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A NEW APPROACH TO THE
KREIN-MILMAN THEOREM

J. MARTINEZ MAURICA AND C. PEREZ GARCIA

In this paper we give a new definition of extreme points for which
we get a generalization of the Krein-Milman theorem within the general
context of locally convex spaces over valued fields.

Some generalizations of the theorem of Krein-Milman were developed
in the seventies in order to include other types of topological vector spaces
apart from the usual ones (e.g. Kalton’s papers within the context of
locally p-convex spaces). However, A. F. Monna says in 1974 that no way
is known to attack problems such as the Krein-Milman theorem in
ultrametric analysis (i.e. when the real or complex field is substituted for
another valued field).

In order to give a theorem of Krein-Milman which includes the case
of locally p-convex spaces (p € (0,1]) and the ultrametric case, we
propose a new definition of extreme points. The latter definition agrees
with the usual one in case the ground field is R or C and it allows us to
give a non-archimedean Krein-Milman theorem.

We are going to consider vector spaces E over any complete non-triv-
ially valued field K. For K = R, C, and p € (0,1] we say that 4 C E is
p-convex if A\A + pA C 4 for all A\, p > O such that \? + p? = 1. For a
non-archimedean valued field K two different kinds of convex sets will be
considered: 4 € E is said to be M-convex (convex a la Monna) if
AA +pA +vA C A for all A, p,v € K such that |A], |u}, [»] <1 and
A+ p+r=1;and fora € E, the set 4 C E is said to be a-convex if 4 is
M-convex and a € A. More details over these kinds of convex sets we will
use in the sequel are in [3] (for p-convex sets) and [5] (for the non-archi-
medean case).

In the sequel we will use the term “convex” to indicate any of the
different kinds of convex sets; also E (A) stands for the corresponding
convex hull of 4.

1. Semiconvexity. Extreme points. The following definition is very
close to the weak-convexity of Monna ([5] p. 28).
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DEFINITION 1. Let E be a vector space over a valued field K. A subset
A of E is said to be semiconvex if A4 + (1 — A)A4 C A for every A of K
satisfying |A| < 1.

Notice that if K = R, C every semiconvex set is 1-convex and if K is
non-archimedean every M-convex set and every a-convex set are semicon-
vex.

DEFINITION 2. Let E be a vector space over a valued field K and 4 a
subset of E. A non-empty part S of A4 is said to be an extreme set of A if
the following properties are verified:

(1) S is semiconvex.

(i) If x,...,x, €4 and Ef{x,,...,x,} NS # &, then there exists
anindexi € {1,...,n} such thatx, € S.

It is easy to verify that if A4 is convex, then the property (ii) is
equivalent to A — S is convex.

DEFINITION 3. Let E be a vector space over K and A4 a subset of E. A
point x € A4 is said to be an extreme point of A4 if it belongs to some
minimal element of

E,={ S CA|Sisanextremeset of 4}.

Next, we prove that if K = R, C this definition gives the same
extreme points as the usual ones for every p-convex compact set 4 of a
separated locally p-convex space. For that, we denote by E,(A) the set of
p-extreme points of 4 according to the definition of Kalton [4]. (Notice
that this definition is slightly different from the corresponding definition
of Jarchow [3], however they agree for closed p-convex sets). Also F,(A)
indicates the set of extreme points of 4 corresponding to our Definition 3
for p-convex sets.

THEOREM 1. Let E be a Hausdorff locally p-convex space over K = R, C
and let p € (0,1]. If A is a non-empty compact p-convex set of E, then:

(1) Every minimal element of E ; consists of one point.

(2) Fy(A) = E,(A).

Proof. (1) Let S be a minimal element of E, and suppose x, y are
different points of S. As S is semiconvex and closed, AS +(1 - NSc S
for every A € K such that |A| < 1. Consequently 2y — x € S; and also for
n=12... z, =(n + 1)y—nx€S So the sequence (z,) C S verifies
lim(z,/n) = y — x # 0 and S is not bounded.
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(2) This follows from (1) and the fact that x € E,(A) if and only if
A — {x} is p-convex (see [2] p. 96 for p = 1 and [4] for any p).

2. Non-Archimedean extreme points. Throughout the rest of the
paper, E will indicate a topological vector space over a field K, endowed
with a non-trivial non-archimedean valuation. We are going to restrict
ourselves to the case of K local (i.e. locally compact) (otherwise there do
not exist any compact convex set with more than one point [5] p. 40).

Theorems in this section are proved for 0-convex sets; however with
minor changes they remain true for the other kinds of convexities over E.

THEOREM 2. Let E be a topological vector space over K and assume that
E’ separates points of E. Then, every convex and compact subset A of E has
extreme points.

Before proving the theorem we need the following lemma:

LEMMA 1. Let E be a topological vector space over K and let A, B be
convex sets in E with B C A. If the interior of B in A is non-empty, then B is
clopen in A.

Proof. Take x, € B such that B is a neighborhood of x, in 4. Now, if
x € B, then B = B — x,, + x; hence B is a neighborhood of x in 4 and B
is open in A. Also, if y€ 4 — B, then BN (y + B) = & and conse-
quently A — B is open in A4.

Proof (of Theorem 2). Let A be with more than one point and define
CE, = { S C A|Sis a closed extreme set of 4 } .

CE , is non-empty and a standard application of Zorn’s lemma shows that
CE , has some minimal element.

Let S, be one such minimal element. First we prove that S, # A.

For that, choose f € E’ such that f(A4) is not reduced to be a single
point and define

5= (s € 4117(s)] = sup /(x)]}.

It is easy to verify that S; € CE, and that S, # 4. Then, S, # 4.

Let S € E such that S C §,. Applying Lemma 1toA4 and 4 — S, we
deduce that S is closed in E. Thus S, = S and S, is a minimal element of
E,.

COROLLARY 1. Under the assumptions of the Theorem 2, every closed
extreme subset of A contains extreme points of A.
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If A € E we will denote by Ext(A4) the set of extreme points of 4. In
the following theorem we use the terminology of [1].

THEOREM 3 ( Non-archimedean Krein-Milman theorem). Let E be a
Hausdorff locally convex space over K. If A is a non-empty convex compact
set of E, then A = E (Ext(A)).

Proof. For x, € A — E(Ext(A)), let H be a closed hyperplane which
separates x, and E (Ext(4)), and let f(x) = « an equation of H (f € E’).
As S, € CE (see the preceding theorem), we can choose x € Ext(4) N S,.
Also, E_(Ext(A)) is in one side of H, so |[f(y)| < |a| for every y €
E (Ext(A)). It follows that |f(a)| < |f(x)| < |a| for every a € 4.

Thus, 4 and E.(Ext(A)) are in the same side of H and, therefore,
x, € A.

The main difference between the real or complex case and the
non-archimedean case is contained in the following theorem.

THEOREM 4. Let E be a Hausdorff topological vector space over K and
let A be a convex set in E with more than one point. Then, every extreme set
of A cannot be reduced to a single point.

Proof. Suppose 4 to be absorbing (otherwise replace E by the linear
hull of 4).

First suppose that the interior of 4 is non-empty (i.e. 4 is clopen). If
S is an extreme set of 4 with only one point, then 4 — S is an open
convex set in A. Thus (Lemma 1) 4 — S is clopen in 4 and, consequently,
S is open.

Now assume A4 to be bounded and let 7, be the topology on E defined
by the Minkowski’s functional of 4. If 7 is the original topology in E we
have 7 < 7, and the interior of A with respect to 7, is non-empty. Now
apply the first result of this proof.

Finally, let 4 be any set in the hypotheses of the theorem. If § = { x}
is an extreme set of 4, take y € 4 — {0} such that x € {Ay||A| <1} =
A ,. Therefore, S ought to be an extreme set of the bounded convex set 4.

3. An expression of the extreme points. First we are going to
consider the case of 0-convex compact sets. Such a subset 4 of a
Hausdorff topological vector space E can be expressed in the following
way:

(1) A= Txe

iel

x| < 1}
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where (e,),c; is a topologically independent family of elements of 4. The
expression of each element of A4 as a sum X,_,x,e; is unique, and the
convergence of the sums is in the sense of the Cauchy’s filter ([1] p. 152).
If x =Y, ,;x,e,weput {x,e;) = x,.

We denote Ext,(A4) the set of the extreme points of A for the
0-convexity. Also, p, denotes the Minkowski’s functional of 4 in the
linear hull of 4.

THEOREM 5. Let E be a Hausdorff topological vector space over K and
let A be a 0-convex compact set of E. If (e,),., is a family of points of A
satisfying (1), then the following properties for a point x € A are equivalent:
(i) x € Ext,(A).
(ii) sup;c/i(x, €] = 1.
(iii) There exists iy € I such that |(x, e; )| = 1.
(i) pa(x) = 1.

Proof. For i € I, consider

D,:{xEA’Kx,ei)‘:l}'

1]

D, is a 0O-extreme set of 4. Now we wish to prove that D, is minimal.
Otherwise, consider T to be a proper subset of D, which is a 0-extreme set
of A. Take x € D, — T and define y € 4 in the way (y, e;) = x; forj # i
and (y,e;) = 0. Obviously y € 4 — T, and being 4 — T O-convex, then
(x,e) Y (x—y)=e,€A—T. Pickt € T and define z € 4 — T in the
way (z,e,) =t, for j # i and (z,e;) = 0. Finally, we have t = (1, ¢,) ¢,
+ z which contradicts the assumption that A — T is 0-convex. This proves
(iii) = (i).

The equivalence (ii) < (iii) is obvious because the valuation over K is
discrete.

For the equivalence (ii) « (iv), it is straightforward to verify that for
a point x € 4, p,(x) = sup;,Kx, ;)|

For (i) = (ii), consider an x € 4 such that sup,,|(x, e,)| < 1. Choose
p € K with |u| > 1 such that px € 4. If S is a proper 0-extreme set of 4
which contains x, then px € S. Also, 0 = Aux + (1 — A)x € § (with
A = —1/(p — 1)) which contradicts that 4 — S is O-convex. Hence, x &
Ext (A).

REMARKS. (1) The latter theorem holds for a compact a-convex set A4.
In fact, under the conditions of the Theorem 5, the following properties
are equivalent: (i) x € Ext,(A4) (i) sup,c,{x — a,e;)| =1 (iii) There
exists i, € I such that [(x —a,e; )| =1 (iv) p,_,(x —a) =1 where
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Ext ,(A) indicates the set of a-extreme points of 4 and (e,),, satisfies (1)
for the 0-convex set A — a.

(2) However, if we consider M-convex sets, the result we get is trivial.
If we put Ext,(A) to indicate the set of M-extreme points of an
M-convex set A, and with the assumptions on E of Theorem 5 we have:

COROLLARY 2. Ext,(A4) = A.

Proof. It follows from the fact that {x € A| Kx —a,e;)| =1} is a
minimal element of E , (for this convexity) foralla € 4,7 € I.

(3) Our Theorem 5 is quite similar to the Theorem 2 of Kalton’s paper
[4], which establishes that every point of a compact p-convex (0 < p < 1)
subset 4 of a Hausdorff topological vector space E can be expressed in
the way x = X a,x, with a, > 0, X a? = 1 and (x,) being a sequence of
distinct p-extreme points of 4.
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