y'' = -(18 + 4\sqrt{2}) + (4 + 9\sqrt{2})t$, $t \in Z(\lambda_4)$.

This same procedure will work for any of the algebraic fields $(2\cos(\pi/q))$. Examples can be easily found by first taking a finite λ_q -fraction and using the numerator and denominator for the coefficients. For example in λ_7 , compute

$$2\lambda + \frac{1}{\lambda - 1} = 2\lambda + \frac{3\lambda}{3\lambda^2 - 1} = \frac{6\lambda^3 + \lambda}{3\lambda^2 - 1}.$$

In λ_7 ,

$$\lambda - \frac{1}{\lambda} - \frac{1}{\lambda} = 1$$

so the rational elements will be of the form

$$\frac{a\lambda^2 + b\lambda + c}{d\lambda^2 + e\lambda + f}$$

The equation $(6\lambda^3 + \lambda)x + (3\lambda^2 - 1)y = 1$ is solved by $x = 2\lambda$, $y = -(2\lambda^2 + 1)$, since

$$(6\lambda^3+\lambda)2\lambda+(3\lambda^3-1)-(2\lambda^2+1)=6\lambda^4+\lambda^2-(6\lambda^4+\lambda^2-1)=1.$$

We remark that there are other ways of solving the linear diophantine equation in $Q(\sqrt{5})$, but the algorithm presented above bears such a striking similarity to the usual algorithm for the rational case that it gives $Q(\sqrt{5})$ a special status. The author knows of no other algebraic field in which a continued fraction can be similarly developed.

It seems that Pell's equation $(x^2 - dy^2 = 1)$ should also be solvable in $Q(\sqrt{5})$ but there are still some difficulties in showing that \sqrt{d} is a periodic λ_5 -function. However, if \sqrt{d} is periodic then Pell's equations can be solved as in the rational case

References

- [1] G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers, Oxford: Clarendon Press, 4th edition, 1960.
- [2] A. Leutbecher, Über die Heckeschen Gruppen $G(\lambda)$, Abh. Math. Sem., Hamburg, **31** (1967), 199–205.
- [3] I. Niven and H. S. Zuckerman, *Introduction to the Theory of Numbers*, John Wiley and Sons, Inc., 2nd edition, 1966.

- [4] D. Rosen, A Class of Continued Fractions Associated with Certain Properly Discontinuous Groups, Duke Math., 21 (1954), 549-563.
- [5] J. Wolfart, Eine Bemerkung über Heckes Modulgruppen, Arch. der Math., 29 #1 (1977), 72-77.

Received August 4, 1983 and in revised form July 16, 1984.

SWARTHMORE COLLEGE SWARTHMORE, PA 19081