
PACIFIC JOURNAL OF MATHEMATICS
Vol. 120, No. 1,1985

A COEFFICIENT INEQUALITY FOR FUNCTIONS

OF POSITIVE REAL PART WITH AN APPLICATION

TO MULTIVALENT FUNCTIONS

ALBERT E. LIVINGSTON

We obtain sharp bounds on the magnitude of certain determinants,
whose entries are the coefficients of a function of positive real part in the
unit disk. These inequalities are used to solve a coefficient problem for a
certain subclass of multivalent functions.

Introduction. Let P(z) = c0 -4- cxz + be analytic in Δ = {z:
\z\ < 1} and satisfy Re(P(z)) > 0 for z in Δ. The author [6] proved that
the coefficients satisfy the inequality \cn/c0 - cγcn_x/c\\ < 2 for all n > 2.
This inequality was then used to obtain shaφ bounds on the coefficients
of functions in a subclass of multivalent close-to-convex functions. The
inequality has recently been used by Libera and Zlotkiewicz [4] in their
study of the coefficients of the inverses of convex functions. In §2 of this
paper we generalize the above inequality, obtaining precise bounds on the
magnitude of certain determinants involving the coefficients cn.

Section 3 of the paper deals with the coefficient problem for a certain
class of multivalent functions. Goodman [1] has conjectured that if
f(z) = axz+ is at most/?-valent in Δ then for n > p + 1,

( l l ) . . * 2t(n +p)\

Inequality (1.1) reduces to the well-known Bieberbach conjecture when
p = 1. Let S(p) be the class of functions which are analytic and /?-va-
lently starlike in Δ. A function /(z), analytic in Δ with /(0) = 0, is a
member of S(p) if and only if there exists 8 > 0 such that for δ < \z\ < 1,

(1.2) Re

and for 8 < r < 1,

(1.3)
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We shall say that F is in K(p), if it is analytic in Δ and there exist / in
S(p) and 8 > 0 such that for δ < \z\ < 1,

(1.4) Re
/<*)

> 0.

We shall say that Fis in K(p) and analytic on \z\ = 1, if Fis analytic
for \z\ < 1 and there exist/, analytic for \z\ < 1, such that (1.2), (1.3) and
(1.4) hold for \z\ = 1. Inequality (1.1) was proved by Goodman and
Robertson for a function in S(p) in case all its coefficients are real [2] and
by Robertson [7], if ax = a2 = = cιp_2 = 0, the remaining coefficients
being complex. The author [5] proved (1.1) for n = p + 1 for functions in
K(p) and in [6] the inequality was proved for all n > p + 1, if / is in
K(p) and ax = a2 = = ap_2 = 0. A proof of (1.1) for functions in
K{p) with real coefficients appears in the literature [3]. However, the
proof seems to be flawed (see for example MR 58 #22521). In §3 we give
a different and simpler proof of this result using the inequalities obtained
in §2.

2. Coefficients of functions with positive real part.

LEMMA 1. Let Re c 0 > 0 and for z in Δ,

(2.1) />(z) = (Rec0)
ί I m c o = c z"

y - i

where for j = l,2,...,m, t} and λj are real with λj ^ 0 and Σ™=1 λy = 1.
Define for a fixed n the s by s determinants Q(

k

s\ s > 1, k = 1,2,... ,m by

Qίs) =

-2)lk

1

,i(s-2)tk

-n + s-2/C0

1 0
cjcn 1

C2/C0

0
0

0

then for s = 1,2,... α/tJ/i = 2,3,...
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Proof. We have cn = (Re co)Σ™=ι 2 λ7e?int; for n > 1. Since a determi-
nant is linear in any of its columns, we can write

i(n + s-2)tk

1
eu"

2(Re c0)

2(Re

ei{"
1

Co)

<+*-2^/Co c

eu'/c0

•n+s-lA

0
1

-o ••• CJ

... o

... oQP = Σ λy

Z{κeco)e J/Co C5-3/co

Expanding the determinants by their second row we obtain

7i(n + s-2)tk J # # # /
cn + s-3/ c 0 c/i/c0

(2.2) e'2'"

,i(s-2)tk i
Ci-3/c0

£ 2(Reco)λ ei2tj

0
0

cs_3/c0

0
0

We proceed by induction. The case s = 1 is trivial. For illustrative
purposes we also consider the case s = 2. <2[2) = emik — cn/c0. Thus

2

1 -

1 -

2Re Σ

4R
/ R e c 0

\ c0

\ n

)

-int f r ί

\ C0

m

Σ λ,̂ -,
7 = 1

- 1.

-0 1

2

Σ>

Cn

c0

cn

Co

2
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Assume that Σ^ = 1 λk\Qίs"l)\2 = 1 for some s. Using (2.2) we obtain,

(2.3) ΣK\QΪS)\2 =

= Σ

+ 4

'k I

/ D p . \ m m

- 4Re ^ Σ Ke-^Q'r1' Σ λ,e'*βj

Recn
Σ λye^β<*

m

A: = l

m

>ri +4
Rec0 - Re

Rec.

= Σ^Jβί-1'! = i.

This then completes the proof of the lemma by induction.

THEOREM 1. Let P(z) = c0 + cxz +

ReP(z) > 0 for z in Δ. For s = 1,2,3,...
analytic in Δ

iέ? Λ̂e (^ + 1) 6y (s + 1)

n + s/CO

cχ/co

s-l/CO Cn + s-2/C0

1 0

Cn/C0

0

0

Then for s = 1,2,... = 1,2,...,

Recn

Equality is attained for P(z) = (1 + z)/(l - z).

Proof. Since functions satisfying the hypothesis of the theorem are
uniform limits in compact subsets of Δ of functions of the form (2.1), we
may restrict our consideration to such functions. Thus we may assume
that the cn have the form



COEFFICIENT INEQUALITY

We therefore have, using the linearity of A^ in the first column

143

(*)_ V 2 R e

i(n+s-l)tk

1
ϊ-l/tO cn + s-2/c0

1 0 0
0

2ReC0

Σ λ^'
Using the Schwarz inequality and the fact that Σ™=1 λ^ = 1, we obtain

Mil2 2ReC0 Σ K\Qίs+1)\2 -
2ReCn

by Lemma 1. This gives the inequality stated in the theorem.

COROLLARY 1. Let P(z) = c0 + cxz + be analytic in Δ and satisfy
Re P(z) > 0 for z in Δ αn<i let 1/P(z) — d0 + dλz + , then for p =
1,2,...,

p

Σ dk-tCn- <2 < 2

= 0,1,2, ...,/> αwrf n > p .

Proof. Since (P(z))(l/P(z)) = 1 we obtain for any p = 1,2,... the
system

-f

0
0 = doc2

Let

0 = docp_t + dγcp.t_x + + έ/._,c0.

0 0

0

0

ί Cp-t-l
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and let Btj be the minor of the element in the ith row andyth column of

B. Using Cramer's rule we obtain fory = 0,1, ...,(/> — /),

BdJ =

Therefore in the notation of Theorem 1

P P (— Λ\k~

Σ A — X""1 ^ '
K — i n — K ^ " ^ it — K n / + l

Cn-t Cn-t-l "n-p

0

0

Cp-t Cp-t+l

= Λp~t

Thus by Theorem 1

dk-tCn-k
Rec 0

3. Coefficients of functions in K(p).

( 3 . 1 )

L E M M A 2 . For n>p + l and t = 1 ,2, . . . , ( / > - 1)

2p(n+p)\
2 +

4p(k+p)\

k - P -

2n(n + p)\

(2p)\(n-P-l)\(n2-p2)'

(3.2) 2 + * Σ J
P

ί P

yL
 (D +

\s = t+l \P ̂

p + s)\(p-

2t(n

s)\(p-

4s(n 4

- s)\(n -

4t(k +

+ p)\

%s{k +

-s)\(k-

-p)\

-p-1)

PV

P)\
- p -

\{n2

» ( * ' •

-s2)

t)\(p-t)\(n-p-l)\(n2-t2)

(continues)
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2n(n + p)\

(p + t)\(p-t)\(n-p-l)l(n2-t2)'

If n — p + 1, we interpret sums of the form Σ£l],+ 1 as zero.

Proof. If « = p + 1, both sides of (3.1) equal 2(/> + 1). Forn > p + 2,
(3.1) appears as equality (2.6) in [6\. If n = p + I and / = p — 1, both
sides of (3.2) equal (2p + l)(p + 1). For all n > p + 2 and t = p - \,
(3.2) appears as equality (2.5) in [6]. We assume then that (3.2) is true for
a particular value of t and all n > p + 1. Replacing t by (/ - 1) in (3.2)
and using the induction hypothesis we see that the proof of (3.2) will be
complete if we can prove that for a fixed t and all n > p + 1,

2(« + t)(n +p)\
(3.3)

-t)\(p-t)\(n-p-\)\(n2-t2)

2(t - \)(n + p)\

(p + t- \)\(p - t + l)!(κ - p - \)\(n2-(t - I)2)

"y 4t(k+p)l

*-7n (P + t)\(p - t)\(k-p - \)\(k2 - t2)

*-,+i (p + t- l)\(p - t + \)\(k -p- \)\(k2-(t - I)2)

2n(n + p)\

~ (p + t- l)\(p - t + ΐ)\(n -p- \)\(n2 -(t- I) 2)'

We will prove (3.3) by induction on n. If n = p + 1, both sides of (3.3)
equal 2(p + ΐ)(2p + ΐ)\(p + t)\{p - t + 2)!. Assume that (3.3) is true
for a particular value of n. Replacing n by (n + 1) and using the induction
hypothesis, the left side of (3.3) becomes,

2(n + t + !)(« +p + l)\

tyXp-tyXn-py.^n + lf-i

2(t-ΐ)(n+p + 1)!

(p + t- l)\(p - t + ΐ)\(n-p)\((n + I)2 -(t - I)2)

4t(n +p)\

(p + t)\(p-t)\(n-p-ί)\(n2-t2)

4(t -l)(n+p)\

(p + t- \)\(p - t + \)\(n -p- 1)!(»2 -(t - I)2)

(continues)
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2n(n+p)l

(p + t- l)\(p - t + l)!(n -p- 1)!(«2 - ( ί - I)2)

2(n + t)(n +/>)!

+ / - \)\{p - t + l)!(π - /> - l)!(n2 - ( / - I)2)

2(n+p + 1)!
p + t)\(p-t)\(n-p)\(n-t + l)

2(t- ΐ)(n +p + 1)!
(p + t - \)\(p - t + \)\(n - p)\(n + t)(n - t + 2)

2(n+p)\
(p + t)\(p - t)\(n - p - \)\(n + t)

2(n+p)\
(p + t- \)\(p - t + 1)!(« - p - \)\(n - t + 1)

2(n+p)\ Γ n+p + 1 1
(p + t)\(p — t)\(n — p — \)\ [(n — p)(n — t + 1) n + t

(p + t - \)\(p - t + l)\(n - p - l)!(n - t + 1)

2(f-l)(ιι+/> + !)!
(p + t — ί)\(p — t + 1)!(« — p)\(n + t)(n — t + 2)

2(2» + \)(n + p)\
(p + t- \)\(p - t)\(n - p)\(n - t + \)(n + t)

+ 2(n+p)\
(p + t- \)\(p - t + \)\(n -p - \)\(n - t + 1)

2(t- !)(» +p + 1)!
(p + t— ϊ)\(p - t + 1)!(« - p)\(n + t)(n — t + 2)

(p + t- !)!(/> - t)\(n -p- \)\(n - t + l)

(n-p)(n + t) (p-t + 1)

2(t- l)(n +p
(p + t- l)l(p - t + l)!(n - p)\(n + t)(n - t + 2)

(continues)
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)!(/> - / + l)!(#i -p)l(n + t)(n - t + 2)

2(π+/» + ! ) ! Γ ί - 1

(p + t - \)\{p - t + l ) ! ( n - p)\(n + t)[ n-t + 2

= 2 ( w + l)(n+p + 1 ) !

~ (p + t - \)\{p - t + l)!(n - p)l((n + I ) 2 - ( ί - I)2)

which is the right side of (3.3) with n replaced by (n 4- 1). This completes
the proof of (3.3) by induction.

LEMMA 3. Let F{z) = axz + a2z
2 + be in K(p) and be analytic

for \z\ < 1 with an real for each w, then there exists f(z) = bλz + b2z
2 + •

in S(p) and analytic for \z\ < 1 with bn real for each n, such that
Re(zF'(z)/f(z))>Ofor\z\<l.

Proof. Since F(z) is in K(p) and analytic for \z\ < 1, it is known that
there exists h(z) in S(p) and analytic for \z\ < 1 such that
RezF'(z)/h(z) > 0 for \z\ < 1._Le^P(z) = zFf(z)/h(z) and Q(z) =
[P(z)P(z)] 1 / 2 = [{zF\z))2/h(z)h{z)]1/2, where we take the principal
branch for the square root. Let/(z) = zF\z)/Q(z) = bλz + fc2z

2 + ,
then / is analytic for \z\ < 1 and bn is real for each n. Also zf\z)/f{z)
= \{zh\z)/h{z)) + iίzΛ'ίzVΛίz)). Thus Rez/Xz)//(z) > 0 for |z| <
1. Since zF\z) has exactly/? zeros in Δ [5],/(z) has exactly/? zeros in Δ.
Thus/is in S(p) and Re(z,F'(z)//(z)) = Re Q(z) > 0 for \z\ < 1.

THEOREM 2. Le/ JP(Z) = αxz + a2z
2 + 6e ι/ι ΛΓ(/?) w/7Λ ΛΠ real for

each « ,

(3.4)
- t)\\n - p - l)\(n2 - t

Proof. Without loss of generality we may assume that F is analytic for
\z\ < 1. Then by Lemma 3, there exists/(z) = bxz + b2z

2 4- in S(p)
and analytic for \z\ < 1 with bn real for each «, such that Re[zi7/(z)//(z)]
> 0 for \z\ < 1. Let P(z) = zF\z)/f{z) = c0 + cxz 4- . Comparing
coefficients, we obtain

(3-5) lie, = t hcn-k
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Let 1/P(z) = d0 + dxz + . Comparing coefficients of both sides of
the equality/(z) = (zF'(z))(l/P(z))9 we have,

(3.6)

Combining (3.5) and (3.6), we have for n > p + 1,

P I k \ n

(3.7) wαπ = Σ Σ toΛ-/ KΛ-Λ + Σ bkcn_k

P I P

Σ Σ dk_tcnλtat + £ bkcn_k.
\ k=p+l

Making use of Corollary 1 and the fact that \cn\ <> 2|co|, we obtain from
(3.7)

(3.8) * k l < ί > H + Σ 2|co|N + |co||6j.
<-l k=p+l

Since / i s in S(p) and bn is real for all n, it is known [2] that for
k >p + 1,

Since Re(l/P(z)) > 0 it follows that \dn\ < 2|do | = 2/|co|. Therefore,
from (3.6) we have

n-\

/ = i lcol lcol

Combining (3.9) and (3.10) we have for k > p + 1,

I Λ I ^ V 2s(k+p)\
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Combining (3.8) and (3.11), we obtain,

P n-\ I P 2(1 , \,

»kl S Σ2'kl + k Σ+[ [ Σ (, + ,„(,_,),(»_,_!),(*._,»)

α,
J β l (/^ + ̂ ) ! ( ^ - ^ ) ! ( w - / ^ - 1 ) ! ( Λ 2 - J 2 ) \ / . I /

Therefore,

«kl < Σ 2/kl
/ = 1

, "y y 4,2(A:+/>)!

*-7+i .-!(/» + *)!(/» - *)!(* - /> " l) ' (fc2 ~ ^2) '

.-2 (/> + S)KP ~ s)\(n -p- l)!(n2 - s2) ftΊ ' ''

, f 2.2(»+ />)!

Thus,

n\an\ ^
/ - I

~ + 1 ί i ,_r+1 (/»+ s)\(P - s)\(k -p- ink2 - 5 2 ) ί | β J

£
y 4s(n+p)\

, + i (P + *)Ki» " *)!(» -P- 1)K«2 - ^ 2 ) ' '

2t\n+p)\

+ 0 ! ( / > ' ) ! ( > ' p l ) ! ( « 2 ' 2 ) 1 ''•
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Therefore,

+ £ AήR±£)1
{p 4- s)\(p — s)\{n — p — l)!(/t2 — s2)

/ . .\ / .\ / -ι\ /..2 ,2\ I I n

L+ 2+
(2p)\(k - p - l)\(k2 -

Using Lemma 2, we obtain,

tY\P ~ t)\(n -p- l)!(n2 - t2)

2np(n+p)\ , ,

Ϋ l
(2p)\(n - p -

which is equivalent to (3.4).
Inequality (3.4) is known to be sharp for functions in S(p) with real

coefficients [2]. Since S(p) is contained in K(p)y (3.4) is the best possible
inequality that can be obtained for K(p).
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