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ON THE EMBEDDING OF SUBALGEBRAS
CORRESPONDING TO QUOTIENT ACTIONS

IN GROUP-MEASURE FACTORS

JUDITH A. PACKER

If X and Y are ergodic G spaces, where G is a countable discrete
group and X is an extension of Y, we study the embedding of the
group-measure von Neumann algebra corresponding to (7, G) into the
group-measure von Neumann algebra corresponding to (X, G). Neces-
sary and sufficient conditions for the existence of a normal faithful
conditional expectation are established. Under appropriate conditions the
normalizer of the subalgebra is determined, and a correspondence be-
tween intermediate quotient actions and intermediate von Neumann
algebras is established. A relationship between normal extensions with
relatively discrete spectrum and crossed dual products of von Neumann
algebras by compact second countable groups is determined.

Introduction. A study of the relationship between spectral invariants
for ergodic actions of countable abelian groups and the corresponding
group-measure factors was undertaken by the author in [15], where, under
appropriate conditions, the normalizer of a particular maximal abelian
subalgebra of the factor corresponding to the trivial quotient action of the
group was shown to depend on the pure point spectrum of the original
action. In this paper, intended as a sequel to [15], we investigate in further
detail certain invariants of quotient actions of ergodic group actions and
the embedding of the associated von Neumann algebra. As in [15],
spectral invariants play a particularly fruitful role in our study, and in the
case where the quotient action is a free action and there is a relatively
invariant measure, we use these invariants to deduce the structure of all
unitaries normalizing the subfactor corresponding to the quotient action.

The key notion in the construction of the "normalizer" is Zimmer's
idea of relative elementary spectrum of an action over a quotient action
[27]. Let G be a countable discrete group. If (X, μ, G) is an ergodic
G-space and (Y, v, G) is a quotient space with quotient map φ: X -» Y,
such that μ is relatively (/-invariant over v, one says that a one-cocycle a:
Y X G -> Sι is a relative eigenvalue for (X, μ, G) with relative eigenfunc-

X-» S1 if
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The G-space (X, μ, G) is said to have relatively elementary spectrum over
(Y, v, G) if the relative eigenfunctions generate L2(X). Given an arbitrary
G-space (X, μ, G) and ergodic quotient G-space (Y9v9 G), there is a
natural injection of F( Y, G) into F( X, G), where F( Y, G) and F{ X, G) are
the von Neumann algebras associated to (Y, v, G) and (X, μ, G) by the
group-measure construction. If fa is a relative eigenfunction for (X, μ, G)
over (Y, v, G), there is an associated unitary element, 7}, of F(X, G)
which normalizes F(Y, G). The main theorem of this paper states that
under appropriate conditions every unitary element in F(X,G) normaliz-
ing F(Y, G) is of such a form, up to multiplication by a unitary element in
F(Y,G). Hence one obtains the following

THEOREM 2.2. Let (Y, v,G) be a free quotient action of the ergodic
G-space (X, μ, G), where G is a countable discrete group, (X,μ) is a
compact Lebesgue space, and the finite measure μ is relatively G-inυariant
over v. Then the von Neumann subalgebra of F(X,G) generated by the
unitary elements of F(X9 G) which normalize F(Y9G) is equal to F(Ze9 G),
where (Ze, τ, G) is the maximal quotient action of (X, μ, G) having rela-
tively elementary spectrum over(Y, *>, G).

Given a quotient action (Y, v, G) of (X, μ, G) satisfying the ap-
propriate conditions, one may apply the theorem repeatedly to attain an
ascending chain of subfactors

F(Y9G)cF(Yl9G)cF(Y2,G)

each one "normal" in the next corresponding to the descending chain of
quotient G-spaces (X, μ, G) - -> (Y2, v2, G) -> (Yl9 vl9 G)-» (Y9 v9 G)
each one being the maximal quotient action with relatively elementary
spectrum over the next. Continuing this idea by transfinite induction, we
deduce the "length" of the subfactor F(Y, G) in F{X9 G), and relate this
to the generalized elementary spectrum of (X, μ, G) over (Y, v, G).

In [15] we determined the normalizer of a particular maximal abelian
subalgebra S(X, G) in F(X,G) (see §1 for precise details), where G is
abelian and preserves the finite measure μ; recall that the normalizer
subalgebra was equal to F(Yd9 G) where (Y ,̂ v, G) is the maximal quotient
action of (X, μ, G) having pure point spectrum. If (Yd, v, G) is a free
action, we are thus able to determine the length of S( X, G) in F( X, G), by
using Theorem 2.2 and applying the above remarks; the length is the
countable ordinal η of the maximal quotient action of (X, μ, G) having
generalized elementary spectrum. (Recall from [28] that an action is said
to have generalized elementary spectrum if it can be built up from the
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trivial action of G on a point by taking extensions with relatively elemen-
tary spectrum and inverse limits.)

When {Y, v, G) is not a free quotient action of (X, μ, G), in certain
special cases our methods still allow us to determine the normalizer of
F{Y, G) in F{ X, G). In particular, when (7, v, G) is the trivial action of G
on a point and F(Y, G) is therefore equal to S(X,G) we have the
following result:

THEOREM 3.3. Let (X, μ, G) be a free ergodic action of the countable
discrete group G on the compact Lebesgue space (X, μ) which preserves the
finite measure μ, and suppose that {X,μ,G) is weak-mixing, i.e. the
associated unitary representation of G on L2{ X) θ C has no finite dimen-
sional subrepresentations: Then S{X, G) is its own normalizer in F{X, G).

When G is an abelian group, this theorem provides a new proof of
Nielsen's result in ([13], [15]), which does not use the Takesaki equivalence
relation.

A major tool in the proof of Theorem 2.5 is the existence of a faithful
normal conditional expectation from F(X, G) onto F{Y, G), i.e. a σ-weakly
continuous faithful projection of norm one Eγ\ F{X,G) -> F{Y, G). In
this vein we have the following result, which is related to work of Takesaki
[20] and Zimmer [29]:

THEOREM 1.3. Let (X, μ, G) be a G space and (7, v, G) an ergodic
quotient space, with quotient G-map φ, μ and v finite measures. Then there
exists a faithful normal conditional expectation of F{X, G) onto F{Y, G) if
and only if μ is equivalent to finite measure μ', v = φ*μ\ with μ' relatively
G-invariant over v. D

When μ is G-invariant and (X, μ, G) is free and ergodic, F{X, G) is a
IIX factor. By a result of Umegaki, F{X,G) thus has faithful normal
conditional expectations onto all of its von Neumann subalgebras. This
allows us to prove a result of related interest about intermediate subalge-
bras:

COROLLARY 1.8. Let {X,μ,G) be a free ergodic G-space, and let
(Y, v, G) be a free quotient action, where μ {hence v) is finite and G-in-
variant. Then every intermediate von Neumann subalgebra between F(X,G)
and F(Y, G) is of the form F(Z, G), where (Z, r, G) is some quotient action
of (X, μ, G) which is also an extension action of (Y,v,G) {hence every
intermediate von Neumann subalgebra is a subfactor).
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One of Zimmer's main results in [27] is that for μ finite and G-in-
variant, the ergodic G-space (X, μ, G) has relatively elementary spectrum
over (7, *>, G) if and only if there exists a compact second countable
abelian group A, and a one-cocycle a: Y X G -> A such that (X, μ, G) is
essentially isomorphic as an extension io {Y XaA, v X vA9 G). In this
situation, recall from [15] that F(X, G) is *-isomorphic in a natural way
to the crossed product F(Y, G)XάA. In [27] and [28], Zimmer also
developed the notion of ergodic extensions having relatively discrete spec-
trum over quotient actions (7, v, G), and showed that these must take on
the form (Y XaK/H, μ X vκ/HG), where K is a compact second coun-
table group, H is a closed subgroup, and a: Y X G -> AT is a one cocycle.
In such a situation it is natural to study the embedding of F(Y, G) into
F(Y XaK, G); in order to mimic the case where K is abelian one must
obtain an analogue for the "crossed product by the dual group" construc-
tion. Indeed, such a construction for von Neumann algebras already exists
in the mathematical literature; we use here the version due to Nakagami
([11], [12]), the so-called "crossed-duaΓ product. When (Y, v, G) is a free
ergodic action and {X, μ, G) is an ergodic extension with μ finite and
relatively G-invariant over v, we are able to show that F( X, G) is a crossed
dual product of F( Y, G) by a separable compact group K with appropriate
embedding conditions if and only if (X, μ, G) is essentially isomorphic as
an extension to (Y Xa K, v X vκ,G) for some 1-cocycle a.

Applying these ideas to the case where F(Y,G) is the hyperfinite IIX

factor Ro, Nakagami-Takesaki duality and results of Zimmer on cocycles
with dense range allow us to prove the existence of an outer action a of K
on R o such that Ro X a K is a factor, for any compact separable group K.

The organization of this paper runs as follows. In the first section,
after briefly reviewing notation we discuss the existence of a normal
faithful conditional expectation from F(X, G) onto F(Y,G) and de-
termine intermediate subalgebras, under appropriate conditions. In §2 we
discuss the normalizer of F{Y, G) in F(X, G) for (Y, J>, G) a free quotient
action of (X, μ, G) where μ is relatively G-in variant over v. In §3 we study
the normalizer of S(X, G) in F(X,G) when (X, μ, G) has continuous
spectrum. In the fourth and final section we study the relationship
between normal ergodic extensions with relatively discrete spectrum and
crossed-dual products of von Neumann algebras by coactions of compact
groups.

The results of this paper are for the most part independent of
(although complmentary to) the major results in [15]. The general setting
and framework is the same, and we refer the reader to [15, §1] for any
unexplained notation and terminology.
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1. Conditional expectations onto subalgebras corresponding to quo-
tient actions. Let (X, μ,G) be a free ergodic G-space, where G is a

countable discrete group acting on the compact Lebesgue space (X, μ) so

as to leave the finite measure μ quasi-invariant. By a classic construction

due to Murray and von Neumann, one may form a factorial von Neu-

mann algebra on the space L2(Xx G, μX vG): for γ e L?°(X), gx G G

and u G L2( X X G) define

(1) Ty{u){x,g) = Ί{x)u(x9g)

(2) Ugι(u)(x, g) = rx(x9 gι)
ι/2u{xgl9 g{lg)

where rx(x9 g): X X G -> R + is the Radon-Nikodym derivative associ-

ated to the action of G on (X, μ). We denote by F(X9G) the von

Neumann algebra generated by {Γγ|γ e L°°(Λ;)} and {Ug\g<ΞG}. It

follows from freeness and ergodicity that F( X, G) is a factor. Denote the

von Neumann subalgebra of F(X9G) generated by {Tγ\y G L°°(X)} by

R(X, G); R(X, G) is maximal abelian in f(X9 G). Let S(X, G) represent

the von Neumann subalgebra of F(X9G) generated by {Ug\g G G}; if G

is abelian S( X, G) is maximal abelian in F( X, G). ([1], [15]).

If (7, v, G) is a quotient action of (X9 μ, G) so that there exists a

surjective G-equivariant Borel map φ: X -* 7 with φ*(μ) = v9 then there

exists a natural *-monomorphism of F(Y9G) into F(X9G) which we

denote by φ* [15].

In this section we wish to investigate the conditions under which there

exists a faithful normal conditional expectation of F(X9G) onto

φ*(F(Y9G)). When such an expectation exists, and when the quotient

action (7, v, G) is also a free action, we are able to show that R(X, G) is

the unique maximal abelian subalgebra in F(X9 G) containing

φ*(R(Y9 G)). This result plays a crucial role in the next section.

If μ is G-invariant measure then F(X,G) will be a IIx factor, and thus

will have faithful normal conditional expectations onto all of its subalge-

bras. This fact will allow us to establish a correspondence between

intermediate von Neumann subalgebras of F(X9G) and F(Y,G) and

intermediate G-spaces of (X, μ, G) and (Y9 v, G), where (7, v, G) is a free

quotient action of (X, μ, G).
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Recall that a faithful normal conditional expectation from a von

Neumann algebra Jί onto a von Neumann subalgebra JΓ is a σ-weakly

continuous faithful projection E of norm one from Jί onto Jί. We refer

the reader to [21], [24] for further details and results. One useful property

of such a map E is that E(axb) = aE(x)b, Va, b^Jί, \lx^Jί [24].

Another important result, due to Umegaki [25], shows that a finite factor

has faithful normal conditional expectations onto all of its von Neumann

subalgebras. Thus whenever G preserves the finite measure μ, F(X,G) has

this property. When μ is only quasi-invariant F(X, G) need not be type II.

The following definition, due to Zimmer, is very important in the study of

conditional expectations onto subalgebras corresponding to quotient ac-

tions.

DEFINITION 1.1 [30]. Let (X, μ, G) be a G space and (7, v, G) be a

quotient G space with quotient G-map φ, so that φ*μ = v, the measure v

is termed relatively G-invariant (over v) if in the decomposition of v over

the fibers of φ,

(3) μ = f μydv

we have g * μy = μyg for almost all y. D

Recall that if (7, v, G) is ergodic and (X, μ, G) is an extension action

with φ: X -> 7, then there exists a standard compact measure space

(2), ra), a one-cocycle a: 7 X G -> Iso(Z>, m), where Iso(Z>, m) repre-

sents the group of non singular invertible transformations from (Z>, m)

onto itself, given the smallest Borel structure for which θ ->

j f(θ(d))h(d) dm is Borel for all real valued Borel bounded functions /

and h on Z>, and a Borel isomorphism Φ: Y X D -> X with Φ*μ = v X m,

Φ((>% ̂ )g) = Φ((jg5 aO* g)"1^)) = Φ((Λ <0)g, and Π x = φ ° Φ, where
Π 1 is projection from Y X D onto 7 ([31], [3]). If μ is relatively G
invariant over v then the cocycle a actually takes on its values in
Iso(Z>, m), the group of measure-preserving non-singular invertible trans-
formations of (Z>, m) onto itself. Therefore the Radon-Nikodym deriva-
tive for the action of G on (X, μ) can be written as

(4) rx{x9g) = rγ{φ(x)9g)

where rγ\ Y X G -> R + is the Radon-Nikodym derivative for the action

of G on (7, μ). Conversely, if rx satisfies (4), then μ is relatively G-in-

variant over v [30].



QUOTIENT ACTIONS IN GROUP-MEASURE FACTORS 413

EXAMPLE 1.2. Let (F, v, G) be a G-space, and let a: Y X G -> K be a
cocycle taking on values in the separable compact group K. Form the
skew product extension (Y Xa Ky v X vκ, G) where vκ is normalized Haar
measure on K. Then Ϊ^X ̂ i s relatively G-invariant over v. D

We now note that if μ is relatively G-invariant over v then there exists
a G-invariant faithful normal conditional expectation Eγ from the von
Neumann algebraL™{X) toL°°(7); simply define Pf(/)(y) = / / ( * )
(5), and note that

Py(Ugf)(y) = J f(xg) dμy = / /(*) d(g*μy)

Here we define U*: L°°(X) -> L°°(X) by f/g/(x) = /(jcg). Therefore P ^
is G-invariant; it is clear that P* is faithful and normal.

Now let (X, μ, G) be a G space, and (7, v, G) an ergodic quotient
action, where φ: X -> y is the quotient G-map. Recall that every element
in F(X,G) has a unique Hubert algebra representation Σg€EG Tγ Ug9 where
yg e L°°( X) Vg e G. If μ is relatively G-invariant over v, one is naturally
tempted to define a map Eψ. F(X, G) -> φ*(F(Y, G)) by

(6)

If the range of Eγ actually is in φ*(F(Y, G)) then it is easy to verify that
the properties of the conditional expectation are satisfied. It is necessary
to verify, however, that if ΣgeGTyUg e F(X,G), then Σg&GTPx(Ύg)Ug is
well defined as an element of F(Y9 G).

We will prove this fact by proving

THEOREM 1.3. Let (X,μ,G) be a compact Lebesgue G-space, and
suppose that (Y, v, G) is an ergodic quotient action, with φ: X -» Y and
φ*μ = v. Then there exists a normal faithful conditional expectation Eγ of
F(X,G) onto F(Y9G) if and only if μ is equivalent to a finite measure μ'
with <p*μ' = v and such that μ' is relatively G-invariant over v. D

Proof. «= The unitary operator

U:L2(XX G,μX vG)-* L2(X X G, μ' X vG)

defined by U(u)(x9 g) = {f{x) u(x, g) (where dμ' = f(x) dμ satisfies
= F(X9μ'9G)9 and UΨ;(F(Y,G))U* = φ${F(Y,G)))
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and so without loss of generality assume μ is relatively G-invariant
over *>, with μ(X) = v(Y) = 1.

Then rx(x, g) = rγ(φ(x), g) μ a.e., Vg e G. Now L2{YxG,vX vG)
embeds as a closed subspace of L2(X X G, μ X vG) via the map φ. Let Q:
L2(X X G, μX vG) -> L2(Y X G, v X vG) be the corresponding projec-
tion. Note that on L\X X G) Π L2(X X G) Q is given by Q(u)(y, g) =
fx u(x, g) dμy, for μ = / μ̂  dp. To avoid confusion, we let

ί/gf: L2(X X G) -> L2( X X G)

be given by

U£u(x, g) = r y (φ(x) , g j 1 7 2

and ί//: L 2 (y X G) -> L 2 (7 X G) by

, g) = r y ( j , g l )
1 / 2 Λ

By definition ί// e F(X, G), ί// e F(7, G), and φ*(C//) = C//Vg e G;
previously we have denoted both by Ug. We now claim that we can
identify the von Neumann algebra QF(X,G)Q with F(Y, G); for
QF(X, G)Q acts on QL2(X X G) = L2(Y X G) and Vg e Gβi7/ρ = Uj
(since ^ ( x , g) is a lift of r y(>, g)). Also V γ E L^ί^), M e L ' f Γ x G j n
L2(YX G)

y,g) = Q(y(x)u(y,g))

= j " y(x) dμyu{y, g) = ^ ^ ^ ( y , g).

Since L\Y X G) Π L2(Y X G) is dense in L2(Y X G) we obtain QTyQ =
Tpx(yy But now it is clear that E(m) = Q(m)Q is a σ-weakly continuous
projection of norm one, so that QF(X, G)Q = F(Y,G). Therefore Eγ(m)
= φ*(QmQ) gives the desired projection of norm one from F(X, G) onto
<p*( F( Y, G)) and it is easy to see that if m is represented by Σ Ty Ug

x,

E*=<p*(QmQ) = φ*( ΣJP^U/)

= Σ
Finally to show that E* is faithful, we note that if xx* = ΣTf U 9 for

X E F ( I , G) then fe > 0, μ a.e., and fe = 0 μ a.e. =» jt = 0. Since for
positive /, Pγ(f) (y) = 0 γ a.e. if and only if / Ξ 0 μ a.e., we obtain
E*(xx*) = 0=>JC = 0 = > X X * = 0; therefore £ ^ is faithful.

=> Suppose that E is a faithful normal conditional expectation from
F(X, G) to φ*(F(7, G)). The measure v defines a linear functional on
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φ*(F(Y,G)) by setting ψ,(φ*(Σ2}f£/g)) = fγfe(y) dv. Denoting the
restriction of ψv to φ*(F(Y, G)) + by ψv9 we obtain a finite normal faithful
weight on φ*(F(Y, G)), i.e. ψy maps φ*(jF( Y, G)) + to [0, oo) and satisfies
Ψ,(* + 7) = Ψ,(x) + ΨΛJO, *, y €= φ (JP(r, G))+, and ψ,(λ*) =
λψ,(jc)λ > 0, JC e φ ί ^ r , G))+, and ψ,(x) = 0 =* x = 0, x <Ξ
φ*(jF(7, G))+; by normal it is means that ψv is σ-weakly continuous. (See
[6] for details of this construction.) Then ψv ° E = ψ defines a normal
faithful finite weight on F(X,G): ψ is normal because ψy and £" are
σ-weakly continuous; it is faithful because E and ψv are faithful, and it is
finite because ψy is finite. Examine the restriction of ψ to R(X,G) s
L°°( X, μ). Then ψ is a σ-weakly-continuous linear functional on L°°( X, μ),
and since L°°(X, μ)* = L*( A", μ), there exists a function/ e Lx( JSί, μ) with
Ψ(T

Ύ) = ίxf(x)y(x) dV- Since ψ restricted to R(X, G)+ is finite, faithful
and positive it is clear that the function / must be positive and μ almost
nowhere zero. Therefore the measure μ' defined by dμr = f(x) dμ is a
positive measure which is equivalent to μ. It is clear that v = φ*μ" since

L°°(y, v)

ί
d v = ψ,(φ (ΓA)) = ψ,(£(φ*(ΓΛ))) = / h o φ(*) rfμ'.

Finally, let Pe: L2(Y X G, *> X ^G) -^ L2(Y, v) be projection onto

L2(Yx{e},vXve) = L2(Y,v).

Then P eF(7, G)Pe can be identified with a normal projection of F(Y9 G)
onto R(Y, G) = L°°(7, ^) (see [22, p. 364]), and an easy calculation shows
that for every m <Ξ F(X, G) ψ(m) = χpv(E(m)) = ψv{PeE(m)Pe). In par-
ticular if m = Tγ e i?(X, G), PeE(m)Pe e L°°(7) and

ψ,,(PeJ5:(m)Pe) = ψ(m) =

where f μ'ydv = μ' is the decomposition of μ/ over the fibers of φ. By
uniqueness of decomposition, if PeE(Ty)Pe = Th for Λ G L°°(7), we must
have h(y) = /^ γ(x) Jμ; v a.e. Then Vγ e L°°(X) and Vg e G,

Therefore /^ γ(x) rf(g*μ;) = Λ(^g) = /^ γ(x) dμ' v a.e., so that
^ = μ^g y a.e., by the uniqueness of decomposition. Hence μ' is

relatively G-invariant over v, as desired. D
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REMARK 1.4. We note that if μ is relatively G invariant over v, then
the modular automorphism group corresponding to the weight ψμ leaves
φ+(F(Y9 G)) invariant. Hence direction <= of the theorem also follows
from applying the main theorem of [21]. D

REMARK 1.5. In [31] Zimmer proved that for (X,μ,G) an ergodic
extension of (Y, v, G), there is a norm one projection from F(X, G) onto
φ*(F(Y, G)) if and only if (X, Y) is an amenable pair of G-spaces, which
is a more general situation than μ being relatively G-invariant over v. For
our purposes, however, faithfulness and normality are essential, and the
projection constructed in [29] need not be either. D

The existence of a normal faithful conditional expectation allows us
to prove the following lemma, which will play an essential role in the
following section.

LEMMA 1.6. Let (X, μ, G) be an extension of the free ergodic action
(F, v, G): with quotient map φ, and suppose that there exists a faithful
normal conditional expectation from F(X,G) onto φ*(F(Y,G)). Then
φ*(R(Y, G)Y Π F(X, G) = R(X, G).

Proof. Since F(Y, G) and R(Y, G) inject naturally into F(X, G) via
the map φ*, we may identify elements in F(Y, G) with their image in
F(X, G). Suppose that K = Σ g e G TfUg e R(Y, G)' Π F(X, G). Then for
every g ^ G, the element T(f JJg also commutes with everything in R{ Y, G)
as well. Let Eγ be the faithful normal conditional expectation from
F(X, G) onto F(Y, G). Then V6 e R(Y, G),

bEϊ(τJ - E*(bTj = E*(Twb) = E*(Tjb.

Since R(Y, G) is maximal abelian in F(Y, G), we see that E?(Tιfg]) = TJg

for some yg e U°{Y). By using the same argument we see that V 6 E

bTyUg = b(E*(TjUg) = E*(bTwUg) = E*(T]fg]Ugb)

Therefore if g Φ e, we must have yg = 0 v a.e. Since Eγ is faithful and
T{f{ e F(X, G)+U{0}, we see that |/g | = 0 μ a.e. Hence any K e
i?(V, GY Π F(X, G) must be of the form TfUe e R(X, G). Since R(X, G)
is clearly contained in R( 7, G)' Π F( X, G), we are done. D
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Taken together, Theorem 1.3 and Lemma 1.6 imply that if (Γ, v, G) is
a free ergodic quotient action of (X, μ, G), and if μ is relatively G-in-
variant over *>, then R(Y, G) extends to a unique maximal abelian subalge-
bra of F( X, G), namely R( X, G).

Another rather easy consequence of Theorem 1.3 and Lemma 1.6 is

THEOREM 1.7. Let (X, μ, G) be an ergodic extension of the free ergodic
action (Y, v,G) , and suppose that μ is relatively G-inυariant over v. Then
every von Neumann subalgebra Λ* such that F(Y9 G) c jVa (X, G) which is
also the image of a normal faithful conditional expectation on F(X,G) must
be of the form F(Z,G) where (Z,τ,G) is a quotient action of(X,μ,G) and
an extension action of(Y9v,G).

Proof. Let E£ and E* as in Theorem 1.3 be the normal faithful
conditional expectations from F(X,G) onto the subalgebras Jί and
F(Y, G) respectively. Then £/== E* restricted to JΓ defines a normal
faithful conditional expectation from ^Γonto F(Y9G) and it is a trivial
verification that E = Ef*° Ej^ defines a normal faithful conditional ex-
pectation from F(X, G) onto F(Y, G). (In fact E = E$ although we do
not need this.) We now examine the subalgebra E$.(R(X, G)) = R^. For
every n e R(Y, G) and every & e R(X, G\ mE%(£) = Ej (m£) =
E^(^m) = Ej (£)m. Therefore E£(J2) commutes with everything in
R(Yy G). So by applying Lemma 1.6 we see that Λ ^ c R(X,G)9 and
furthermore R^ is G-invariant. Indeed V g ^ G

so that

UgRjrU8-i = UgE*.(R(X,G))U8-ι = E*.{UgR(X,G)Ug-i)

Recalling that the action of Ad Ug on R(X, G) corresponds to the action
of G on L°°(X)9 we see that i ί ^ can be naturally identified with a closed
*-subalgebra of L°°(X, μ) which is G-invariant. Since R^ contains the
subalgebra R(Y, G) = L°°(F) which is itself a G-invariant closed *-subal-
gebra, we may apply [27, Cor. 2.2] twice to show that R^ corresponds to
L^iZ, T) for some quotient action (Z, T, G) of (X, μ, G) which is itself an
extension action of (Y, v, G). Therefore ^contains the von Neumann
subalgebra F(Z,G). Now for any m e F(X,G) there exists a net
{ΣgeG7}«ί/g|α e 4̂} for some index set A, converging to m in the weak
operator topology, where for fixed a all but a finite number of the fg are
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identically zero. Since 2?j£ is normal, the net {Ej<(Σg€ΞGTfaUg)\a e A}
will converge to Ej^(m) in the weak operator topology It is clear that for
each a e A, EJr(Σg€ΞG TfJJg) = Σg^GEj (Tf«)Ug and thus is an element of
F(Z,G). Therefore Ej-(m) is an element of F(Z, G).

Hence^Γ= E$(F(X9 G)) = F(Z, G), as desired. D

Theorem 1.7 has the following immediate

COROLLARY 1.8. Let (X,μ,G) be an ergodic G-space, where μ is
G-invariant, and suppose that (Y, v, G) is a free quotient action. Then every
von Neumann subalgebra JΓsuch that F(Y, G) c ^Γc F(X, G) is of the
form F{Z, G) for some quotient action (Z, T, G) of (X, μ, G) which is also
an extension action of(Y, v, G) {and thus Jί must be a subfactor). D

Proof. Since μ is finite and G invariant, and (X, μ, G) inherits freeness
from (7, p9 G\ F(X, G) is a factor of type II l e It follows that F(X, G) has
a faithful normal conditional expectation onto any subalgebra. The theo-
rem shows that any intermediate subalgebra Stakes on the desired form.
Since (Z, T, G) inherits ergodicity from (X, μ, G) and freeness from
(y, v, G), ̂ Γ will be a factor. D

REMARK 1.9. Under the same hypotheses as in the corollary, the
following intuitive remarks can be made. The virtual subgroup of G (see
[9]) corresponding to the groupoid Y X G can be considered as "contain-
ing" the virtual subgroup of G corresponding to the groupoid X X G.
Denote these subgroups by i^γ and yχ respectively. Recall that F(X,G)
can be thought of as the von Neumann algebra generated by the left
regular representation of the groupoid X X G -"G/i^x" and F(Y, G) can
be thought of as the von Neumann algebra generated by the left regular
representation of the groupoid Yx G -"G/i^γ". Then Corollary 1.8
states that the intermediate subalgebras between these two von Neumann
algebras correspond exactly to the virtual subgroups lying in between i^Y

and -Tx. D

2. The normalizer of subf actors corresponding to quotient actions in
F( X, G). One of the main results of [15] was the construction of the
unitaries in F(X, G) which normalize S(X, G), where (X, μ, G) is a free
ergodic g-space with G countable abelian and measure preserving; these
unitaries were completely determined by the pure point spectrum of the
group action. Taking Y = pt., the trivial G-map φ: X -> pt. gives rise to
the injection φ*: F(Y, G) -> F(X, G) with φ*(F(Y, G)) = S(X, G). Given
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this observation it is natural to attempt to calculate the unitaries in

F(X, G) which normalize φ*(F(y, G)), where (7, *>, G) is a non-trivial

quotient action of (X9 μ, G) with quotient G-map φ: (X, μ) -> (Y, v). For

the case where μ is relatively G-invariant over v and the quotient action

(Y, v, G) is free, we have been able to accomplish this for an arbitrary

countable discrete group G. The unitaries in F(X,G) which normalize

F(Y, G) bear a relationship to Zimmer's action of relatively elementary

spectrum, so we briefly review this notion. Since the related concept of

relatively discrete spectrum will be needed in Section 4, we discuss the two

notions together.

Let (X, μ, G) be a compact Lebesgue G-space and (Y9 v, G) a quo-

tient ergodic G-space, with φ: X -» Y the quotient G-map. Suppose that μ

is relatively G-invariant over v, so that in the decomposition of μ over the

fibers of φ μ = / μydv, g*μy = μyg v a.e.,Vg e G.

We may decompose L2(X, μ) as the direct integral fγ Jί?ydv, where

Jtify = L2(φ~ι(y), μy). For almost every j e 7 and every g e G, there

exists a unitary mapping

given by

(1) «(y,g)f(χ)=f(χg).
It is clear that a satisfies the cocycle identity

(2) *{y, gιg2) = <*(y, gi)*(ygi, g2)-

The map a is an example of a unitary bundle cocycle representation;

the reader is referred to [27] for further details on the theory of these

objects. We recall from [27] that (X, μ, G) is said to have relatively

elementary (respectively relatively discrete) spectrum over (Y, p, G) if the

bundle cocycle representation a given above decomposes as the direct sum

of one-dimensional (respectively finite dimensional) subbundle represen-

tations.

For every ergodic extension (X, μ, G) of an ergodic action (7, v, G)

where μ is relatively G-invariant over J>, there exist maximal quotient

actions of (X, μ, G) having relatively discrete and relatively elementary

spectrum over (Γ, v, G). Denote these extensions by (Zd9τd9G) and

(Ze9 τe9 G) respectively. One of the main results of Zimmer's theory ([27],

which can be extended to the case μ quasi-invariant by using results of

Fabec [4]) is that there exists a second countable compact group K, and

closed subgroups D c E>K, such that K/E is abelian, and a cocycle β:

y X G -» K such that

(Z e , τe9 G) s ( 7 X ^ / i ? , ir X pκ/E9 G)
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and

(Zd9 τd9 G) ̂  {Y XβK/D, v X vκ/D9 G).

(Here by = we mean essential isomorphism as extensions.) In particular,

(Ze9 τe9 G) is given by a skew-product (Y XβA, v X vA, G) where A is a

second countable compact group.

Associated to every one-dimensional subbundle representation of the

natural cocycle representation a for an ergodic extension (X,μ,G) of

(Y, v, G) there is an L2 Borel function fβ: X -> C and a one cocycle β:

Y X G -> S1 such that

(3) fβ(xg) = β(ψ(x),g)fβ(x) μa.e. Vg^G.

Ergodicity then implies that \fβ\ is constant a.e. and without loss of

generality we assume \fβ\ = 1.

DEFINITION 2.1. Let/^: X -» S 1 be a Borel function andjS: 7 x G ^

S 1 a 1-cocycle and suppose that the pair (fβ, β) satisfies equation (4). The

fβ is termed a relative eigenfunction for (X, μ, G) over (Y,v,G) with

relative eigenvalue /?. D

Recall from [15] that relative eigenfunctions are of special interest in

the calculation of those unitaries in F(X,G) which normalize F(Y,G).

Indeed it is an easy calculation that if / is a relative eigenfunction with

relative eigenvalue γ, the Tf is a unitary in F( X, G) satisfying

(4) Tf*MTfy = Ay(m) Vm

where Ay is the * -automorphism of F(X,G) corresponding to the one-

cocycle γ(φ(;c), G). But since γ is "restricted" from a cocycle on Y X G,

we see that

Aγ(φ*(F(Y9G))) = φ*(F(Y9G)).

Hence Tf and 7}* normalize φ*(F{Y,G)). The main theorem of this

section states that modulo multiplication by a unitary in F(Y, G), every

unitary in F(X,G) normalizing F(Y, G) must be of the form Tf for some

relative eigenfunction / . (Here we have identified F(Y, G) with

φ*(F(y, G)).) This will imply

THEOREM 2.2. Let (X, μ, G) be a free ergodic G-space, and suppose that

(Y, v, G) is a free quotient action, where μ is relatively G-invariant over v.

Then the unitaries in F(X,G) which normalize F(Y,G) generate the von

Neumann algebra F(Ze,G), where (Ze,τe,G) is the maximal quotient

action of(X, μ, G) having relatively elementary spectrum over (Y, v, G). D
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Before proving the theorem we make several introductory remarks
about fibred product G-spaces.

Let X X γX = {(xv x2)
 e X X X\φ(xι) = φ(x2)}- Define a measure

(5) M F = ί Vy^Vydv whereμ = /* μydv\.
JY \ Jγ y I

For example, note that if (X, μ) is a product space ( F X ΰ ^ X w ) , then
(X X y Jf, μF) is just the product measure space (Y X D X D,v X m X m).
Define an action of G on (X X YX, μF) by setting (xv x2)g = (xxg, x2g)-
The system (X XγX, μF, G) will be ergodic if and only if (X, μ, G) is
relatively weak-mixing over (7, *>, G), i.e. if and only if the maximal
quotient action of {X, μ, G) with relatively discrete spectum over (Y, v, G)
is (7, v,G) itself.

Examine the following commutative diagram of G-spaces:

(XXγX,μF,G)

(6) (X,μ,G) iΨ3 (X,μ,G)

ψ \ i/ φ

Here

Ψ2(x1,x2) = x2

Since φ, / = 1,2,3, and φ are surjective G-maps, and since (Γ, F, G)
and (X, μ, G) are ergodic, by applying [15], Proposition 1.1 the commuta-
tive diagram of von Neumann algebra injections can be constructed:

F(XXYX,G)

(8) F(X,G) T<P? F(X,G)
φ* \ /I ψ*

F(Y,G)

Bythediagram we see that φ*φ*(m) = φ^φ*(m) = φ*(m) V m e F(Y, G).
Therefore with no confusion F(Y, G) can be identified with its image in
F(XXYX, G). Also

<PΪ(F(X, G)) Π φϊ(F(X, G)) = F(Y, G).



422 JUDITH A. PACKER

For if

Σ TfUg<=φ*(F(X,G))nφϊ(F(X,G)),

where fg e LX(X X YX), then each/g is constant along the fibers of both
φt and φ2. But this implies that each function fg is constant along the
fibers of φ3, hence ΣgeGTfUg e φ$(F(Y, G)) = F(Y, G). We are now
prepared for the proof of the main theorem.

Proof of Theorem 2.2. Suppose Uis a unitary element in F( X, G) such
that UF(Y, G)U* = F(Y, G). We examine the element φΐ(U)φ*(U*) =
K e F(X XYX, G). We claim that K commutes with everything in
F(Y, G). Indeed for m e F(Y, G),

Kφ*(m)K* = φf (l/)φί(£/*)φj(φ*(ι«))φj(t/)φf (£/*)

= φϊ(£/)φj(ί/V(

*)

= φ*(ί/f/*φ*(w)C/C/*) = φf (φ*(iw)) = φ3*(w).

Therefore ^Γφf(w) = φ*(m)K V w e jp(y, G). In particular K com-
mutes with everything in R(Y, G). Since (Y, v, G) is a free action and μ is
relatively G-invariant over v, by Lemma 1.8 K e R(X x y Z , G). Since .K
is unitary, we can write

K=Ty, whereγ eZ/^AΓXyA"), |γ| = 1.

We now give U its unique representation U = Σ g e C 7} ί/g, with fg e
L°°(ΛΓ) V g e G. Then

φ*(C/) = £ TfgUg and φ*(ί/) = £ TfeUg

geG sG

with

Jg2\xi> X2) Jg\x2)> 8 e G.

Since φΐ(U) = Kφ*(U), we obtain Σ g e G TfJJg = TΎΣgeGTfJ/g which
implies

(8) 4 i = ϊΛ,2 μ F a .e . ,VgeG.
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Therefore
T\U= W 2 l = T\U since|γ| = l.

Recalling that φt(F(X, G)) Π φϊ(F(X, g)) = F(Y, G), we obtain | / g 2 | =

\fg2\
 e Φ*(^°°(^)) s o that \fg(x)\ is constant along the fibers of <p,

Setting Zg= {x G X|/g(x) = 0), it is clear that Z g is a lift of a

measurable set in (Y9 Ϊ>). Hence Ag = X — Z g is also a lift of a measurable

set in 7.

Now Vk, g G G, define

(9) .* {

Clearly Rk g(x) G U°(X). We claim i?^ g is constant along the fibers

of φ.

We have already seen that |/ g | is constant along the fibers of φ, and

for (xv x2) G X X y I Π AgxAg,

fΛXl)

Equation (11) comes from dividing through equation (9) with g = k

through by equation (9) on the support of fg.

Therefore \/(k, g) G G X G,

We now claim that we can write

(π) U-T^

where m g e L°°(Y) and T G L°°(Z), |T| = 1.

First, note that μ(X - U g G G ^l g ) = 0, as the identity £/f7* = 0 =>

Σ « e r A( X )A( X ) = 1 M a e Using the fact that G is countable, we enu-

merate it in some fashion: G = [gt\i = 1,2,...}. Set Bx = Agι, and for

/ > 1, set

Then the collection {5J/ G N} are mutually disjoint sets whose union is

equal to{J GGA = X μ a.e. Furthermore each Bi is a lift of a measurable

subset of Y. For each K G , examine

(12) MA(x)= ΣRkgl(x)XB,(x)-
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Clearly Mk(x) is constant along the fibers of φ, hence Mk(x) = mk(φ(x))
μ a.e. for some mk Ξ L°°(Y).

Now define
0 0 f (x)

τ(x\= Y Jg<K } v (x)

That \τ(x)\ = 1 μ a.e. follows from the fact that the Bt are mutually
disjoint with μ(X - \JfLx Bt) = 0.

We claim that

r(x)Mk(x)=fk(x) μa.e., VfceG.

Indeed

Therefore

^ Zw Ir(x)Mg(x)Ug- Iτ(x) 2s IMg(x)Ug

Σ Tu

Since Tτ is unitary in F(X, G), Σ g e G Γw t/g is unitary in F(Y, G). Further-
more, since U normalizes φ*(F(Y, G)) by hypothesis and φ*(Σ g e G Tm Ug)
obviously normalizes φ*(F(Y, G)), it is clear that Tτ must normalize
φ*(F(y, G)). In particular Γτ*t/gΓτ e φ*(F(r, (?)), Vg e G. This implies
that T(xg)T(x) is constant along the fibers of φ, so that τ(xg)τ(x) =
p(<P(*)> g) f°Γ s o m e P: Y X G -> S1. Clearly p satisfies the cocycle
identity. Therefore T is a relative eigenf unction for (X, μ, G) over (Y, v,G)
with relative eigenvalue p. Therefore U e F(Ze,G), and the remarks
about relative eigenfunctions made preceding the theorem show that
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F(Z€, G) is contained in the subalgebra of F(X, G) generated by those
unitaries which normalize F{ Γ, G). This completes the proof. D

We state several corollaries of Theorem 2.2; the first provides the

promised generalization of the remarks made following Theorem 3.3 of

[15]:

COROLLARY 2.3. Let (X, μ, G) and (Y, v, G) be as in the statement of

Theorem 2.5. Then there exists a compact second countable abelian group A,

and a cocycle β: Y X G -> A, such that (Y X βA, v X vA, G) is the maximal

quotient action of (X,μyG) having relatively elementary spectrum over

(y, v, G), and such that every unitary operator in F(X, G) which normalizes

F(Y9G) is of the form TfW9 for some χ <= A and W e <V(F(Y,G)). (Here

fx(y> a) = χ(a).) X Π

Proof. In the course of proving Theorem 2.2 it was shown that any
unitary normalizing F(Y9 G) must be of the form TTW, W e U(F(Y, G))9

T a relative eigenfunction for (X, μ, G) over (7, v, G). Zimmer's results on
relatively elementary spectrum in [27], [4] show that (Ze9 G) = (Y XβA,

G) for some compact second countable abelian group A and cocycle β:

Y X G -> A. Also by results of [27] the decomposition of the natural
cocycle bundle representation on 7 x G induced from the identity on

Y XβA X G into one-dimensional subbundle representations is unique up
to equivalence. Thus for any relative eigenfunction r there exists χ e A

and Borel b: Y-* S1 with r = fχb. But then TTW = TfχbW = TfTbW9

which is of the desired form. D

COROLLARY 2.4. Let (X, μ, G) and(Y, v, G) be as in Theorem 2.2. The

unitaries in F(X,G) normalizing F(Y,G) will generate F(X,G) if and only

if(X,μ,G) has relatively elementary spectrum over(Y, v,G).

With the theorem in hand we are now able to calculate the "length"
of F(Y, G) in F(X, G). We briefly review the relevant definitions, the first
of which was introduced in [23].

DEFINITION 2.5. Let j / b e a von Neumann subalgebra of the von
Neumann algebra Jί. Set J ^ = N0(S/) and proceed inductively, setting

= the von Neumann algebra generated by {U unitary in
. Call Nλ(s/) the normalizer ofs/inJΐ. Then
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Define the finite length oίsimJί to be the least positive integer n such
that Nn(s/) = Nn+ι(s/)9 if such an n exists. Call the length of j/infinite if
no such n exists. D

When the length of si in Jί is infinite, the notion of transfinite length
must be introduced:

DEFINITION 2.6. Let si and Jί be as in 2.5, and suppose that the length
of ja^in Jί is infinite. Let Nω^(si) be the von Neumann subalgebra of Jί
generated by Ui€ΞN+ Nt(si). Proceed on in this way, defining for any
non-limit countable ordinal η Nη(sf) = N1(Nη_1(s/))9 and for η a limit
ordinal, define Nη(s/) to be the von Neumann algebra generated by
Uξ<ηNξ(s#). Define the transfinite length oisϋviJί \o the least countable
ordinal η such that Nη(si) = Nη+1(si) if such a countable ordinal exists. D

Note that iΐsih&s finite length in^#, the transfinite length of si in Jί
will coincide with the finite length of si in Jί, therefore without loss of
generality we refer to the transfinite length of siinJί SLS the length of s/in
Jί.

We now wish to calculate the length of F(Y,G) in F(X,G) under the
conditions of Theorem 2.2, and furthermore to relate the calculation to
Zimmer's notion of generalized elementary spectrum [28]. Recall that the
ergodic G-space (X,μ,G) is said to have generalized elementary spec-
trumover (Y, J>, G) if it can be built up from (Y, v, G) by taking extensions
with relatively elementary spectrum and inverse limits. To each such
extension (X, μ, G) of (Y, v, G) is associated a countable ordinal α, which,
roughly speaking, represents the minimum number of steps needed to
construct (X, μ, G). The following theorem relates generalized elementary
spectrum to the length of F{ Y, G) in F(X, G):

THEOREM 2.7. Let {X, μ, G) be a free ergodic action of the countable
group G on the compact Lebesgue space (X, μ), and let (Y, v, G) be a free
quotient action, with μ relatively G-inυariant over v = φ*μ, where φ: X -> Y
is the quotient G-map. Then the length of F(Y, G) in F(X, G) is equal to α,
and Na(F(Y9 G)) = F(Zge, G), where (Zge, τge, G) is the maximal quotient
action of (X, μ, G) having generalized elementary spectrum over (Y, v, G),
and a is the ordinal of this spectrum. D

Proof. By Zimmer's theory, there exists a countable ordinal α, a chain
of extensions {(Xy, μ γ, G)\y(a)} with (Xo, μ0, G) = (Y, v, G) and
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(Xa9 μa, G) = (Zge, τge, G) = (Xa, μα, G). These extensions are chosen in
such a fashion that if γ is not a limit ordinal, then (Xy+V μγ+i, G) is the
maximal extension of (Xγ9 μγ, G) which is also a quotient action of
(X, μ, G) having relatively elementary spectrum over (Xy9 μγ, G), and if γ
is a limit ordinal, then (Xy9 μγ, G) = inj lim r?<γ(Zτ?, μψ G). We prove the
theorem by induction, showing that

The case ξ = 0 is obvious from the definition. Assume that (*) is true
for every ordinal less than some fixed ξ < a. If £ is not a limit ordinal,
then

Nι(F(Y, G)) = tfxί JVx(F(y, G))) = N^FiX^, <?)),

and by Theorem 2.2, N1(F(Xξ_v G)) = F(Xζ9 G). If { is a limit ordinal,
the Nξ(F(Y,G)) is equal to the von Neumann algebra generated by
Uy<ξF(Xy, G). Therefore our aim is to show that the von Neumann
subalgebra of F(X9 G) generated by U γ <^ F(Xγ9 G) is equal to
F(inj]imy<ξ(Xy,G)) = F(Xξ, G). But each F(Xy, G) is generated by
{Ug\g e G} and R(Xγ, G). Therefore Λ^(F(Γ, G)) is generated by {Ug\g
e G} andUγ <^i?(Xγ, G). Each i?(Xγ,G) is *-isomoφhic to L°°(Xγ, juγ),
and the subalgebra generated by \Jy<^L°°(Xy, μy) is precisely L°°(Xξ, μ^)
by the properties of inverse limits of G-spaces (see [28], Section 8). Hence
the subalgebra generated by {Jy<ξR(XvG) is R(Xξ9 G). Hence
Nς(F(Y9 G)) is equal to the von Neumann algebra generated by {Ug\g e
G} and i?(JQ, G), and thus we obtain, for every limit ordinal ξ < α,
Nξ( F( Y9 G)) = î ( X ,̂ G). By induction, this completes the proof. D

Assume now that G is abelian and preserves the finite normalized
measure μ. In [15], we proved that N^SiX, G)) = F(Yd, G), where
(Yd9 T, G) is the maximal quotient action of (X, μ, G) having pure point
spectrum. lf(Yd9 τ9 G) is a free action, we shall be able to use Theorem 2.2
to find NάFiY^G)) = N2(S(X9G))9 N2(F(Yd9G))9 and so forth. The
subalgebra obtained by a transfinite continuation of this procedure corre-
sponds to the maximal quotient action of (X, μ, G) having what is called
generalized elementary spectrum:

DEFINITION 2.8. Let (A", μ, G) be an ergodic G-space. Then (X, μ, G)
is said to have generalized elementary spectrum of ordinal a if (X, μ, G)
has generalized elementary spectrum over (YO9vO9G) of ordinal α, where
(Y09v09G) represents the trivial ergodic action of G on a point. D
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The following corollary follows immediately from Theorem 2.3 of [15]
and Theorem 2.7.

COROLLARY 2.9. Let (X, μ, G) be a free ergodic action of the countable
abelian group G on the compact Lebesgue space (X, μ) which preserves the
finite measure μ> such that the maximal quotient action of (X, μ,G) with
pure point spectrum is a free action. Then the length of S(X, G) in F(X, G)
is equal to η, and Nη(S(X, G)) = F(Zge, τge, G) where (Zge, τ, G) is the
maximal quotient action of (X, μ, G) having generalized elementary spec-
trum, and η is equal to the ordinal of this spectrum. D

EXAMPLES. Let Xn = Tn

9 the /i-torus, with Haar measure μn, and let
an action of Z on (Xn9 μn) be generated by the transformations (zl9...9zn)
•-> (λzl9 zxz2, zn_λzn), where λ = e2πia, a irrational. Then (Xn9 μn,Z) has
generalized elementary spectrum of ordinal n, where the chain of quotient
actions is given by {(Xi9 μi9Z)\i < n). Hence the length of S(Xn9Z) in
F( XH9 Z) is equal to n9 and Nn(S(Xn9 Z)) = F(Xn, Z).

If (Y9 v9Z) is an arbitrary weak-mixing Z-space (such as a Bernoulli
shift), then form the product action (Xn X Y, μn X v9 Z) given by (x, y)n
= (x n9 y - n). Call this action (Zn, τπ,Z). Then (ZΛ, τΛ,Z) has as its
maximal quotient action with generalized elementary spectrum (Xn9 μn9Z).
Thus the length of S(Zn,Z) in F(Zn9Z) is still n9 but Nn(S(Zn9Z)) =
F(Xn9 Z). (Note that (Zn,τ, Z) is relatively weak mixing over F(Xn9 Z).)

Let X^ = Π°l 1 (S' 1 ) ί , with Haar measure μ^. Then an ergodic action
of Z on X^ is generated by the transformation (zl9 z2,...,zn,...) *->
(λzl9 zιz29. - ,zrι_ιzn,...) where λ is as above. Then

(X 0 0 ,μ 0 0 ,Z)= πy Km(Xn,vn9Z)

and (X^ μ^y Z) has generalized elementary spectrum of ordinal χ 0, the
first infinite ordinal. Hence SζX^Z) has length χ 0 in F(XQ9Z) and
N^SiX^Z)) = F{X^Z). Forming (Z^, T^Z) = ( ^ X Y, μ^ X v9Z)
where (Y9 v, Z) is as in the previous paragraph, then the length of
S(Z^Z) in F(Z^Z) is still X o , but Nχo{S(Z^Z)) s F(X^Z) c

REMARK 2.10. We conjecture that when G is abelian and preserves the
finite measure μ, Theorem 2.2 can be extended to the case where (Y, v, G)
is not a free action. D
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3. The normalizer of S(X,G) in F(X,G) when (X, μ, G) is
weak-mixing. In [13], Nielsen proved that if (X, μ, G) is a free ergodic
G-space, where G is countable and abelian, and if the L°°-spectrum of the
G-action is trivial, then S(X, G) is singular in F(X, G) so that
Nλ{S{X,G)) = S(X,G). His proof used direct integral decomposition
techniques and Takesaki's equivalence relation. In this section we provide
an alternate proof of this fact for the case where μ is G-invariant, which is
valid for G non-abehan as well. The proof uses the embedding idea which
was exploited in the previous section.

We recall some terminology and theory. Let (X,μ,G) be a free
ergodic G-space where μ is finite and G-invariant. Then (X, μ, G) is called
weak-mixing if the unitary representation of G on L2(X) θ C has no
finite dimensional subrepresentations. A result of Moore [10, Proposition
1], which extends classical results for G = R or Z, shows that (X, μ, G) is
weak mixing if and only if the action of G on (X X X, μ X μ) given by
(xl9 x2)g = (xxg9 x2g) is ergodic.

Recall that when G is abelian and (X, μ, G) is as above S( X, G) is a
maximal abelian subalgebra of F(X, G). Clearly if G is not abelian this
will no longer be true. However, when (X, μ, G) is weak-mixing, one can
show that any element in F(X,G) which commutes with everything in
S( X, G) must lie in S( X, G) itself:

LEMMA 3.1. Let (X, μ, G) be a free ergodic G-space, where G preserves
the finite measure μ, and suppose that (X,μ,G) is weak-mixing. Then
S(X, G)' Π F(X, G) c S(X, G). D

Proof. Let g e G. Set Hg = {h e G\hgh~x = G}. We claim that if g
has finite conjugacy class in G, then Hg must act ergodically on (X, μ, G).
For if Hg does not act ergodically on (X, μ) there exists a non constant
function/e L°°(X) c L2(X) with/invariant under the action of Hg. If
gl9 g2 are in the same right Hg coset, the f(xgλ) = f(xg2) since gx = g2h
for some Λ e Hg. Since [G: i/g] = card{ hgh~ι\h e G} which is finite, the
subspace of L2( X) spanned by {/(xg)|g e G} is finite dimensional, and
the representation of G on L2( X) θ C has a finite-dimensional subrepre-
sentation, which is a contradiction of our original assumption.

Now suppose that Q e F( X, G) commutes with everything in 5( X, G).
Then write

β = Σ TfU8, with/g e L«( A-) Vg G G.
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For every h e G,

uhQ = Quh ~uhΣ τfug = Σ τfuguh
G 7

Σ τfsixh)uhg = Σ τfugh

xh)uhg

 = Σ

=* fg(xh) = fhgh-,(x) μa.e.,

We now claim that if g has an infinite number of conjugates in G, we

must have/ g (x) = 0 in LCO(X). For if this were not the case there would

be an infinite number of functions

with

since G preserves μ, but then Σ g e G | | / g ( jc) | | L 2 = oo which is impossible.

Therefore if Q ^ (S(X, G))' Π F(X, G) we must have Q = Σ g G G o 7} Ug9

where Go is the subset of G consisting of those g lying in finite conjugacy

classes. Furthermore

But if /z G Hg, we obtain / g is Hg invariant, V g ^ Go. This implies that/ g

is a constant function since Hg acts ergodically on (X, μ, G). Therefore

β e ^(X, G), and this completes the proof. D

REMARX 3.2. If (X, μ, G) is a free ergodic G-space, and if there exists

g ^ Go such that Hg does not act ergodically on (X, μ), it is easy to

construct an element in S(X, G)' Π F(X, G) which is not in £( X, G). D

We now proceed to the proof of the main theorem of this section.

THEOREM 3.3. Let (X, μ, G) be a free ergodic action of the countable

group G on a compact Lebesgue space which preserves the finite measure μ

and which is weak-mixing. Then any unitary in F(X,G) which normalizes

S(X, G) lies in S(X, G) so that Nλ(S(X, G)) = S(X, G). D
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Proof. Form the product G-space (X X X, μ X μ, G). As in the proof

of Theorem 2.2 we have quotient G maps

Ψi i/ \ <P2 Φl(*l> xl) = Xl

(X,μ,G) |φ 3 (X,μ,G) φ2(x1,x2) = x2

φ \ ι/ φ

(Y,v,G) where Y = pt.

Then as in the proof of Theorem 2.2, there are associated injections of

von Neumann algebras:

F(XX X,G)

F(X9G) TΦ? F(X,G)

φ* \ / φ*

with φ J ( F ( * , G)) Π φf(F( Z, G)) = φ*(S(X, G)) = S ( I X I , G).
Suppose that U unitary in F(X9G) normalizes S(X, G). Then

φ?(ί/)φj(ί/*) commutes with everything in φ*(S( Z, G)) = S ( I X l , G).

Since (Jf, μ, G) is weak mixing, it is not hard to see that (X X X, μ X μ,

G) is weak-mixing. (See [28], Cor. 7.11). Hence φ?(ί/)φj(t/*) e

S ( I X I , G) by Lemma 3.1. This implies that φf(£/) and φj(ϊ7) are both

elements of φ * ( F ( I , G)) Π φ * ( F ( I , G)) = φ*(S( I , G)). Hence U e

S^X, G), as desired. D

The same methods can be applied to prove the following partial

generalization of Theorem 2.2:

THEOREM 3.4. Let (X, μ, G) be a free ergodic G-space and suppose that

(Y, J>, G) is a quotient G-space {but not necessarily free) where μ is finite

relatively G-inυariant over v, {X,μ,G) is relatively weak-mixing over

(Y, v, G), and G is abelian. Then Nλ{F{Y, G)) = F{Y, G).

Proof. As in the proof of Theorem 2.2, form the diagram given in (7)

of §2. Again φf(F( Jf, G)) Π φζ(F(X9 G)) = φ*(F(7, G)). If [/normalizes

F(Y9 G), then φf(ί/)φj(t/*) commutes with everything in φ*(5f(7, G)) =

S ( I X y I , G). Since {XXγX, μF9 G) is ergodic S{XXγX, G) is
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maximal abelian. Therefore

φ*(C/)φ*(C/*) E S ( I X γX, G) C φ*(F(Γ5 G)),

which implies that φΐ(U) and φ%(U) are both in φΐ(F(X, G)) Π
<p*(F(X, G)). Hence 1 / G F ( 7 , G ) , as desired. D

The following is an application of Theorem 3.4.

COROLLARY 3.5. Let (X,μ,G) be a free ergodic action where the
abelian group G preserves μ, and suppose that the maximal quotient action of
(X, μ, G) with pure point spectrum, say (Yd, v, G), is a transitive action.
Then the length of S(X,G) in F(X,G) is one, with N1(S(X,G)) =

Proof. The fact that Nλ(S{X, G)) = F(Yd, G) is just Theorem 2.5 of
[15]. We know that (Yd9 v, G) = (G/Go, v, G) for some subgroup Go of
finite index. If (Zd,τd,G) is the maximal quotient action of (X, μ, G)
having relatively discrete spectrum over (Yd9 v, G), Zimmer's structure
theory shows us that (Zd, τd9 G) = (Yd XaK/H, v X vκ/H, G), where α:
Yd X G -> K is a one cocycle with a minimal and Ka = K. It is an easy
exercise using the transitivity of (Yd9 v, G) and [26, Theorem 8.27] to show
that we may take H = {e}, K abelian, and then (Y XaK, v X vK9 G) has
pure point spectrum. Since (Yd9v9G) is the maximal quotient action
having pure point spectrum K = {e}, thus (X, μ, G) is relatively weak
mixing over (Yd9 v, G), hence Nx( F( Yd9 G)) = F( Yd9 G) by the theorem. D

REMARK 3.6. Since any ergodic action of Z having pure point spec-
trum is either free or transitive, Corollary 3.5 allows us to dispense with
the hypothesis of freeness of the maximal action with pure point spectrum
in Corollary 2.9 when G = Z. Hence we can always compute the length of
S(X9 Z) in F(X,Z) when given a free ergodic action Z on (X9 μ) which
preserves the finite measure μ. D

4. Compact skew product extensions of ergodic actions and the
corresponding crossed dual product von Neumann algebras. Suppose that

K is a compact (second countable) group and α: Y X G -+ K is a
one-cocycle, where (7, J>, G) is an ergodic G-space. When K is abelian,
there is a spatial automorphism between F(YXaK, G) and a crossed
product F(Y9 G) X&K which carries φ*(F(Y9G)) onto F(Y9 G) Xά{e],
where φ: Y X K -> Y is projection in the first variable. This situation was
exploited in [15], and indeed the main result of the second section of this
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paper shows that the normalizer of a subfactor corresponding to a
quotient action is equal to the crossed product of the subfactor by a
particular countable abelian group. The main aim of this section will be to
examine the structure of the factors F(Y XaK, G) where K is a compact
not necessarily abelian group. If K is no longer abelian the idea of a
crossed product of F(Y, G) by an action of "K" no longer makes sense.
However, a substitute construction, the "crossed-dual product/' does exist
in the literature; it reduces to the regular crossed product by K when K is
abelian. This construction was developed almost simultaneously in [11],
[7] and [20] in order to extend Takesaki duality to non-abelian locally
compact groups. In what follows the version of the crossed dual product
due to Nakagami will be used [10]. The main result of this section states
that if (X, μ, G) is an ergodic extension of the free ergodic action (Y, v, G)
with μ relatively G-invariant over v, then F( X, G) is spatially isomorphic
to a crossed dual product of F(Y, G) by a compact (second countable)
group K with suitable embedding conditions if and only if (X, μ, G) is
essentially isomorphic to (Y XaK, v X vκ, G) for some one cocycle α:
Y X G -* K with dense range. In what follows all groups considered will
be second-countable.

We recall the relevant definitions:

DEFINITION 4.1 [11]. Let Jί be a von Neumann algebra, acting on the
separable Hubert space Jf, and let K be an arbitrary locally compact
group. An abstract co-action β of K on Jί is a von Neumann algebra
monomorphism

where @{K) is the von Neumann algebra generated by the right regular
representation of K on L2(K), which satisfies the following commutative
diagram:

Jί 4> Jί

i β I id <8> 8

Here 8: 9t(K) -> St(K) Θ &(K) is the map defined by 8(pki) = ρkχ <S> pkχ,
where pki(f)k - f(kkλ)9 k9kx^K.

The crossed dual product of Jί by the abstract coaction β of K is the
von Neumann algebra acting on ^f® L2(K) generated by β{Jί) and
Ĉ <8> L°°(K). Denote this von Neumann algebra byJίXd

βK. D
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REMARK 4.2. The reader is referred to [11], [12], for an abstract
definition of action of a locally compact second countable group K on a
von Neumann algebra very similar to that given above for coactions.
Using such a definition, one can show that whenever K is abelian, an
action of K on Jί defines a coaction of K on Jί (and conversely), with
Jί X Kspatially *-isomorphic toJίXdK. D

Given a coaction β of the unimodular locally compact group K on Jί,
one defines an action of KOVL Jί X d

βK as follows.
Let /(A:): L2(K) -* L2(K) be defined as

Then V k e K, Id̂ <8> ί(k) is a unitary in 38(3tf® L2(K)), and
/(A:)) acts as the identity on Jί '® Si(K) and leaves C ® U°(K) in-
variant. Thus Ad(Id^<2> /(ϋΓ)) fixes (Jί Xd

βK). Let β(k)(m) = Ad(Id^
® έ(k)) (m), V m EiJίXd

βK,\/k^K. Then /? defines an action of K on
Jί Xd

βK, called the action dual to the coaction β. When K is abelian β
corresponds in a natural way to Takesaki's dual action of K on Jί X K.
Results from Takesaki-Nagakami duality theory [11], [12] show that the
von Neumann subalgebra of Jί X d

β K consisting of elements left fixed by
the action β of K is precisely β(Jί). Furthermore the crossed product of
Jί X d

β K by the dual action βoΐKis * -isomorphic to Jί ® 38{L2( K)).
Let AT be a compact group and let (7, v, G) be an ergodic G-space.

For any one cocycle a: Y X G -> K form the skew product action
(YXaK, vXvκ, G); note that v X vκ is relatively G-invariant over
v = <p*(v X vκ) where φ: Y XaK -> Y is given by φ((y, k)) = y. From
what has been said previously one expects that F(YXaK, G) has the
structure of a crossed dual product of F(Y, G) by a coaction of K, and
this is in fact the case.

THEOREM 4.3. Let (Y, v, G) be an ergodic G-space, a: Y X G -* K a
one-cocycle, and φ: Y XaK -> Y the quotient G map of (Y XaK, v X vκ)
onto (7, v) given by projection in the first variable. Then φ*: F(Y9 G) ->
F(YXaK, G) defines a coaction of K on F(7, G), and F(YXaK, G) =
F(7, G) Xd

φ*K. Furthermore the dual action φ* of K on F(Y XaK, G) is
defined by

= Στe(k)fg

ug> where e(kλ)f(y, k) = f(y9 k~ιk). Π
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Proof, In what follows we use the natural identification of L2( Y) ®
L2(G) Θ L\K) with L\Y X K X G) defined by

Uι{y)u2{g)u3{k) -> uλ(y) Θ u2(g) Θ u3(k).

We first show that the image of φ* lies in F(Y, G) <8> St(K). Recall
that F(Y, G) contains the subalgebra R(Y,G) which can be identified
with L°°(Y, v) and is, in fact, represented on L\Y X(?) = L2(Y) Θ L2(G)
as L™(Y, v) <8> C. Therefore the von Neumann algebra F(Y, G) <S> @(K)
contains as a von Neumann subalgebra L°°(Y) Θ <M(K). This last can be
naturally identified with L°°(Ύ, &(K)), the bounded Borel fields of opera-
tors (y •-» 6(^)) with each b(y) e ^(iΐΓ). We now claim that for every
gx e G, φ*(ί7^) = U* can be decomposed

φ*(l//) = (y ~ p{α(y, gl)))(u£ ® ldL2(K)).

Let«! e L 2(Γ), M2 e L2(G), M3 e L2(is:). Then

( j -* p ( α ( j , gx)))(ί/ft

y ® Id)(Mi Θ «2 β «3)(^, g, k)

= {y^ ρ(α(y, g1)))'"y(y, gi)1 / 2"i(ygi) ® "2(gΓV) ® «3(^)

= rγ{y, g^u^ygy) ® «2(gi""V) ® " 3 ( ^ ( 7 , gi))

Setting «(/, k, g) = MX( j)«3(fc)M2(g), then

φ*(ί//)(M)(7> fe, g) = rY(y, gl)
l/2u{(y, k)gl, g^g)

= rr(y, gι)1/2u(yglt kα(y, gt), g^g)

= rY(y, gif^u^yg^u^kαiy, g1))w2(g~1, g).

Hence φ*(l/J) = ( j *-» p(α(^, gx^Xί/J ® Id), which is contained in
F(7, G) ®@(K). Let / be an arbitrary element of U°(Y). The 7} e
i?(7, G), and it is clear that φ*(7}) =7}® IdonL 2 (7) ® L2(G) ® L2(ϋ:).
Since F{Y, G) is generated by R(Y, G) and {Ug\g e G), and since φ* is a
von Neumann algebra monomorphism, the image of φ* will lie in
F(Y,G)®@(K), with

φ*( Σ 7}A

for finite sums, and where if {ΣgeGTf«Ug\α^A} is a net of finite sums
converging torn e jp(y, G) in the strong operator topology, then

U*( Σ Tj.uA - Σ ( y
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is a net in F(Y, G) ® 3#(K) converging to φ*(m) in the strong operator
topology. We now check that φ* ® id°φ* = (id (8) δ)φ*. Recall that
there is a natural identification of L°°(7, @(K)) <8> 3$(K) with
L°°(Y, 3t(K)® &(K)). Then on finite sums,

(φ* β Id)φ*( Σ TfuΛ

= φ * ® idί Σ {y ~fg(y)p(«(y, g)))(t//β id))

= Σ[{y* Id®fg(y)p(a(y, g)))(y * p(a{y, g)) β Id)
gee;

X (ί//<8> I d 0 Id)]

= Σ [{y * fg(y)p(a(y, g)) β P(«(J>, g)))(^/ β M β id)]

= id ® δ( Σ [{y~fβ(y)p(a(y, g)))(ug

γ β id)])
VgeG '

By continuity arguments, (φ* ® id)° φ* = (id <8» δ)° φ* on all of F(Y, G),
so that φ* defines a coaction of Kon F(Y, G) as desired.

Let ψ: y X ϋ: -> ϋ: be defined by φ(y, k) = A:. Then if γ e L
γ « ψ e L°°(7 X A ). Examine Tyoφ e F ( y χ / , G):

= u1(y)u2(g)y(k)u3(k).

Therefore
Γ γ o ψ = I d L 2 ( y x G ) ® γ .

Since φ*(F(Y,G)) and {Γγoψ |γ e L°°(is:)} generate F(YXaK, G),
we see that F( Y, G) X d

ψ* K is precisely F ( y χ J , G ) .
Finally, note that for/ e L°°(Y X ίΓ), gx e G, Kx e ίΓ

Id ®

= Id

= Id
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Since Ad(Id ® tf(kλ)) is continuous on f ( L 2 ( 7 x G X K%

Ad(idβ €{kx))[ Σ τfu\ = φ ίfcjί Σ τ>//g) =

This completes the proof. D

REMARK 4.4. Recall that an automoφhism of groupoids Λ: S?-> ^
gives rise to an automoφhism of von Neumann algebras Λ*: L(^) ->
L ( ^ ) , where L(^) is the von Neumann algebra corresponding to the left
regular representation of ^ [6]. Then an easy computation shows that the
*-isomoφhism φ*(kι) corresponds to the automoφhism of the groupoid
YXaKX G defined by (y, k, g) -> (y, kxk, g). D

Let (Y, v, G) be a free, properly ergodic action of the discrete abelian
group G which preserves the measure v. For any separable compact group
K, Zimmer has shown [29] that there exists a one cocycle a: Y X G -» K
with dense range, so that the skew product action (Y XaK, v X vκ, G) is
ergodic. Since G is abelian and preserves the measure v X vK9 F(Y XaK,
G) is the hyperfinite IIX factor. (Results of Pasche [16] also imply this
fact.) Let β be the coaction of K on F( 7, G) given by φ*. Then F( Y X a K,
G)XβKis *-isomoφhic to F(Y, G) <8> 3t(L2(K)) by Nakagami-Takesaki
duality, and thus is a factor. This combination of Zimmer's and Naka-
gami's results shows the following, first proved in [16]:

THEOREM 4.5. For any compact second countable group K, there exists

an outer action of K on the hyperfinite l\x factor 3% such that the crossed

product of&by this action is again a factor.

Proof. All that remains to be shown is that the action β discussed
above is an outer action. Suppose that there exists a k e K and U e
F(Y XaK, G) such that

β(k) = AdU.

We note that β(k) leaves everything in <p*(/?(Y, G)) fixed. Hence by
Lemma 1.6, U = Tf for some/ e L°°(X). But this implies that β(k) leaves
everything in R(X, G) fixed, hence every element of F(X, G) fixed.
Therefore β(k) is the identity automoφhism, which shows that k = e, as
desired. D

A natural question that arises in our context is that of when is
F( X, G) * -isomorphic to a crossed dual product of F( Y, G), for (Y, v, G)



438 JUDITH A. PACKER

a quotient action of (X, μ, G). The following theorem provides a partial
converse to Theorem 4.4:

THEOREM 4.6. Let (X, μ, G) be an ergodic G-space, and let (Y, v, G) be
a free quotient action, with quotient map φ: X —> Y, where μ is relatively
G-invariant over v = φ*μ. Then F(X,G) is spatially *-isomorphic to a
crossed dual product of F(Y,G) by coaction β of a compact group K, and
under this *-isomorphism φ*(F(Y, G)) is carried onto β(F(Y, G)), if and
only if (X, μ,G) is essentially isomorphic as an extension to (YXaK,
v X vκ, G) for some one cocycle a: Y X G -> K with dense range. D

Proof. The direction <= was proved in Theorem 4.3 As for => ,
suppose that F( X, G) is spatially * -isomorphic to a crossed dual product
of F(Y, G) by some coaction β of a compact (second countable) group K;
then there exists a dual action β of K on F( X, G) leaving every element of
β(F(Y,G)) = φ*(F(Y,G)) fixed. By the results of §1, φ*(/?(F,G)) is
contained in a unique maximal abelian subalgebra of F(X,G), namely
R(X, G). Therefore for every k e K, β(k) leaves R(X, G) invariant, since
β leaves every element of φ*(R(Y, G)) fixed and β(k) is a •-automor-
phism. Thus the action of β of K on F{X,G) restricts to give an action of
K on R(X, G) = U°{X). Furthermore, for every k e K, the •-automor-
phism β(k) commutes with the action of G on R(X,G) induced by the
adjoint action of {Ug\g e G) (which corresponds to the action of G on

, μ)). Indeed Vg e G, V k e K, V/ e L°°(X)9

β(k)(UgTfU*) = β(k)(Ug)β(k)(Tf)$(k)(Ug*)

= ug(β(k)(τf))u;Γ *
-g '

since Ug G φ*(F(Y, G)) = β(F(Y, G)).
One therefore obtains an action of the product group G X K on

R(X, G) = LX(X) defined by

{Tf)-(g,k)=Ugβ(k){Tf)Ug*.

By a result of Mackey [8] we obtain a point action of G X K on (X9 μ)
leaving the measure μ quasi-invariant. This action must be ergodic,
because the action restricted to the subgroup G X {e} is ergodic. By a
result of Series [18], there exists an ergodic G space (Sl9 μ), a transitive
AΓ-space (S29 ^2)^ a locally compact group Γ, and one cocycles Hl9 Π 2 ,
Πp Sλ X G -> Γ, Π 2 : S2 X K -> Γ, such that (JΓ, μ, G X K) is measure-
theoretically conjugate to the G X K space (Sx X S2 X Γ, μλ X μ2 X ^Γ)
where (sl9 s29 γ)(g, /c) = (^g, 52/:, Π 2(^ 2, fc)"1γΠ1(^1, g)). Furthermore,
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(Si9 μ, ), / = 1,2, can be chosen so that (Sl9 μx) is the quotient of (X, μ) by
the {e) X K action and (S2, μ2) is the quotient of (X, μ) by the G X {e)
action [18]. Since G X {e} acts ergodically on (X, μ), (S2, μ2) = pt., and
Πj: SΊ X G -> Γ must have dense range. It follows that Π 2 : S2 X K -> Γ
is in fact a homomorphism of K into Γ. Also, Γ is isomorphic to K/L,
where L is a normal subgroup of K corresponding to the stability
subgroup for the action of K on (X, μ) at some generic point ([18] Remark
5.1). We claim (Sv μv G) is conjugate to (7, *>, G) and L = {e}. For the
first assertion, note that the fixed points for the action of K on R( X, G) s
L°°(X) are precisely φ*(Λ(7,G)) - L°°(7, *>). Hence (7, v) is the quo-
tient of the K action on (X,μ) and thus (Y,v,G) is conjugate to
(Sl9 μv G). As for the second assertion, note that for every / e L, β(έ)
leaves every element of F(X,G) fixed. This is clear since F(X, G) =
F( YxUιK/L,G) and β(k) acts by translation on K/L alone. But functions
on K/L remain fixed under translation by elements of L. Since by
hypothesis F(X,G) is spatially * -isomorphic to the crossed dual product
of F(Y,G) by a coaction on K, F{X,G) must contain a copy of the
abelian subalgebra C ® L°°(K), where the action β on K on this subalge-
bra is given by the left regular representation. Clearly the kernel of the
action of β restricted to C 0 U°(K) is the identity element of K. But this
kernel must contain L, since {/?(/)|/e L) leaves everything in F(X, G)
fixed. Therefore L = {e}y and the desired result is obtained with a =
Πj. D

Relationship to normal extensions.

We recall the definition of normal extensions due to Zimmer [27]:

DEFINITION 4.7. Let (X, μ, G) be an ergodic G-space, and suppose
that (7, v, G) is a quotient G-space, with φ: X -» 7, and the measure μ
relatively G-invariant over v ~ φ*μ. For every y e 7 and for every
x G φ " ^ ) , let ^ = L 2 (9 - 1 (^), μv). Let a(y, g): J?7 —> J v̂, be the
natural bundle cocycle representation, and restrict this representation to
X X G by defining α(φ(x), g): Jί^g •-» Jf?x. Then (Jί, μ, G) is said to be a
normal extension of (7, *>, G) if there exists a spearable Hubert space J^ }

and a Borel field of unitary operators U(x): JίfΛ. -* Jίf0 with

U(x)a(φ(x),g)U(xgy
i = ldjr{.

By results of Zimmer [27], extended to the case μ relatively G-in-
variant over v by Fabec [3], if μ is finite and if (X, /x, G) is a normal
ergodic extension of (Y,v,G) having relatively discrete spectrum over
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(Y,v,G) then (X, μ, G) is essentially isomorphic as an extension to
(Y XaK, v X vκ, G), where a: Y X G -> # is a one-cocycle with dense
range. We can thus rephrase Theorem 4.6 as

COROLLARY 4.8. Let (X, μ, G) 6e an ergodic action of the countable
group G on the compact Lebesgue space (X, μ), and let (7, v, G) be a free
quotient action, with φ: Y -* Y9 such that μ is relatively G-ίnυariant over
v = φ*μ. Then F(X,G) is spatially * -isomorphic to the crossed dual
product of F(Y,G) by a coaction β of some compact group and this
^-isomorphism carries φ*(F(Y, G)) onto β(F(Y, G)) if and only if(X, μ, G)
15 a normal extension of (Y,v,G) with relatively discrete spectrum over
(Y,v,G). D

REMARK 4.9. The results in ([27], Theorem 6.2) show that the compact
group of Corollary 4.8 must be unique up to isomorphism. D

Intermediate subalgebras.

NOTATION 4.10. Let J( be a von Neumann algebra acting on the
separable Hubert space 3^ and suppose that /? is a coaction of the
unimodular locally compact group K onJί. Let H be a closed subgroup of
K. Then as in [12] set

Jΐxd

βH/K= {m SΞJίXd

βK\β{h){m) = mVh e H).

It follows that Jί Xd

βH/Kis a von Neumann subalgebra oίJfXβK with

JίXdβK. D

Hence closed subgroups of K give rise to intermediate subalgebras in
the crossed dual product construction. In our context the Jί X β H/K take
on a natural form corresponding to quotient actions: recall that if K is a
compact group and α: Y X G -> K is a one-cocycle, where (Γ, *% G) is an
ergodic action, then the dual action of φ* of K on F(Y XaK, G) is given
by

( ) = Σ W 4 > * e G'Λ e L 0 0 W

where εkι(fg)(x, k) = /g(x, fcf XA:). If # is closed subgroup of AT, it is clear
that the fixed points of {βa(h)\h e # } in ^ ( F Xα AT, G) are given by

ΛΓ, G)\εh{fg) = fgVh
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But L°° function on ( 7 XaK, v X vκ) invariant under {e(h)\h e H) are

precisely those which are lifts of functions on (Y X K/H, v X vκ/H) Thus

letting φH: (Y XaK, v X vκ) -> ( 7 X # / # , *> X ^ 7 ^ ) be defined by

φH(y, k) = (y, k), we obtain a quotient map of G-spaces, and we have

established that

φ*H(F(Y XaK/H, G)) = F(Y,G) XdH/K.

In [12], a "Galois" correspondence is established between closed

subgroups of K and intermediate subalgebras of β(J?) and Jt XβK

satisfying certain embedding conditions when Jί X β K is a factor. A

combination of previous results in this paper allow us to show

THEOREM 4.11. Let(X, μ, G) be an ergodic G-space and(Y> v, G) a free

quotient G space with φ: X -> 7, where μ is finite and relatively G-invariant

over v = φ*μ. Suppose further that (X, μ, G) is a normal extension with

relatively discrete spectrum over (7, v, G). Then there exists a compact

second countable group K unique up to isomorphism and a coaction β of K on

F ( 7 , G) such that F(X, G) = F(Y, G) Xd

βK with φ*(F(7, G)) =

β(F(Y,G)). Furthermore the intermediate von Neumann subalgebras be-

tween F(Y,G) and F(X,G) which are the image of a normal faithful

conditional expectation are in one-to-one correspondence with closed sub-

groups H of K. If Jfis such an intermediate von Neumann subalgebra, with

associated subgroup H^, then Jfis invariant under the dual action β of K on

F(X,G) if and only ifH^r is normal in K.

Proof. The first sentence of the theorem is just a restatement of

Theorem 4.4. Let ^Γbe an intermediate von Neumann subalgebra of

F(X9 G) and F(Y, G) which is the image of a normal faithful conditional

expectation. By Theorem 1.9, ^Γ= φ*(F(Z, G)) where (Z, T, G) is an

intermediate quotient action of (X, μ, G) and (7, v, G) with quotient

G-map φ: (X, μ) -»(Z, r). Since (X, μ, G) is essentially isomorphic to

( 7 XaK, v X vκ, G) for some one-cocycle α: Y X G -* K with dense

range, (Z, T, G) will look like ( 7 XaK/Hjr, v X vκ/H, G) for some closed

subgroup Hjy of K. Thus by our remarks preceding this theorem we see

that

Finally, it is clear that F(Y, G) X^H^/Kwill be invariant under {β(k)\k

e K} if and only if H^ is normal in K. This completes the proof. D
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