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ON THE LOCATION OF ZEROES OF
OSCILLATORY SOLUTIONS O F y M = c(x)y

H. GlNGOLD

We locate the zeroes of oscillatory solutions of wide classes of
differential equations, y(n) = c(x)y. Asymptotic techniques are used.
The asymptotic behaviour of solutions and their derivatives up to the nth
order are also provided.

New results are obtained in addition to old results becoming more
transparent.

1. Introduction. The main purpose of this paper is to demonstrate
a method for locating the zeroes of oscillatory solutions of the differential
equation

(1.1) y™ = c(x)y.

As shown by the references cited, the differential equation (1.1)
attracted a considerable amount of attention. However, the location of
zeroes of oscillatory solutions of (1.1) does not seem to be available in the
literature. It is the purpose of this paper to fill this gap for a wide class of
differential equations (1.1).

The method to be used exploits concepts of classical asymptotics
which seem to us the most appropriate ones to handle problems of
singular differential equations. The singularity of the differential equation
(1.1) stems from the fact that the independent variable x ranges on an
infinite interval and also from the fact that c(x) may be unbounded.

We do assume an amount of smoothness on the coefficient c(x)
which is more restrictive than a continuity assumption made e.g. by Kim
[12]. However, this is a reasonable price to be paid for obtaining the fine
structure of y(p\x), v = 0,1, . . . ,w — 1 as x -> oo.

In particular, most of the asymptotic properties known so far on
oscillatory and nonoscillatory solutions of (1.1) can be better understood
by the techniques employed in this work.

An additional reward of this paper is that we produce Prufer type
representatives for solutions of (1.1) which belong to certain subspaces of
the linear space of solutions of (1.1). See e.g. Hille [9] p. 394.

The course of events in this paper will be as follows: After this
introduction we proceed to §2, which contains preparations for an
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318 H. GINGOLD

asymptotic decomposition theorem. In §3 we prove an asymptotic decom-

position theorem, and in §4 we find the location of zeroes of oscillatory

solutions of (1.1). This paper is an attempt to generalize results of Gingold

[5] for the case n = 2. Results of §4, in this paper, depend heavily on §5 in

Gingold [5].

2. Preliminaries. We first convert the scalar differential equation

(1.1) into a vectorial differential system for the vector

(2.1)

y

y

y

(n-l)

The resulting matrix differential system is

(2.2)

with

(2.3) A =

Y' = AY

A = (ajk), j,k = ! , . . . , « .

anX = c(x),

aJj+1

c(x) 0

In this matrix

(2.4)

(2.5)

and all other entries in this matrix are zero.

Notation 2.1. We will denote

(2.6) r:=r(x)=\c(x)\1/n.

It is a simple exercise to verify that the eigenvalues of the matrix A

denoted by λk(x), k = 1,...,«, are easily found to be

(2.7) λk(x) = r(x)(e'β>) = r(x)(cosθk + isinθk),

where

argc(x)
(2.8) = l,...,/ι, c(x)Φ09

and arg z is defined for z complex

(2.9) -77 < arg z = Imln z < π.
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We use the following asertion throughout this paper and we will not

restate it in the sequel unless it will be replaced.

Assumption 2.2. Let J be the interval [a, oo). Then

(i)

(2.10) | C ( Λ : ) | # 0 , C(X) is real for x e J.

(ii)c(x) ^ C2(J).

It is a simple consequence of Assumption 2.2 that r(x) e C2(J). It is

also a simple exercise to verify that the matrix A possesses n linearly

independent eigenvectors which form the columns of the following

Vandermonde matrix F,

(2.11) V=(υιk), / , * = 1,...,Λ,

(2.12) vιk = λ'ϊι(x).

Therefore, the transformation

(2.13) Y= VZ

takes the differential equation (2.2) into

(2.14) Z' = AτZ,

with

(2.15) Ax = [V~ιAV- V~λV'\,

and with

(2.16) V~ιAV= d i a g ί M j c ) , . . . ^ ^ ) } .

We will need more properties of the matrix V~ιV in (2.15). Therefore

we will need the following lemma:

LEMMA 2.3. Denote by K a constant matrix,

(2.17) K={ksd), s,d=l,...,n,

to be introduced later. Denote by b also a constant to be introduced later.

Then if V is the Vandermonde matrix given by (2.11), V is differentiate and

(2.18) V'Ψ' = (In r)'bK.

Proof. In order to find explicitly V~ιV we let

(2.19) V =

1 1 ••• 1

(e'θήr (e'^)r ••• (e'°')r

(e2lβί)r2 (e2lβ*)r2 ••• (e2lθ»)r2
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Then

(2.20)

with,

(2.21) V1 =

1

eι

e7

(n-l)iθ2 e(n-l)iθn

Thus, one can verify that

(2.22) ΌetV =
k<ι

iθ< - eiθ«)}.
J

Next we turn to the adjugant of V in order to find V'1. To this end
we evaluate clk the cofactors of V as follows: Let Vlk be the following
(n — 1) X (n — 1) matrix which is obtained from F b y eliminating the /th
row and the A:th column in an obvious manner. (The arrows point
respectively to the eliminated row and column in (2.23)).

(2.23)

row I -*

Then,

(2.24)

with

column k

I

1

(eί(/-D^)r/-i

/ei(n-l)θn\rn-l

clk
= (-i)'

(2.25)

row/

,[1 + 2+•••+(«-!)]

column k

I
1
etek

9i{n-l)θH
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Obviously (Det Vlk) is a constant. Therefore

(2.26) clk = (_l)/+V[«(«-D/2-(/-i)](Det yiky

The entries of V~ι are given by

(2.27) (DetF)F- 1 = (Osj)9 s9j = 1,...,*,

with

(2.28) vsj = cjs.

By (2.19) one has

(2.29) V = (v'lk), o'lk = (/ - l y c - D M ' - V .

Denote by «ί(ί, s, d = 1,...,« the entries of

(2.30) (ΌetV)V-ψ' = (usd).

Then
A! W

(2.31) usd = £ δ^.^ = £ c ^

= Σ (-l)J+

We now let
n

(2.32) * „ « Σ (-l)J+SU - l)e>W<(Ό*VJS)9

and

(2.33) b^:=

and the result follows.
Throughout this work, we will assume that a suitable norm || ||

defined on the set of n by n matrices is given.
We now plan to perform a second linear transformation. To this end,

we need the following:

Assumption 2.4. The nonnegative mapping h(x) given by

(2.34) A(JC):- Γ | ( / - V ) ' | *
J X

is finite on J. Also,

(2.35) lim (r-
2{x)r'{x)){k) = 0, k = 0,1,
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and {therefore, without loss of generality) all eigenvalues ofr~1Aι are distinct

onJ.

We can now provide the following needed lemma:

LEMMA 2.5. Consider the matrix r~ιAv Let assumptions 2.2, 2.4 hold.

Then, there exists on J an n by n matrix function T(x) with the following

proeprties;

T(x) is inυertible and continuously differentiable on J.

(2.36) T(x) = / + Δ(JC)

where

(2.37)

Also,

(2.38) Ω : = T-1([
where μ^x), j = \,...,n, are the n distinct eigenvalues of r'xAx with the

ordering

(2.39) limμ.(x) = *'*;, j = \,...,n.

Moreover,

(2.40) \\T'(x)\\=Θ(h'(x)), * - > o o .

Proof. A proof follows from the discussions in Gingold [6,7].

We proceed to the next section.

3. Asymptotic decomposition. In this section, we intend to find a

fundamental solution of (2.2) by use of an "asymptotic decomposition

theorem."

THEOREM 3.1. Let assumptions 2.2, 2.4 hold. Assume that throughout J

r\x) does not change sign if In r(x) is unbounded and

(3.1) Σ\^b{kn-kvv)\φ0, j , k = l,...,n.
jΦv

Let

(3.2) Γ \{r-^2r'f\ds < oo.
a

Then, there exists an interval J = [a , oo), a < a, such that a fundamental

solution of {22) on J is given by

(3.3) Y = V{I + P(x)) exp f D{s) ds.
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The n by n matrix function P{x) is continuously differentiable on J and

(3.4) lim||P(*)|| = 0.
x-*cc

The matrix D is given by

(3.5) D = diag[re<"i - b{\*r)'kll9...9rei9* - fc(lnr)'fcΛ#i].

Proof. First we show that on an interval 7, a fundamental solution of

(2.2) can be found such that

(3.6) Y = V{I + Δ)(7 + P) exp f D(s) ds.

In (3.6), P = P(x) is a certain « by « matrix function such that for x G J

(3.7) | | P ( * ) | | < l a n d lim | |P(*) | | = 0.
x-»oo

The matrix Z) is a diagonal matrix defined as follows: Denote by sjk,

j, k = 1,...,/?, the elements of T~ι{x)T\x). Denote

(3.8) S = d i a g [ j u , . . . , O

Then

(3.9) 2):= rΩ - S

With the help of Lemma 2.5 we notice that the transformation

(3.10) Z=TZ2

takes the differential system (2.14) into

(3.11) Z'2 = {T'ιAλT - T~1r)Z2.

The differential system (3.11) turns out to be an "almost diagonal

system". See Gingold [7]. Thus, there exists an interval / such that a

fundamental matrix solution of (3.11) is given by

(3.12) Z2 = (/ + P(χ)) expf D(s) ds

on /, where P(x) satisfies (3.7). This implies (3.6).

We now intend to show that

(3.13) lim Γ \\D{s) - D{s)\\ds = 0.

Consider the determinant of r~ιAλ — μl.

It is a simple exercise to verify that pn(μ), the characteristic poly-

nomial of r~λAx has the following form:

(3.14) pn(μ) = fiV' - bknr'2r' ~ A +(>-2r')2P«
i
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where/7rt_2(μ) is a polynomial of order n — 2 in μ. It possesses continuous

coefficients in x on the closed interval [α, oo].

Construct the new polynomial

(3.15) qn(μ, β) = ff (e'4 " * V ~ V - μ) + epn_2{μ)
7 = 1

where ε is a complex number.

Without loss of generality, we may assume that qn(μ, ε) possesses

distinct eigenvalues on / and |ε| < ε0 where ε0 is a small positive number.

Regard the roots of qn(μ, ε) = 0 as functions of ε (and the parameter

x). Then by considering the initial value problems

<3 16> t ' J - f M *<°>-"<-"V-V, 7-1.. . . . . .
we deduce that the n distinct roots of qn(μ, ε) are holomorphic functions

of ε for |ε| < ε0.

Moreover,

(3.17) μ = eiΘ> - bkjjr-2r' + 0(e), j = 1,... ,/ι,

where O(ε) is uniform with respect to x on /.

In (3.15), by letting

(3.18) ε = (r- V ) 2

we conclude that

(3.19)

We have

\\D(s) - D(s)\\ds < /

+ Γ \\S{s)\\ds.
J X

This implies (3.13) by combining (3.2) and (2.34). Define now

(3.21) />(*):= (/ + Δ(x))(/ + P(JC)) exp Γ [Z>(^) - Z)(j)] ώ - /

and the result follows.

REMARKS. It is also possible to use a transformation of the indepen-

dent variable x given by

(3.22) η = Γ r(s)ds

Jx

Γ
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so that (3.6) would also be derived by Levinson's theorem. See [3], p. 93.
However, the setting of this theorem is more general.

For theoretical reasons, it seems immaterial to replace (3.6) by (3.3).
However (3.3) points out that the eigenvalues of Ax need not be calcu-
lated. While the explicit construction of D{x) is a relatively simple task,
the numerical calculation of D(s) is more laborious. D(s) cannot be
found explicitly.

By following the proof in Gingold [7], finer bounds on | |P(JC)| | could
be found.

For wide classes of mappings c(s), it can be shown that

(3.23) | | P ( x ) | | = 0 ( * ( * ) ) , *->°o.

If we add the assumption that c(x) e C 3(/), then it can also be
shown that

(3.24)

Theoretically, the bounds in (2.37), (3.23), (3.24) "may not be inter-
esting". However, for numerical purposes, accurate bounds may be cru-
cial.

4. The location of zeroes. Thanks to Theorem 3.1 we are able to
locate the zeroes of solutions of (1.1). Moreover, as a bonus other
asymptotic properties of solutions will follow.

In the sequel, when we will refer to a solution of (1.1) we will have in
mind a non-trivial solution of (1.1). Throughout this section we will
assume that conditions of Theorem 3.1 are fulfilled.

Let us prove the following lemma.

LEMMA 4.1. For n = 1,2,... and n is odd, the matrix A possesses
N — (n — l)/2 pairs of complex conjugate eigenvalues. If n is even and
c(x) > 0, A(x) possesses N = (n — 2)/2 pairs of complex conjugate eigen-
values but if c(x) < 0, it possesses N = n/2 pairs of complex conjugate
eigenvalues.

Proof. We let

(4.1) 0-Ztήϊϊ.

Then A possesses a real eigenvalue iff θk/π given by (2.8) is an integer. We
will consider several cases.
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Case I. n is odd and c(x) > 0. It is obvious by (2.8) that

Then for A: = 1 we obtain the only real eigenvalue

(4.3) M*) = Γ(JC).

Case II. n is odd and C(Λ ) > 0. Then,

*η 0, 2( k — 1)
(4 .4) β = —, — = , fc = l , . . . , « ,

n IT n
which implies that the only real eigenvalue is

(4.5) λ^(x) = -r(x) , fc = — — .

III. w is even and c(x) > 0.

Then by (2.8) the only real eigenvalues are

(4.6) MJC) = r(jc), λn/2+ι(x) = -r(x)

Case IV. n is even and c(x) < 0.

Then by (4.4) it follows that no real eigenvalue is possible at all.

Lemma 4.1 helps us to adopt the following notations.

DEFINITION 4.2. We say that the differential equation (1.1) belongs to

class I, II, III, or IV if c{x) pertains to one of the four cases described in

Lemma 4.1.

Notation 4.3. By relabeling indices we may assume without loss of

generality that (from the outset, in §1)

(4.7) Reλ x > R e λ 2 > ••• > Reλ^, λJ+N = λj, j=l,...9N,

where N is the number of pairs of complex conjugate eigenvalues guaran-

teed by Lemma 4.1. Moreover, we let

(I)

(4.8) Re λ^ = λ, = r(x) > Re λx

if (1.1) belongs to class I.

(Π)

(4.9) R e λ Λ f > R e λ π = λn = -r(x)

if (1.1) belongs to class II.
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(III)

(4.10) r(x) = λn = Re λn > Reλλ >ReλN> Re λn_x

= -r(x) = λn_1

if (1.1) belongs to class III. (The case N = 0 is not excluded from this

notation.)

Notation 4.4. We now define the real functions Ap(t), Bv(t) as follows:

(4.11) Av(x) + iBv{x):= f [r(t)e"> - r-\t)r'(t)k99] Λ9

V = 1 , . . . , Λ .

Thus

(4.12) Av{x) = / * (r(ί)cos^ - r'\ί)r'(t)alv) dt

(4.13) 5_(x) = f (r(0sin^ - ι -1(/)r'(0α2,) dt

where

(4.14) a i , : = R e * , r ,

(4.15) a2v:= lmkrv, v = l,...,n.

By the convention just made one has the following:

Case I:

(4.16) An = f (#•(/) - r - ^ M O α i J Λ, xx e /,

(4.17) 5Π = -a2n Γ /-HO' 'ίO Λ = -α2nln[r(x)r-1(x

(4.18) ^ = f lr(t) cos ̂ 77 - r-\t)r'{t)aΛ dt,

(4.19) Bj = jf (r(ί) sin ̂ , τ - r-HO' 'ίOβa,) Λ, y = 1,... ,N.j

Case II:

(4.20) A/.- f (/-(Ocos^^TΓ - r-^Or' ί/)^) Λ,

(4.21) Λ,:- jf (r(/)sin^^^ - r ^ M ' K ) Λ,



328 H. GINGOLD

(4.22) An =

(4.23) Bn = -a2nln[r(x)r-1(xι)].

Case III. An9 Bn, are given by (4.16), (4.17). Aj9 Bj are given by (4.18),

(4.19). An_l9 Bn_λ are obtained from (4.22), (4.23) by substituting n - 1 in

place of n.

Case IV. Aj9 B} are given by (4.20), (4.21).

For the sake of uniformity we add the following assumption:

Assumption 4.5. If

(4.24) ΣW^O,

then the function r(x) is monotone increasing or monotone decreasing

on/.

Since we have Assumption 4.5, we may add the following assumption

without loss of generality.

Assumption 4.6. For t e / in cases I, III

2π
(4.25) s in — - r~n{t)r'{t)alv > 0, v = l9...9n9

and in cases I, IV

(4.26) s in ̂  - r-2(t)r'(t)al9 > 0 , v = l9...9n.

This assumption is given in order to guarantee that the functions

Bv(x), found above, possess inverses.

Indeed, the following lemma (whose trivial proof is omitted) can be

proven.

LEMMA 4.7. With Assumptions 4.5 and 4.6 the functions Bn(x), Bn_1(x)

and Bj(x),j = 1,... ,7V, are monotone functions of x on J.

We will need to find n real linearly independent solutions of (1.1). We

first define

(4.27) W=(wjk)= ^

and we write down the elements of the first row of W by

(4.28) " Ί , = l + Σ . , " = 1,2,...,
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with

(4.29)

Similarly, we have

Σ: = ΣΛ>

(4.30) w2v = Σ \(8j, + PP) = λ,(l + pj + Σ \Pj,
7 = 1 jΦv

and

(4.31) wmv=

Hi +pj + i K'^j" m = 2 ' '"

We choose n real linearly independent solutions of (1.1) as follows:

By (4.28) via (3.3) we have each of the n linearly independent solutions of

(1.1) to be

iθlv{x)

with

From now on the letter y with lower indices will denote something

other than the entries of the matrix function Y which appears in (3.3).

Thus, we adopt

Notation 4.8. We denote n real solutions of (1.1) by yv(x), v = 1 n

and we define them as follows:

If (1.1) belongs to classes I, II or III

iBn)

θln(x))

θo(x))

y2J{x) =
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If (1.1) belongs to class III, we pick

(4.32) yn^(x) = RewUn_ιtxp(An_ι + iBn_x)

and the rest n-\ real solutions according to (4.29), (4.30), (4.31). If (1.1)
belongs to class IV we pick the 2N = n real solutions according to (4.30),
(4.31).

It is simple to verify that in all cases I-IV the set of n real solutions
form a basis for the linear space of solutions of (1.1).

Notation 4.9. We denote by Sn the linear subspace generated by yn{x)
if (1.1) belongs to class I, II, or III. If (1.1) belongs to class IV, Sn will
denote an empty set.

We denote by Sn__1 the linear subspace generated by yn_1(x) if (1.1)
belongs to class III. If (1.1) belongs to class I, II or IV, Sn_λ will denote an
empty set.

We denote by Sj9 j = 1,.. .,N, the N two-dimensional linear spaces
spanned by yλj(x), y2j(x). If iV = 0, we let Sj above denote empty sets.

We also denote by S the linear space of solutions of (1.1).

Let us first turn to the location of zeroes of a non-trivial solution
yJ(x)eSjJ = l,...9N(N>0).

Let clJ9 c2j be two real variables. Then, it can be easily verified that

(4.33) yj(x) = cXj(x) + c2jy2j(x)

= [M /(x)cos(5/x) + θυ(x) + Ψl2

(4.34) Mj(x):= 1 + £ .[(expΛ^jc))

and with

(4.35) t a n Ψ 1 2 J = - ^ , y = 1,...,7V.

In order to better understand the process of locating the zeroes of
y(x), we define an "ideal solution" of (1.1), yL(x) by letting in (4.33),
(4.34).

(4.36) P = 0.

For the particular solution (4.33) we then get

(4.37) «!,(*)-<>, £ , - 0
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to obtain

(4.38) yL(x) = (expAj(x))^j + clj cos(Bj(x)

We do not claim that yL(x) is a solution of (1.1). However, the location of
its zeroes on / are easily observed to be at xt such that

(4.39) Bj(xt) 4- Ψl2j = (2/ + 1 ) | (/an integer),

or if Bj(x) has an inverse on /

(4.40) Xl = B

We expect the zeroes of y(x) for x large enough, to be close to xt given by
(4.39) or by (4.40).

Indeed, we are now able to apply the results of Gingold [5], §5, to
locate with high accuracy the zeroes of yy(x)J = 1,... 9N.

It will be superfluous to repeat all the arguments of Gingold [5].
Therefore, we state our results in a form such that the reader who is
interested in the details will be able to easily reproduce them as an
exercise.

The next theorems provide information on solutions of (1.1) beyond
that given by Kim [12,13], Willet [24], Kreith [15], Swanson [21]. We did
not come across any other method in the past which also provided with
high accuracy the location of zeroes of solutions of (1.1). It clearly
demonstrates an edge of asymptotic techniques.

THEOREM 4.10. Let assumptions of Theorem 3.1 and Assumptions 4.5
and 4.6 hold. Then, the linear subspace Sn9 (Sn_1) contains nonoscillatory
solutions 6>/(l.l) if either

(4.41) a2n = 0 K , . ! = 0).

or (without restriction on a2n(a2n_ι)) if

(4.42) sup|lnr(;t) | < oo.

moreover, yn e Sn has an exponential growth in cases I and III and it has an
exponential decay in case W.yn_λ e Sn_λ has exponential decay in case III.

If (1.1) belongs to class III, then

M

(4.43) lim ^ = 0,

where

(4.44) Mn:= Mn{x) =
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(4.45) Mn_x:= M n _ 1 (x)

Proof. This is an immediate consequence of the definitions.

We have

THEOREM 4.11. Let assumptions of Theorem 4.10 hold. If Sn is not the

empty set and N > 0 then in cases I, III,

(4.46) lim - ^ - — = 0, j = l,...,N.

IfN > 1,

Mix)
( 4 . 4 7 ) l i m J = 0 , y = l , . . . , 7 V -

where Mj are given by (4.34).

If Sn_1 is not the empty set and N > 0 then in case III

(4.48) lim ί £ M - 0.
*-+*> Mn\X)

Proof. The trivial proof is omitted.

Next we have

THEOREM 4.12. // assumptions of Theorem 4.10 hold. Let n > 3, or let

(1.1) belong to the class IV.

Then S contains N linear subspaces Sj of oscillatory solutions yj given by

The location of the zeroes ofy3 are given at the points xmonJ such that

<4 4 9 )

and also

(4.50) xmj ~ 5/1((2my. + l ) f - * l i 2 , , ), |m,| -> oo.

\mj\ —> oo means that mj attains successive integral values and either

nij -* + oo or m7 -> -oo.

Moreover, let aln Φ 0 αwJ let

(4.51) lim | lnr ( jc ) |= oo.
Λ:-> OO

/« c^βΛ11, II, yn e 5Π w an oscillatory solution with zeroes xm

oo.

(4.52) lim \xm n-B-1
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In cases II, III, with (4.51) and aln_x Φ 0, yn_λ e Sn_λ is an oscilla-

tory solution with zeroes xm satisfying (4.52) with n — 1 replacing n.

Proof, See Gingold [5] §5.

We state a theorem which summarizes the preceding oscillation re-

sults.

THEOREM 4.13. Let assumptions of Theorem 4.10 hold. Let y(x) be the

general solution 0/(1.1) given by

(4.53) y(x) = cnyn(x) + Σ c^y^x) + c2yj;2y(x) + cι«-iJΊi-i(*)

//£„ or Sn_λ or both are zero we choose correspondingly cn or cn_x or both to

be zero.

(i)//

(4.54) a2nΦθ, a^^ΦO

and (4.51) holds then each non-trivial solution of (1.1) is oscillatory. In

particular, all solutions in case IV are oscillatory.

(ii) Let cn Φ 0. Then, (in cases I, III) the zeroes of xm ofy(x) are such

that with] = n they satisfy (4.52) and

(4.55)
Mx{x)

< C, x e J,

for a certain constant C.

(iii) Let

(4.56) cπ = cυ = c 2 y = 0, j = 1,... j 0 - l,y0 < ΛΓ.

Then the zeroes ofy(x) are located at points xm such that

( 4 5 7 )

(4.58)

Also

(4.59) I
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with I = n — 1 ifjQ = iV απJ I = j 0 + I if I < N, and C a certain constant.

(If Sn_λ is empty put Mn_λ = 1.)

(iv) // in case III

(4.60) cn = cXj = c 2 y = 0, j = l9...,N,

then the zeroes of y(x) are located at xm . 77πs satisfies (4.52) w/Y/z n — 1

replacing n.

Proof. The inequalities (4.55), (4.59) follow directly from the defini-

tions of Av(x), Mv(x). Thus, in (4.55) we take

)
< 00(4.61)

and in

(4.62)

(4.59)

c-

we take

C : -

Sup
x<=j

Sup
xej

y(χ) - c

ny»(χ)

Mλ(x)

y(χ)-yΛχ)

MM
< 00.

For the approximation of the zeroes of y(x), we "identify in (4.53) a

leading term" and use the details in Gingold [5] §5.

Next we obtain a "non-oscillation" theorem.

THEOREM 4.14. Let assumptions of Theorem 4.10 hold.

(i) Let a2n = 0 or let a2n Φ 0 and let (4.42) hold.

If cn Φ 0 when Sn is a non-empty set, then in cases I, III y(x) is

non-oscillatory and (4.61) holds.

(ιi) If a2n_λ = 0orifa2n_1 = 0 and(4.42) holds and

( 4 . 6 3 ) cn = c l 7 = c2j = 0, y = 1,...,7V,

/Â ft in case III j ^ x ) w nonoscillatory if Sn_λ is not an empty set.

If in case III, a2n = 0 or a2n Φ 0 and (4.42) hold, and if

Lιj L2j ~~ u ' 7 ~~ x ? ? i V

Theny(x) is nonoscillatory.

Proof. We omit the trivial proof.

REMARKS. A similar analysis carries over to n th order linear homoge-

neous differential equations whose characteristic polynomials possesses n

distinct eigenvalues. In this case the location of zeroes of oscillatory

solutions can be provided in terms of the elements on the main diagonal

of a certain matrix derived from the coefficients of the linear differential

equation.
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If

(4.64) lim r~2r' Φ 0, oo
x—* oo

then a different analysis is needed. It is an easy exercise to verify that for

(4.65) c(x) = θxm, m > -n,0real,

all conditions of Theorem 3.1 are satisfied.

The same is true for (4.66) and (4.67).

(4.66) c(x) = θex\ θ real and a > 0.

It is worth noticing that in case (4.66) or in case

(4.67) c(x) = xa(\nx)β, a > -n,j8real,

the "analytic theory" of asymptotic expansions cannot be applied.

This article also shows how to derive Pruffer type formulas for

solutions of higher order linear differential equations. This question has

been asked by several authors. See Swanson [21], pg. 95.

The relation between oscillation and certain eigenvalue problems of

(1.1) is well known. Thus, our method provides approximations to eigen-

values in certain eigenvalue problems.

REFERENCES

[I] G. V. Anan'eva and V. Balaganski, Oscillation of the solutions of certain differential
equations of higher order, Uspehi Mat. Nauk, 14 (1959), 135-140.

[2] G. A. Bogar, Oscillations of nth order differential equations with retarded argument,
SIAM J. Math. Anal., 5 (1974), 473-481.

[3] E. A. Coddington and N. Levinson, Theory of Ordinary Differential Equations,
McGraw-Hill, N. Y., 1955.

[4] G. J. Etgen and W. E. Taylor, Jr., The essential uniqueness of bounded nonoscillatory
solutions of certain even order differential equations, Pacific J. Math., 68 (1977),

339-346.
[5] H. Gingold, On the location of zeroes of oscillatory solutions, Trans. Amer. Math.

Soα, 279 (1983), 471-495.
[6] , On the global existence of a simplifying transforming matrix, SIAM J. Math.

Anal., 9(1978), 1076-1082.
[7] , Almost diagonal systems in asymptotic integration, Proc. Edinburgh Math.

Soc, (to appear).
[8] P. Hartman, Ordinary Differential Equations, Wiley, New York, 1964.
[9] E. Hille, Lectures on Differential Equations, Addison-Wesley Publishing Co., Reading

Mass., 1969.
[10] I. T. Kiguradze, Oscillation properties of solutions of certain ordinary differential

equations, Dokl. Akad. Nauk, 144 (1962), 33-36.
[II] , On the oscillatory character of solutions of the equation dmu\dtm +

a(t)\u\" sign u = 0, Mat. Sb., 65 (107) (1964), 172-187.



336 H. GINGOLD

[12] W. J. Kim, Nonoscillatory solutions of a class of nth-order linear differential equations,
J. Differential Equations, 27 (1978), 19-27.

[13] , Asymptotic properties of nonoscillatory solutions of higher order differential
equations. Pacific J. Math., 93 (1981), 107-114.

[14] V. A. Kondrat'ev, Oscillatory properties of solutions ofy^n) + py = 0, Trudy Moskov.
Mat. Obsc, 10 (1961), 419-436.

[15] K. Kreith, Oscillation Theory, Lecture Notes in Mathematics # 324, Springer

Verlag, Berlin-Heidelberg-New York, 1973.

[16] J. G. Mikusinski, On Fife's oscillation theorem, Colloq. Math., 2 (1949), 34-39.
[17] Z. Nehari, Disconjugacy criteria for linear differential equations, J. Differential

Equations, 4 (1968), 604-611.
[18] , Nonlinear techniques for linear oscillation problems, Trans. Amer. Math. Soα,

210 (1975), 387-406.
[19] , Green's functions and disconjugacy, Arch. Rational Mech. Anal., 62 (1976),

53-76.
[20] G. H. Ryder and D. V. Wend, Oscillation of solutions of certain differential equations

of nth order, Proc. Amer. Math. Soc, 25 (1970), 463-469.
[21] C. A. Swanson, Comparison and Oscillation Theory of Linear Differential Equations,

Academic Press, New York, (1965).
[22] I. M. SoboΓ, On the asymptotic behaviour of the solutions of linear differential

equations, Dokl. Akad. Nauk SSSR, 61 (1948), 219-222.
[23] W. F. Trench, A sufficient condition for eventual disconjugacy, Proc. Amer. Math.

Soc., 52 (1975), 139-146.
[24] D. Willett, Disconjugacy tests for singular linear differential equations, SIAM J. Math.

Anal., 2 (1971), 536-545.

Received March 3,1983.

WEST VIRGINIA UNIVERSITY

MORGANTOWN, WV 26506




