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ERGODIC CONTINUOUS SKEW PRODUCT ACTIONS
OF AMENABLE GROUPS

MAHESH G. NERURKAR

Given two compact, metric topological dynamical systems (F, 7\ μ)
and (Z, G, v), where T and G are locally compact separable groups
acting continuously on spaces, preserving finite ergodic measures μ and v
respectively, a continuous cocycle a on (Y, 7\ μ) defines a skew product
T action on Z X Y by (z, y) • t -> (zα(>\ /), j ; /). We prove that for a
large class of amenable groups T and, under some very general condi-
tions on spaces Y, Z and <7, residually many continuous cocycles lift
various ergodic and mixing properties from Y to Z X Y. Similar results
are obtained for non-trivial compact group extensions of (Y, 7\ μ).

1. Introduction and definitions, (i) Given a compact metric space X,
C( X) will denote the set of all continuous complex valued maps on X.
Given a Borel set V c A", μ|κ denotes the normalized restriction to V of a
Borel probability μ on X We let C(A", Y) stand for the space of all
continuous maps from X to Y. We always denote by d the metric on any
space and without loss of generality assume that d( , •) < 1. A topological
dynamical system (t.d.s.) is a pair (Y, T) where T is a locally compact,
separable (l.c.s.) group acting continuously on the right of the compact
metric space Y, with action (>>, t)-* y t. If in addition we have a
Γ-invariant Borel probability μ on F, we denote the system by (F, Γ, μ).
In this case one naturally gets for / e 7" a unitary representation Ut on
L2( y, μ) defined by !/,/(>>) = / ( ^ Ό V / G L2( y, μ). The system (y, Γ, μ)
is ergodic if for each t e Γ, t/,/ = /a.e. implies/is constant a.e.; properly
ergodic if it is ergodic and μ( ̂  T) = 0, Vj> e Y\ and uniquely ergodic if μ
is the only Γ-invariant Borel probability on Y. We call the system
(y, Γ, μ) weakly mixing iff (y X Y, T, μ X μ) is ergodic, where the action
on y X y is the diagonal action. A factor map π: (X, T, μ) -> (Y,T,v) is
a continuous onto map from X to y such that π(x - t) = π(x) - t and
π^μ = v\ we then say π: X —> y determines an extension. A bi-transforma-
tion group is a triple (G, X, Γ) where (A", Γ) is a t.d.s. and G is a compact
group acting continuously and freely on the left of X, such that the G and
T actions commute with each other. A bi-transformation group gives rise
to an extension TΓ: (X9 T) -» (y, Γ) with Y = G\X TΓ the quotient map,
and the T action on Y is the quotient action. We call this extension a
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group extension with fiber G. Given a group extension TΓ: (X, Γ)-»
(7, Γ, μ), the Haar lift of μ is the Borel measure μ on X defined by
£(/) = Iγ{L-\y)f{«x) dη(g)) dμ(y), V/e= C(X), where q is the nor-
malized Haar measure on fiber G.

(ii) Let (7, T,μ) be a t.d.s. and G be a l.c.s. group. A continuous
cocycle a is a continuous map α: 7 X T -> G, satisfying the cocycle
condition α(>>, ^ 2 ) = a(y, tx)a(y ί1? ί2), Vy e 7, ίx, t2 e Γ. Let
Z(y, Γ, G) denote the set of all continuous cocycles. (Hereafter, we will
drop the word continuous.) Every / e C( 7, (7) generates a cocycle M:
YXT-* G by setting /'(>>, ί) = f(y)~ιf{y t) \/y e 7 and / e Γ. Such
cocycles are called coboundaries and are denoted by B(Y9 T, G). The irίwYi/
cocyle (denoted by /) is a map (y, t) -> eV( j ; , r) G 7 X Γ, where e is the
identity element of G. If φ<ΞZ(Y,T,G) and lf<ΞB(Y,T,G) set
Φ " ^ ( ^ 0 ==/(>;)~1(P(>;

? 0 / ( j O I ι i s e a sY t o verify that φ Is ^
Z(Y9 T, G). We call φl9 φ2 e Z(r, Γ, G) cohomologous if φ2 = φx // for
some / e C(7, G). It can be shown that the set Z(7, Γ, G) is a Polish
space with respect to the metric given by

= 7 — D (<Pi.

where

d(φι(y,t)9φ2(y9t)).
γχκn

Here (Kn)™=1 c Γis a sequence of compact sets such that Kn c int Kn+l9

and U^Lx Kn = T. This metric also generates the compact-open topology.
(iii) Now we will describe the general set up used throughout this

paper. Let (7, T9 μ) be a t.d.s. Let X denote either Z X 7 (where (Z, G, v)
is another t.d.s.) or a group extension of 7 with (compact) fiber group G.
Let μ be either v X μ or the Haar lift μ on X The factor map from X to 7
will be denoted by m. In either case, we can assume that G acts on the left
of X [when X = Z X 7, the left G action is g(z, j>) = (zg~ι, y)]. We also
always have a right Γ action on X [when X = Z X 7 this is (z, y) t =
(z9 y - t)]. Given φ e Z(Y, T, G) ίλe skew product T action on X is given
by x, t -> φ(τrx, 0 ' 1 * ί, Vx e JT and Vί e Γ. The t.d.s. obtained from
this new action will be denoted by either (X9Tφ) or (ZXφY, T) if
X = Z X 7.

(iv) We regard the skew-product action as a perturbation of the
original T action on the extension X. The main result of this paper says
that residually many such perturbations retain various dynamical proper-
ties of (7, Γ, μ). Investigations of these sort of lifting results are not new
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in the context of group extensions and integer or real actions (i.e. when
T = Z or R). When T = Z and fiber group G is compact connected Lie
group, R. Ellis [4] has shown that many cocycles lift minimality. Similar
result for lifting topological weak-mixing is obtained by R. Peleg [15].
When G is compact connected abelian, Jones and Parry [14] have analo-
gous results for lifting ergodicity and weak-mixing. Recently S. Glasner
and B. Weiss [6] have obtained similar results for lifting unique ergodicity
for integer actions, when the fiber Z is a homogeneous space of G and the
group G is a Peano space. Using the same technique they proved a similar
result when Z = Pw(i?)-the projective w-space, and G = SL(« + 1, R).
The result of Glasner and Weiss is different from the previous results in
the sense that their generic theorems hold in the compact-open closure of
coboundaries rather than the class of all cocycles. In this paper, in
addition to looking at more general ergodic properties, we also consider
more general actions than Glasner and Weiss. Amenability of T plays the
key role in our proofs. A Rokhlin type tower theorems of C. Series [17]
and the existence of F0lner sequences for such groups gives us a handle on
constructing coboundaries with desired properties while remaining close
to the trivial cocycle. Finally we emphasize that our perturbations are
always with continuous cocycles and not simply measurable cocycles. We
feel that these methods can be used in a variety of other situations such as
differential equations [5], and we will give applications to affine exten-
sions (see [11] for a summary) and smooth Anosov systems in future
papers.

2. Statements of the main results and corollaries. From now on we will

assume the notation of (in) of §1. Set H = L2(X, μ) and B(H) be the set
of bounded operators on H. Given (Wn)n<ΞN, We B(H), Wn-*^W
(Wn -> sW) denotes Wn converges weakly (strongly) to W. We now need
to define some bounded operators on H. Let Q and P be respectively the
projections on the space of all G invariant and all Γ-invariant functions in
L2(X, μ) [here Γ-invariant means invariant under the unskewed Γ-action
on X]. Let ( ί/ g ) g G G and (Ut)teTbe the unitary representations induced on
H by the left G and right T actions. Given a φ G Z(7, Γ, G), let (Ut

φ)t^τ

be the unitary representation induced on H by the skew product T action
on X, corresponding to φ. Note that V} = UtVt <= T.

Next, we give a few more relevant definitions on groups. A l.c.s. group
Tis amenable if the space L°°(T) of all essentially bounded Borel maps on
T admits a Γ-invariant mean. This is equivalent to the existence of a
Folner sequence, that is, a sequence (Kn)™=ι of compact subsets of T such
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that Kn c int Kn+u{J™=ιKn = Γ, and

lim P^ " ' , "' = 0, Vί e Γ,
Λ-00 P ( A J

where p is a right-Haar measure on Γ.
We also say that a l.c.s. group G has property {A) if for each ε > 0,

and each finite set F c G, 3 a continuous map φ: I = [0,1] -> G with
d(φ(I), G) < ε, Vg G JF. Note that if G is path connected or compact
connected abelian then it has this property (A) (in the latter case this
follows because the one-parameter subgroups are dense, see [10]).

Fix a Folner sequence (Kn)™=1inT and a right Haar measure p on T.
Define operators V* by setting F/7

φ = / Ut

ψdp\κ(t). Finally if ψ e
C(Y, G), let Lψ be the unitary operator defined by L^f(x) = f(ψ(πx)~ιx)
VJC e Jf, V/ G L2( Jf, μ). The main theorem of this paper is the following

THEOREM (2.1). Consider the extension π: (X, Γ, μ) -> (Y, Γ, μ) Je-
scribed before. Assume that:

(i) 7" is an amenable R-group.
(ii) (Y, T, μ) is free and properly ergodic.

(iii) ίΛe group G has property (A). Then (1) ίΛe se/
{ φ|φ e 5 ( Ϋ 7 Γ 7 G ) SWCΛ ίΛa/ Frt

φ -> w P β } w r^/Jwa/ IΛ 5 ( 7 , T,G). (2) /«
/Λe case when π: X —> Y /s either a (compact) group extension or X = Z X Y

(Z, G, J>) is ergodic, the set (φ|φ e 5(>^, Γ, G) swcΛ /Λa/ (X, Γφ, μ) is
ergodic} is residual. (3) Further //(Y, 2", μ) is weak-mixing, the set {φ|
φ E ΰ ( y , T , G ) swcΛ /Λa/ (A", Γφ, μ) is weaA: mixing) is residual.

Note that when X is compact group extension of 7 or I = Z X Y
with (Z, G, p) ergodic, the operator PQ is just projection on constants. In
the general situation P and Q commute and PQ is again a projection
operator. Commutativity of P and Q is based on the fact that T and G
actions commute and P and Q can be weakly approximated by convex
sums of T and G translates. (For non-amenable groups this fact is based
on the existence of a unique invariant mean on the set of weakly almost
periodic functions [8].)

For the precise definition of an Λ-group, see Lemma 3.9, it is known
that a discrete solvable or connected amenable group is an i?-group. Also,
it can be seen that in the case of an abelian group extensions, one can use
techniques from Jones and Parry [14] to get the result without assuming
that T is an Λ-group. However, this technique does not seem to extend to
general skew products or even non-abelian group extensions. Hence our
method seems more suitable for general situation.
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Now we state some corollaries and examples.

COROLLARY (2.2). Consider the extension π: (ZX Y, T, v X μ) ->
(Y, T, μ) satisfying the assumptions of Theorem 2.1, and let T — Z. Let
(Z,G) be a minimal distal flow (see [3]) and (Z,G,v) be ergodic. If
(Y, T, μ) is a K-automorphism (Bernoullian), then the set {φ|
φ e B(Y, T,G) such that (Z XφY,T,v X μ) is a K-automorphism
(Bernoullian)} is a residual.

COROLLARY (2.3). Consider the extension π: (X,T,μ)-+(Y,T,μ)
satisfying assumptions of Theorem (2.1). Let (Y, T, μ) be uniquely ergodic
and assume that either X is a group extension with G abelian, or X = Z X Y
and (Z,G,v) is uniquely ergodic with G amenable. Then the set (φ |
φ G δ ( 7 , Γ , G ) such that (X, Tφ,μ) is uniquely ergodic}is residual.

COROLLARY (2.4). Consider either a group extension π: X —» Y or π:
Z X Y —> Y satisfying assumptions (i) and (iii) of Theorem (2.1). Further let
T be discrete, Y be infinite, (Y, T) be free and minimal and (Z,G) be
minimal distal. Then the set { φ|φ e B(Y,T,G) such that the corresponding
skew-product action is minimal} is residual.

We end this section with two examples.

EXAMPLE 1. Let (Y, T9 μ) be any Bernoullian system (say an ergodic
group automorphism or a shift). Let iV be a connected, simply connected
Nilpotent Lie group and Γ be any discrete cocompact subgroup. Setting
Z = N/T and G = N, it is known that (Z, G) is minimal distal. Hence by
Corollary (2.2) there are continuous cocycles in to N for which nilmani-
fold extension N/T X a Y is Bernoullian. Moreover, since there are many
minimal distal ergodic one-parameter actions (i.e., G = R) on N/T,
Corollary (2.2) can also be applied in this case.

EXAMPLE 2. Consider SL(2, R) and Γ c SL(2, R) be a discrete, co-
compact subgroup. Consider the horocycle action of G = R on Z =
SL(2,R)/Γ defined by

It is well known that the action of G on Z is minimal and uniquely
ergodic, so Corollary (2.3) is applicable. In fact one can consider more
general case of a horospherical extensions and these corollaries will still
apply.
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3. Proofs. Let ( , ) and || || stand for the inner product and norm in H.
Given/ e H, ε > 0 and m e N, define W(f, ε, m) = {φ|φ G 5(Y, 7\ G)
such that 3M e N, M > m and |<F$/, / ) - <Pβ/, />| < ε}. Note that
M depends on /, ε, m and φ. The first part of Theorem (2.1) is an
immediate consequence of the following propositions and the Baire-cate-
gory theorem.

PROPOSITION (3.1). Let (fj)JLι be a dense subset of L2{X, μ). Then

Π Π Π W(fj9l/n, m) = {ψ\φ eJϊ(y, Γ, G) such that V?

PROPOSITION (3.2). Each W(f9 ε, m) w o/?ew in B(Y, T, G).

PROPOSITION (3.3). Each W(f, ε, m) is dense in B(Y, Γ, G).

Before proving these propositions we state an abstract ergodic theo-
rem we need.

THEOREM (3.4). Let (Y, T, μ) be a t.d.s., Σ be the weakly-closed convex
hull of [Ut\t e T) and P be the projection operator on the set of all
T-invariant Borel maps in L2(Y, μ) and C be the projection on constants.
Then

(1) P G Σ {see [8], this is based on the fact that the space of all weakly
almost periodic maps on T has an invariant mean).

(2) Further if T is amenable, (Kn) c T is a Folner sequence and
Vn = jUtdp\κ{t),then

(a)FB->s/»(see[9D.
(b) //V/ e L2(Y, μ), (VJ, f) -» (Cf, /> then P = Cand(Y, T, μ) is

ergodic. {This is a generalization of the corresponding result for integer
group action.}

The proof of Proposition (3.1) follows from the following general
lemma.

LEMMA (3.5). Let H be a Hubert space and (Bn)™=v C be bounded
operators on H such that supn e N(||i?J|, ||C||) < R. For each m, n e N set,
W(m, n) = {x\x e H such that 3M G N, M > m and \(BMx, x) -
(Cx9 x)\ < l/n). If W(m, n) is dense in H, Vm, n e N, then W{m, n) =
H Vm, «.

Proof. Fix m, w G N. Let x ^ H. Pick a positive integer k > 3n such
that 3Λ(2||JC|| + 1) < fc/* Since W(m, k) is dense in H9 3y e ίr(m9 A:)
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and M > m such that ||x - y\\ < \/k and \(BMy, y) - (Cy, y)\ < l/k
< l/3n. Then

\{BMx, x) - (BMy, y)\ = \{BMx, x - y) - (BM(y - x), y)\

ϊ \\BJ(\\4 + \\y\\)\\χ - >ΊI ̂  Λ(2||χ|| +1|* - y\\)\\χ - y\\

< R(2\\x\\ + l)\\x - y\\ < R(2\\x\\ + l ) ^ < ^ .

Similarly we can show that, \(Cx, X) - (Cy, y)\ < l/3n. Hence

\(BMx, x) - (Cx, x)\ <\(BMx, x) - {BMy, y)\ + \(BMy, y) - {Cy, y)\

+ \(Cy,y)-(Cx,x)\

3« 3n 3n n

Thus x G W{m, n) and W(m, n) = H.
Let φ e W{fp l/n, m) V/, m, n, set H = L2(X, μ) and Bn = Frt

φ, the
above lemma proves that, for each / e L2{X, μ) there is a subsequence
«£ -> oo such that (V*JJ) -* (PQf9f). Now Theorem (3.4)(2a) says
V* is a weakly convergent sequence, hence (V*f,f) converges and
converges to (PQf9 / ) . This implies that V* -*WPQ (this is a general fact
about a sequence converging to a self adjoint projection on a complex
Hubert space). This proves Proposition (3.1). Proposition (3.2) is easy to
verify. Now we prove Proposition (3.3) by collecting a series of lemmas.
The following lemma is easy to verify.

LEMMA (3.6). Let φ G Z(7, Γ, G) andψ e C(7, G). Then
(i) U*Lφ = Lψί//'/Ψ W G Γ, <™</ F/Lψ - LφV*'ι\ V« e N

(ii) L ψ β = β^ψ = β andPQL^ = L ψ P ρ = P β .

LEMMA (3.7).
(a) Let /<= L2(X, jS), ε > 0 αnrf m e N. Lei φ e Z(7, Γ, G)

ψ G C(7, G). ΓΛe/1 φ /^ G PΓ(/, ε, m) ///φ G ^ ( L ψ / , ε, m).
(b) G/ϋ̂ w α«y / G L2(X, μ), assume that for any ε > 0, m G N

δ > 0, Ξ a ψ G C(Y,G) such that (i) Z>(/*, /) < δ α«rf (ϋ) /* G ίΓ(/, ε, m).
Then W(g, ε, m) = B(Y, Γ, G), V g G L2(X, jύ), Vε > 0 and Vm G N.

(a) Using Lemma (3.6) and that Lφ is unitary we get,
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and

(PQf,f) = (LφPQf, Lψ/> = (PQL+f,

This proves (a).
(b) Using part (a) and the fact that if φn, ψ G Z(Y, T, G) and ψ G

C(Y9 G) are such that D(φn,φ) -> 0, then D(φw /ψ, φ /ψ) -» 0 as Λ -*
oo, we conclude that φ /ψ G W(/, ε, m) iff φ G W(Lφf, ε, ra), V/, ε, ra.

Hence / G W (̂/, ε, ra), V/, ε, m implies /ψ G H^(/, ε, m), V/, ε, m and ψ,
and the latter says W(f,ε,m) = 5(7, Γ, G), V/, ε, m. Now (b) follows
from this.

LEMMA (3.8). Suppose that given any f G L2(X, μ), γ > 0 and δ > 0,
3ψ e C(7, G) ŵcΛ that (i) D(l*J) < δ and (ii) | |PLψ/ - Pβ/Ί| < γ.
W(f, ε, m) w έfeiwe in B(Y, Γ, G), V/ G L 2 (^, μ), ε > 0, m G N.

Proo/. Let/ G L2(X, μ), ε > 0 and m G N be given. Pick ψ G C(7, G)
for /, γ = ε/2||/ || and δ, satisfying conditions (i) and (ii) above. Now
consider

|( Vff, ή - (PQf, f)\ = \{VnL,f, V ) - (PQf, f)\

< \{VnLJ, L,f) - (PL+f, Lψ/)| + \(PLφf, V ) - (PQf, f)\.

The second term in the above expression satisfies

\(PL,f,Lφf) - (PQf,f)\ = | ( ^ / - W ) - (LψPQf,Lφf)\

= \(PLψf,Lφf) - (PQf,Lφf)\ (sinceL^PQ = PQ)

< | |PLψ/ - PQf\\ ||/1| < β/2 (since Lψ is unitary).

For the first term, since Vn ~*WP, we can find No e N, iV0 > m, such that
K F ^ / , Lψ/> - <PLψ/, Lψ/>| < ε/2. Thus 3iV0 e N, iV0 > m, such
that

\(vi:j,f)-(PQf,f)\<e

and hence /ψ G W(f, ε, m). Now use Lemma (3.7) to complete the proof.

Now we prove the crucial lemma that describes the construction of
function ψ satisfying conditions (i) and (ii) of Lemma (3.8). We first
construct this ψ when X = Z X 7, (and this assumption is in force
throughout the following lemma.) In this case we have Pf(z, y) =
fγf(z,y)dμ(y),VfeL2(X,μ).
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LEMMA (3.9). Given any f " e L2(X, μ), γ > 0 and 8 > 0, 3ψ e C(7, G)
such that (i) £>(/*, /) < δ and (ii) | |PLψ/ - PQf || < γ.

Proof. Since C(JQ is dense in L2(X,μ\ standard approximation
arguments allow us to assume that given / is continuous. Set, M =
S u p x e X | / ( x ) | and γ' be a small positive number. First choose P O G N

such that

( i )

Next by Theorem (3.4) (1), we can select
such that

[0,1] and G

(2) Σ λ, = 1 and

We now claim that, we can find a continuous map h: [0,1] -» G such that

(3) flf(zh(s),y)ds- < γ r, Vz G Z a n d j

(Here ds is the Lebesgue measure on [0,1].)
To prove the claim, set cQ = 0, ci = Σy= 1λ7, 1 < i < q. Then pick

αf , ^ e [0,1] such that at < c < bt V/ < <y and Σ ? ^ ^ - Λ,-) < y'/AM.
Let α^ = 1 and b0 = 0.

0 a.

(4)

Define h = g, on [ft,-, fl/+1], VO < i < q - 1. Since G satisfies condition
(A) one can easily extend h continuously to [0,1]. Since α/s and Z?/s are
chosen to be very close to each other, one can readily verify (3).

Since Λ[0,1] is compact, select δ* > 0 such that if gl9 g2 e
Λ[0,l] with d(gv g2) < δ* then d{g'λgl9 g^gj < δ/2P0

VgeΛ[0,l], and for this δ* pick 8λ > 0 such that
Vsi> s2 ^ [ 0 4 ] i f l5i ~ s2\ < 8λ then d{h{sλ\ h(s2)) < δ*.

Since T is amenable, we can choose a compact set F Q T with
> 1 such that

(where (Kn)^ι c Γis a Folner sequence}.

(5) P(F)
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Now we have to use the fact that T is an i?-group. First we give a

precise definition. An open subset S c T is called an R-set if (i) S is

compact (ii) if T yields a measurable free right action on a Polish space Y

and μ is a Γ-invariant probability measure on Y, then given any ε > 0, Ξ a

set V c Y such that (a) V and F 5 = U j e 5 F 5 are measurable (b)

V - s Π V s' = 0 V 5 , ί / G S , 5 # j ' ( c ) μ(F S) > 1 - ε. A l.c.s. group

Γ is an R-group if given any two compact sets E, F c T and δ > 0,

3S c Γ such that (i) S is an i?-set (ii) £ c S and (iii) S is (.F-δ) invariant;

p{s\s ^ S, sF Q S] > (1 — δ)p(S), where p is a right Haar measure on

T.

In our situation, setting F1 U ΛΓPo to be £, F1 to be F, y'/Af to be

ε, and y'/M to be 8 we get a set 5 c Γ and a. Borel set F c Y such that

(6) (i) S is open, S is compact (hence 0 < p ( S ' ) < o o )

(ii) Γ ' U ^ C S

(iii) p { φ e S, sF~x c S } > ( l - y'/M)p(S)

(iv) (a) V S is measurable

(b) V-sΠ V-s' = 0 i fs*i ' ,V,s, j ' e S

(c)/ι(F 5 ) > 1 -y'/M.

Let £ denote the probability on the transversal V, induced by μ (see [17]

for definition). Since S is compact, select a > 0 such that yl9 y2 e y and

rf( JΊ, ^2)
 < α imph'es

(7) I / ^ J Γ O - M Λ OHT'. WeίandVzeZ

Let Bv.. .,BR+ι be a partition of V in to Borel sets such

(8) that diameter (5,) < α, and £(£,) > 0 VI < / < /? and

, v Let / be the Lebesgue measure on [0,1] and ψ,: 5,- -> [0,1]

^ ' be a Borel isomoφhism taking ξ\B onto / (VI < i < R).

Since (Y, Γ, μ) is properly ergodic, £ is non atomic (see [17]), such a choice

of ψf. is possible, [1]. Set ψ Λ + 1 = 0 on 1?Λ + 1, and define ψ: F -> [0,1] by

setting ψl̂ ^ = ψf. VI < i < R + 1. Next, define ψ: F S -> [0,1] by set-

ting ψ(y 5) = ψ(tf), V 5 G S and v E: V. Since K ΛΊ Π F 52 = 0 , V^

# 52, ψ is well defined. Further ψ is Borel measurable since \p(E)~ι =

p({i~\E) Π F ) X S) (where /;: F x S ^ F S is p(v, s) =

ϋ s is a Borel isomorphism). Setting ψ = 0 outside F S we get a Borel

map ψ from Y onto [0,1]. Applying Lusin's approximation theorem to ψ,
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we get a continuous map Θ: Ύ -* [0,1] such that,

ίμ{y\y e Y, φ(y) Φ fay)} < β2μ(V S), where β > 0 is

(10) / such that (i) β < y'/p(S)M and (ii) |/x - t2\ < 2β, tv

\t2 e[0,l] =>|/(*Λ('i), y) -f(zh(t2), y)\ < γ' V z and y.

Now define Θ: Y -»[0,1] by setting

Clearly Θ is continuous. Now we claim that if y e Y and t0 e ^Γp

^ t o ) ~Φ(y)\< 8v T o s n o w t h i s, note that

then

P(F)

P(F)

P(F)

f Θ{y • tor
ι) dp(t) - f Φ(y r 1 ) dP(t)

f Φ{y r1) dp(t) - ί Φ(y r1) dP(t)

- / Θ{y Γ1) dp(t) - f Φ{yrι)dp{t)
JFΠ{F'tQ1) JF-F'tQl

1 /

P(F)\
Θ( y • r 1) dp(t) Φ(y - Γ1) dp(t)

This proves the claim.

lt

by (5).

Finally set ψ = h ° (P. Then ψ: y -> G is continuous, and we now
show that this ψ is the required map. Since

\-l
d{l*(y,t),e)-d(t(y)-1t(yt),e)

our previous claim, along with the choice of δl9 as in (4) implies that
£>,(/*, /) < δ/2P0, VI < i < Po. Hence

i-l 21" ι>P f t
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proving condition (i). Now we show that \\PL^f — PQf\\ < γ. We first

consider,

PLφf(z, y) = / /(zψ(j ), y) dμ(y) = [ 4- /
JΎ JY-VS JVS

Now

vs
(y) = ί f(zt(y t), y t) dξ(y) X dp

s Jvxsvs Jvxs

Setting So = {s e S^i*1"1 c S} and observing from (6) that

Mp(S-S0)

ω

(0 ί f(zφ(y t)9y t)dξxdp\t
P(S)

(ii) μ(Y — V S) < y'/M, and (iii) Fis a disjoint union of (2?;.)£.+i\ and

Lφf(*> y) - μ ( v s)\ Σ Jβχs f ( ^ ( y 0 , y* t ) d ξ x dpi

Vz and Vy.

Now pick y. e Bι (1 < i < R) and fix it throughout the rest of the proof.

By (7) we then have

PLφf{z,y) - μ ( F S)\ Σ f f(zΨ(y ' t),yt t) dξ X dp\s < 3γr

Vz and Vy.

Now we first prove the following technical lemma.

SUBLEMMA (3.10). Let R' = {y\y e Y such that Θ(y) Φ ψ(j^)}9 R =

R' Π F SQandR* = {(y, t)\y G F, ί e Sosuch thaty / e i?}.

(a) Λ* c F X So is a Borelset andξ X ρ|5(i?*) < β2

(b) 3 a Borelset Vx c F^wcΛ

(ii) | ^ ( j /0) - ψ( j ) | < 2)8, V^ G F -

. (a) Since ^ : F X S O - » F SO (/?(ι;, J ) = ϋ J ) is a Borel
isomorphism and/?(i?*) = i?? i?* is a Borel set. Also

ξ X p| s (Λ ) = μ\v.s(R) < ^ ^ < β> (by (10)).
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(b) L e t j e y and R*y = {t\t e SQ,(y, t) e i?*} Set Fx = {y\y e F
such that p{R*) > β). Clearly R* and Fx are Borel sets. If ξ(Vτ) > βp(S),
then considering

X = f d£x dp\s
JVXSΠR*

= / p\s{R*)dξ(y)>( p\s(R*)dξ(y)

This contradicts (a), hence £(Fi) < βp(S). To show (ii) first observe that

^ — / Θ{y v"1) dp(t) - My)

_ J _ r +(•-
r \ x / t"tf\ ΠKΛ, Γ'tn — KZ

•y Γ ' ι 0

Now j ί Fi and hence p(i?*) < )8, also ρ(F) > 1 by (5). Hence

Now iίt ^ F - tQl then r 1 e ^ F " 1 c S. So if j ; r 1 ί 7? then

and

P(F)

<β

-Uy)

(since |ψ(^) | < l)

Since

p(F) = p{F- ίό1) = p(F 1 - R*),
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p(F t? - R*y) - p(F)

p(F.ro

ιnR*)

P(F)

P(F)

f>(R*y) . β
p(F) p(F)

< β (since ρ(F) > 1).

This proves that \Θ(y t0) - ψ(y)\ < 2/*> Λus proving the sublemma. D

Now we continue with the proof of Lemma (3.9). We already have

shown,

PLφf(z, y) - μ(V S) dp\

Vz <Ξ Z and Vy e Y.

Now writing Bt X So as the union of {Bt Π Vλ) X So and (Bt — Vλ) X So

and applying (i) of the previous sublemma. We get

l^xSΌ hβt-\
< y\ \/z (Ξ Z and VJ E Y , 1 < i < R.

Bt-Vι)XS0

Further if y e i?. - Vl9 then by sublemma (3.10) \Θ(y ί) - ψ(y)| < 2̂ 8,

and ψ(j^ t) = h°6(y - t)9 ψ( j) = ψ/(jθ on J57. All these observations

show that

'(Bi-VjXSo

Vz^Z and Vy G 7 , V 1 < / < R.

Moreover, since £(Fχ) < γ'/M, we have

f(zhoφi(y),yrt)dξXdp\

- SB_
These combine to yield

f(z,y)-μ(V-S)tf , y% t) d£x dp\t <6γ',

V(z, j) e Z X 7.
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Now,

/.BiXS0

Λ O dξxdp\s

,)/ [ί f(^o^(y)9yrt) dξ\B,(y)\ dp\s(t)

l f(zh(s), y, • ή dl{s) dp\s(t).

By our choice of h we have,

f1f(zh(s),y)dl(s)~ £λ,ϊ

Hence

(A)

where,

', V(z, y) e Z X 7

λJ Uj{z,yj t) dp\s(t).

To complete the last step of the proof, again writing Y as F S U
( y — V - S) and transforming integration over V - S to that o n F x S , as
before we can show that

(B) f(z, y)dμ-μ(V-S)Σ t(Bj)f f{z, yj • t) dp\s(t) <3γ'

For simplicity letting a(z, y) = Σfj^i λ(ί/g f(z, y) we see that

\\PLφf- PQf\\ <\\PLφf- a'\ +\\a' - Pa\\ +\\Pa - PQf\\

Now \\PL^f - α'|| < 7γ' by inequaUty (A),

\\Pa-PQf\\^\\P\\h-Qf\\<Ί'\\P\\ by (2)

and

\\a' - Paf = ί \a' - Paf dμ < f \a' - Pa\(\a'\ +\Pa\) dμ
Jx Jx

<2M( \a' - Pa\dμ < 2Λf(3γ') by inequaUty (B).
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This shows that

\\PLφf- PQf\\ < 7γ'

if γ ' is small enough. This completes the proof.

Proof in the nontriυial group extension case. Now let (X, T, μ) be a

group extension of (7, T, μ). Note that in this case PQ = C the projection

on constants. Since there is a Borel section from Y to X, one can assume,

without loss of generality that 1 = 6 x 7 and the T action on G X Y is

given by (g, >>)•* = (g°O> 0> y ' 0 where α: 7 X Γ - ^ G is a Borel

cocyle and μ = η X μ where η is the normalized Haar measure on fiber G.

[Note that the already proved case is when a = 1]. Let H = Range a [see

[19] for definition], then H is a closed subgroup and by changing a to a

Borel cohomologous cocyle if necessary, we can assume that (i) a(y, t) e if

Vy, ί and (ii) the action (A, >>)•* = (ΛflO, 0> y - t) on H X Yis ergodic.

(Here ηH X μ is the measure on H X Y, where η ^ is the normalized Haar

measure on H. (See [19] for details.) Define W: L2(X, μ) -> L 2(X, μ) by

Let

,y)= ί f(g,y)dμ(y),

We claim that WPγ = P. To see this consider operators VKn = f Vt

adρ\Kn

where Vt

af{g, y) = f(ga(y, t)9 y * t) and Kn is a Folner sequence. Ab-

stract ergodic theorem (3.4) implies Vκ -* s P, we show that F ^ ->

proving our claim. Consider

\VκJ(g, y) - WPY(g, y)\2dη X μ

= f ί i f \VκJ(gh,y)-WPγf(gh,y)\2dηH(h))dβMg)My)
JY JG/H \JH I

where β: G -> G/H is the quotient map and g = β(g)

/ (/
G/H JY \JH

wherefg(h, y) =f(gh,y).

Note that

WPYfg(h, y) = JH PYfg{hh', y) dηH(h')

= / f fg(h,y)dμ(y)dηH(h).
Jfj Jy
/ f

Jfj Jy
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Since (h, y) t = (ha(y, t), y t) is ergodic action, and G is compact,
given ε > 0, 3N0 e N such that

n>No=* fγJH \vκJM> y) ~ wpvfM> y)\fγJH
Hence

x

n>N0=> [ I f f \VκJg - WPγfg\
2dηH X dμ) dfiMg) < *•

JG/H \JY JH I

This proves Vκ -> s WPγ.
Now WC = C, and

| | P L ψ / - C/l = | | ^ P y L ψ / - WCf\\ <\\W\\ \\PγL,f- Cf\\.

Now \\W\\ depends only on the structure of the bundle π: X -> Y and our
Lemma (3.10) constructs a map ψ E C(Y, G) (given ε > 0 and 8 > 0}
such that £>(/ψ, /) < δ and | | P y L ψ / - Cf\\ < ε. This completes the proof
in group extension case.

In the case of part (2) of Theorem (2.1), PQ = C the projection on
constants. Now the proof follows from part (1) and Theorem (3.4)(2b).
Part (3) can be considered as lifting ergodicity for the product exten-
sion TΓXTΓ: XxX-*YxY by the cocycles of the form a X α,
(α e B(Y, T, G)). It is not hard to see that all the previous lemmas and
propositions will remain valid for this extension. Thus weak mixing can be
lifted generically using exactly the same technique but for the product
extension.

Now we turn to the proofs of the corollaries.

Proof of Corollary (2.2) Since (Z, G) is minimal distal, Furstenberg's
structure theorem [3] gives a countable (because all spaces are separable
metric) inverse system {(Zw, G)} Λ β 0 | 1 ^ of t.d.s.'s with factor maps φΛ>w:
Z r t -»Z w Voo > n > m such that (i) Zo is a one point space (ii) φ Λ + l j Λ :
Zn+ι -» Zn is an isometric extension (see [3]) and (iii) (Z, G) =
invlim(ZA2, G). Since Φn+hn: Zn+ι -> Zn is an isometric extension, apply-
ing a structure theorem [12] for such extensions we get a metric bi-trans-
formation group (Kn+V Z^+ 1, G) and closed subgroups Hn+ι c Kn+1

such that (1) (Kn+ι\Z^vG) = (Zn,G), (2) (Hn+ι \ Z'n^G) s
( Z π + 1 , G), and (3) the quotient map: Hn+1 \ Z'n+1 -> X π + 1 \ Z ^ + 1 identi-
fies with φn + ι n Vw ̂  N. Set ̂ n = (Φoo,«)*^' a n <^ select ergodic probabili-
ties i / + 1 on (Z,; + 1 ,G) such that ( Φ ^ + 1 , J * < + 1 = ̂ + 1 V/i, where φ^+hn:
Z'n + ι —» Z w + 1 is the quotient map. In summary we get the following
diagram.
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(Z, G, V)

(Zo, G, P0)

Note that for each α G Z ( 7 J , G ) the extension TΓ: ( Z X J J ) - ^

(Y, Γ) is distal and family (Zn Xα Y, Γ, vn X μ) forms an inverse system
with inverse limit (Z XaY,T,v X μ). Also note that each φ'n+hn X id:
{Z'n+1 Xa Y, T) -> (ZM' XttY, Γ) is a group extension with fiber i ^ + 1 .
Finally set l/Λ = {a\a e J3(Y, Γ, G) such that (Z^ Xft Y, Γ, ^ X μ) is
weak mixing}. Theorem (2.1) implies each Un and hence Π^=1ί7n is
residual. Now if a e Π^=1C/rt. Each (Zn

r Xa Y, Γ, ^ X μ) is weak mixing.
Now a generalization of a theorem of R. K. Thomas [18] (and D. Rudolph
[16]) says group extension of a X-automorphism (Bernoulli automor-
phism) is a X-automorphism (Bernoullian) iff it is weak-mixing. This
proves Corollary (2.2). Here we remark that the theorems of Thomas and
Rudolph are proved when the measure on the group extension is the Haar
lift. However these theorems can be generalized to any ergodic measure on
the group extension. To do this we use a structure theorem about ergodic
measures on group extensions due to Keynes and Newton (Theorem (2.3)
in [12]), which says "up to a Borel isomorphism" all ergodic measures on
group extensions are Haar lifts. This completes the proof of Corollary
(2.2).

Proof of Corollary (2.3). The proof is entirely analogous to that of
Theorem (2.1) but now we carry out analysis on C(X) with sup norm
|| | | ^ rather than L2(X). First let X= Z X Y, let all the operators be
defined as before but now we think of them as operating on C(X). One
can easily show that (Z Xa Y, T) is uniquely ergodic iff \\VJ - Cf\\^ -> 0,
V/e C(X) (C being the projection on constant). F o r / e C{X), ε > 0,

and m e N, setting W(f, ε, m) = { a\a e B(Y, T,G) such that 3M e N,
M > m and \\VMf - C/H^ < ε} one can prove analogs of all the proposi-
tions through Lemma (3.8). This reduces the proof of Corollary (2.3) to



SKEW PRODUCT ACTIONS OF AMENABLE GROUPS 361

constructing (given δ, ε > 0) a ψ e C(7, G) such that (i) D(/ψ, /) < δ and
(ii) \\PLφf — C/ll^ < ε. The construction of ψ is exactly as before the only
difference being we need to replace inequality (2) [see proof of Lemma
(3.9)] by the one with || Ĥ  norm rather than L2 norm. To do this since G is
amenable with Folner sequence say (Sn) Q^G, pick No e N large
enough such that

(where η' is a right Haar measure on G). Then using usual approximation
arguments we can get a finite set (g/)f=1 e G such that

< ε, Vy

The proof in the case of non trivial group extension is reduced to
lifting ergodicity by Corollary (2.2.6) of [13]. But this was proved in
Theorem (2.1).

Proof of Corollary (2.4). Since T is amenable and (Z, G) is minimal
distal, we can pick ergodic T and G invariant measures μ and v on Y and
Z respectively. Now note that proper ergodicity was used in the proof of
Lemma (3.9) only to assure that the measure ξ on the transversal was non
atomic, and this still holds because Y is infinite, Γis discrete and (F, T) is
minimal. Thus Theorem (2.1) gives us a residual set of cocycles lifting
ergodicity. Our claim is that this class of cocyles lift minimality too. To
see this observe (i) by minimality, μ and v give positive measures to non
empty open sets and (ii) Z X a Y -> v Y being a distal extension of a
minimal system, Z X a Y is a disjoint union of its minimal sets. Since
(Z XaY, v X μ) is ergodic, condition (i) implies that there are points with
dense orbit and hence (Z X a 7, T) is minimal. Again the group extension
case is similar. D

REMARK. AS this paper was being written, a paper of M. Hermann [7]
was brought to our notice. There he proves some generic theorems when
the base space is a circle. The notion of the L°°-fixed point property used
in [7] turns out to be useful in our situation also. A t.d.s. (Z, G, v) where v
is any σ-finite invariant measure, is said to have a L°°-fixed point property
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if any weakly compact Γ-invariant set K Q L°°(Z, v) contains a fixed

point. Adopting the technique used by Hermann to construct the map h:

[0,1] -> G in our proof of Lemma (3.9) and replacing the entire L2

analysis by a similar L°° analysis, one can generalize Theorem (2.1), to the

situation when (Z, G, v) has a L°°-fixed point property. No further details

will be provided here due to space limitation. A special case of particular

interest is when G is path connected and amenable, Z = G and action of

G on Z is by left multiplication. In this case Theorem (2.1) implies that

given a properly ergodic free t.d.s. (7, T, μ) with Γ-an amenable i?-group,

Ξ a continuous cocyle a: Y X T -> G such that (GXaY, η X μ ) is

ergodic, (η being a left Haar measure on G). This answers, in topological

setting, a question raised by R. Zimmer, namely is every amenable group

range of some Borel cocycle on an ergodic dynamical system.
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