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GROTHENDIECK LOCALLY CONVEX SPACES
OF CONTINUOUS VECTOR VALUED FUNCTIONS

FrANCISCO J. FRENICHE

Let €(X, E) be the space of continuous functions from the com-
pletely regular Hausdorff space X into the Hausdorff locally convex
space E, endowed with the compact-open topology. Our aim is to
characterize the (X, E) spaces which have the following property:
weak-star and weak sequential convergences coincide in the equicontinu-
ous subsets of ¥ (X, E)’. These spaces are here called Grothendieck
spaces. It is shown that in the equicontinuous subsets of E’ the 6( E’, E)-
and B(E’, E)-sequential convergences coincide, if %(X, E) is a
Grothendieck space and X contains an infinite compact subset. Con-
versely, if X is a G-space and E is a strict inductive limit of
Fréchet-Montel spaces €( X, E) is a Grothendieck space. Therefore, it
is proved that if E is a separable Fréchet space, then E is a Montel space
if and only if there is an infinite compact Hausdorff X such that
% (X, E) is a Grothendieck space.

1. Introduction. In this paper X will always denote a completely
regular Hausdorff topological space, E a Hausdorff locally convex space,
and €(X, E) the space of continuous functions from X into E, endowed
with the compact-open topology. When FE is the scalar field of reals or
complex numbers, we write €( X) instead €( X, E).

It is well known that €( X, E) is a Montel space whenever ¢( X) and
E so are, hence, if and only if X is discrete and E is a Montel space (see
(], [16]).

We study what happens when X has the following weaker property:
the compact subsets of X are G-spaces (see below for definitions).

We obtain in Theorem 4.4 that if E is a Fréchet-Montel space and X
has that property, then €( X, E) is a Grothendieck locally convex space.
The key in the proof is the following fact: every countable equicontinuous
subset of €(X, E)’ lies, via a Radon-Nikodym theorem, in a suitable
L'(7, Eg). As a consequence of a theorem of Mujica [10], the same result
is true when F is a strict inductive limit of Fréchet-Montel spaces.

In §3 we study the converse of 4.4. In Corollary 3.3 it is proved that if
X contains an infinite compact subset, E is a Fréchet separable space and
% (X, E) is a Grothendieck space, then E is a Montel space. This property
characterizes the Montel spaces among the Fréchet separable spaces.
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Finally, in §5 we study the Grothendieck property in #(Z, E), the
space of 3-totally measurable functions, by using the results for €( X, E).

2. Generalities. A compact Hausdorff topological space K is called
a G-space whenever ¥(K) is a Grothendieck Banach space, i.e. the
weak-star and weak sequential convergences coincide in (K )’ [6].

We extend here this concept to completely regular spaces.

2.1. DEFINITION. X is a G-space if every compact subset K of X is a
G-space.

If X is compact, both definitions coincide [6]. Let us remark that there
exist non-compact non-discrete G-spaces. Indeed, the topological subspace
of the Stone-Cech compactification of a countable discrete set obtained
removing a cluster point, is such a space.

We introduce a new definition of Grothendieck locally convex space,
so that ¥( X)) is a Grothendieck space if and only if X is a G-space.

2.2. DEFINITION. E is a Grothendieck space whenever the o( E’, E)-
and o(E’, E”)-sequential convergences coincide in the equicontinuous
subsets of E’.

In [17] the TG-spaces are defined as those spaces E in which the
o(E’, E)- and o(E’, E”)-sequential convergences coincide. When one
deals with €( X) spaces, our definition seems to be more reasonable than
that of [17] (see 2.4 and 2.5).

The following permanence properties of the class of Grothendieck
locally convex spaces are easy to see, thus we state them without proof.

2.3. PROPOSITION. (a) E is a Grothendieck space if and only if every, or
some, dense subspace of E so is.

(b) Let T: E — F be a linear continuous operator such that for every
bounded subset B of F there is a bounded subset C of E so that B is contained
in the closure of T(C). Then F is a Grothendieck space if E so is.

(c) If E is the inductive limit of the sequence (E,) of Grothendieck
spaces, and if every bounded subset of E is contained in some E,, then E is a
Grothendieck space.

2.4. THEOREM. € ( X, E) is a Grothendieck space if and only if €(K, F)
so is for every compact subset K of X. In particular, X is a G-space if and
only if €(X) is a Grothendieck space.
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Proof. Let us recall that, if K is a compact subset of X, the restriction
map T is a continuous linear operator from ¥( X, E) into ¢(K, E).

If B c ¥(K, E) is bounded, then the bounded subset C of (X, E),
whose elements g can be written g =X, _,, f,(-)e, with f, € ¥(X),0 < f,
<1, ZX,..f., <1, and e, € U{h(K): h € B}, satisfies T(C) D B (see
[14, 1.5.3]).

If €( X, E) is a Grothendieck space, ¥(K, E) so is by 2.3(b).

Conversely, let (g,) be an equicontinuous and
o(¥4(X, E), ¢(X, E))-null sequence. By [14, 111.3 and II1.4], there exist a
compact subset K of X and an equicontinuous sequence (4}) in ¢(K, E)’
such that g, = h),oT for all n € N. Since (h),) is o(¥(K, E)’,
T(%(K, E)))-null and equicontinuous, it is also o(¥% (K, E)’,
%(K, E)”)-null if ¢(K, E) is a Grothendieck space. It follows that (g;)
iso(€(X, E), ¢(X, E)”)-null.

2.5. REMARK. We use an example of Haydon [4] to show that, while in
the class of barrelled spaces the TG-spaces and the Grothendieck spaces
do coincide, this is not true in general.

Choose, for each infinite sequence in N, a cluster point in the
Stone-Cech compactification of N, and let X be the topological subspace
of that compactification, formed by N and these cluster points. Then
every compact subset of X is finite, ¥(X) is infrabarrelled and every
f € ¥(X) is bounded. By Theorem 2.4, X is a G-space. Let f/(f) =
n~Yf(n) for all f € €(X) and n € N. Then (f,) is a o(¢(X)’, €(X))-null
sequence in ¥(X)’, that is not (% (X)’, ¢(X)”)-null because it is not
equicontinuous.

3. Necessary conditions for €( X, F) to be a Grothendieck space. It
is well known, and easy to see, that ¥(X) and E are topologically
isomorphic to complemented subspaces of ¥( X, E). By 2.3(b), (X) and
E must be Grothendieck spaces if €( X, E) is such a space.

However, unless X is pseudofinite, i.e. their compact subsets are finite
(hence €(X, E) is a Grothendieck space if and only if E so is, by
Theorem 2.4), F has a stronger property if (X, E) is a Grothendieck
space, as we prove in the next theorem. To prove it we recall the following
result of [2]:

THEOREM A. Let E and F be Hausdorff locally convex spaces, and
suppose that F contains a subspace topologically isomorphic to the subspace
of ¢, whose elements have only finitely many non-zero coordinates.

1If the injective tensor product F ® E is a Grothendieck space, then the
o(E’, E)- and B(E’, E)-sequential convergences coincide in the equicontinu-
ous subsets of E’.
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As was noted in [2], if X is not pseudofinite, then ¥ (X) contains a
subspace topologically isomorphic to the above mentioned subspace of ¢,.
Moreover, the injective tensor product ¥(X) ®, 6 E can be linear and
topologically identified with a dense subspace of €¢( X, E), namely, the
subspace of all finite dimensional valued elements of ¥( X, E). Thus we
obtain from Theorem A and Proposition 2.3 (a):

3.1. THEOREM. If €( X, E) is a Grothendieck space and X contains an
infinite compact subset, then the o(E’, E)- and B(E’, E)-sequential conver-
gences coincide in the equicontinuous subsets of E’.

3.2. REMARK. By Theorem 2.4, if X is pseudofinite and E is a
Grothendieck Banach space, €( X, E) is a Grothendieck space. However,
if E is infinite dimensional, the conclusion of Theorem 3.1 does not hold
[11].

Using Theorem 3.1 and [7, 11.6.2], we obtain the following corollary,
converse of Theorem 4.4:

3.3. COROLLARY. If E is a Fréchet separable space, X is not pseudofinite
and €( X, E) is a Grothendieck space, then E is a Montel space.

3.4. REMARK. It is unknown for us if Corollary 3.3 is true without the
separability assumption on E. This is related with the following question
raised in [7, pg. 247]: is a Fréchet space E already a Montel space if every
o( E’, E)-convergent sequence in E’ converges for B(E’, E)?

4. Sufficient conditions for ¥( X, E) to be a Grothendieck space.
We shall need some facts about vector integration, many of those can be
found in [1] and [15].

Let (X, Z, 7) be a complete measure space with 7( X)) < 1. We denote
by #(Z, E) (resp. (=, E), L'(7, E), L*(7, E)) the vector space of
2-simple (resp. 2-totally measurable, T-integrable, T-essentially bounded)
E-valued (classes of) functions. Recall that (2, E) and #(Z, E) are
endowed with the uniform convergence topology, and that the topology of
LY(7, E) is defined by the seminorms u — [ p(u(x)) d7(x), where p runs
over the set of all continuous seminorms in E (unless contrary specifica-
tion, all integrals will be extended to X).

The following Radon-Nikodym theorem is proved in [1]:

THEOREM B. If E is a quasi-complete (CM)-space, p: 2 — E is a
countably additive vector measure, of bounded variation and t-absolutely
continuous, then there exists u € L'(7, E) such that p(A) = [, u(x) dv(x)
for every A € 2.
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Let us recall that E is a quasi-complete (CM)-space, if, for instance, it
is either a Fréchet-Montel space or a (DF)-Montel space [1].

Firstly we extend the classical duality theorem L' — L™ to L'(, Ep),
where E is a Fréchet-Montel space.

The following lemma can be easily proved. As usual, p, will denote
the gauge of the absolutely convex set L in its linear span.

4.1. LemMA. If u € #(Z, E’), namely, u = %,_, x 4e] with (4,),<n
disjoint in 2, then
[ pao(u(x)) dr(x) < 7 U 4,)sup pio(e))
ism ism

for every bounded subset B of E.

4.2. THEOREM. Let E be a Fréchet-Montel space. The relation

(1) u'(u) = f u(x)(v(x)) dr(x) forallu e Ll('r, E[;)

defined for u’ € L\(r, Eg) and v € L*(7, E), is an algebraic isomorphism
between L'(7, Ez)" and L*(r, E).

Proof. Let v € L*(7, E). The map x — u(x)(v(x)) is measurable for
every u € L'(t, Eg), because v is strongly measurable and the assertion is
clearly true when v € (2, E).

Furthermore, if Z € 2 is a 7-null set such that B = v(S\ Z) is
bounded, then we have

(2) |u(x)(v(x))] < ppo(u(x))
forevery x € X\ Z.

Hence x — u(x)(v(x)) is 7-integrable, and we can define a linear
form u’ on L(7, Eg) by (1). Moreover, it follows from (2) that u’ is
continuous.

Conversely, fix u’ € LY(r, Ej)’. There exists a bounded subset B of E
such that

(3) f peo(u(x)) dr(x) <1 implies |u’(u)] < 1

for every u € L'(7, Ey).
We define a map p: 2 — E” by

(4) p(A)(e’) = u'(x4e)

for every 4 € 2 and e’ € E’ (it follows easily from Lemma 4.1 and (3)
that p(A4) € E”). Since E is reflexive we can suppose that u(A4) € E.
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Clearly, p: £ — E is a finitely additive vector measure. We shall show
that p is countably additive: let 4 be the union of the disjoint sequence
(A4,) in 2. Given an absolutely convex zero-neighborhood U in E and
e > 0, we chodse A with 0 < A < oo such that B C AU, and m, € N such
that Ar(U A,) < ¢ for every m > m,. Since

e'(u(4) - X e'(u(4,) =u(xy_ 4 ¢)

it follows from Lemma 4.1 and (3) that

e'(n(4)) — X e'(n(4,))

n<m
for every m > myand e’ € U°, as desired.
Furthermore, if 4 = U, _,, A, where (4,),_,, is disjoint in X, and if
e > 0, there exists (e.) ., in U such that

n>m

<e

n<m
L pu(p(4,) s ¥ eln(4,) +e=w( T xaer) +e.
n<m n<m n<m
Hence the p -variation of p satisfies the inequality V, p(A4) < A1(A4),
from Lemma 4.1 and (3) again.
Thus p is 7-absolutely continuous and has bounded variation. By
Theorem B, there exists v € L'(7, E) such that

(5) u(A) = fA v(x)dr(x) foreveryd € =.

We claim that v is T-essentially bounded and satisfies (1). Indeed, let
(U)), be a countable basis in E of absolutely convex zero-neighborhoods.
Choose, for eachj € N, A such that0 < A, < co and B € A,U..

By Lemma 4.1, (3), (4) and (5), we have

© [, o) dr(x)

foralle’ € U’ 4 € Zandj € N.

Let (e; ), be a sequence in U° such that p,(e) = sup;le; .(e)] for
everye € E.

By (6), there exists Z € 2 with 7(Z) = 0 such that |e] ,(v(x))| <A,
forallx € X\ Zand allj, kK € N. Hence v( X\ Z) is bounded in E.

Finally, it follows from (4) that (1) is true for all u € ¥#(Z, E’), and,
by density, for every u € L'(, Ez). This concludes the proof.

< A;7(4)

Assume that X is compact Hausdorff and 2 contains the Borel
subsets of X. For each u € L}(r, Ej), denote by », the vector measure of
density u with respect to 7. If p is a continuous seminorm in E, the subset



GROTHENDIECK LOCALLY CONVEX SPACES 351

F of L'(7, Eg) defined by the condition V,v(X) < o0, is a linear sub-
space. If u € F then », has bounded semivariation, thus it defines a
continuous linear form on ¥ (Z, E), which extends by continuity to the
whole space #Z(Z, E) [15]. Let Tu € ¥(X, E)’ be the restriction to
% (X, E) of this linear form, i.e.

(7) (Tu)(g) = [ g(x) dr,(x)

forevery g € (X, E).

4.3. LEMMA. The map T: F — ¥(X, E)’ defined by (7) is a linear
continuous operator, when €(X, E) is endowed with the strong topology
with respect to (X, E).

Proof. We have, for each u € F,

(8) (Tu)(g) = [ u(x)(g(x)) dr(x)

for every g € ¢(X, E). Indeed, the dominated convergence theorem and
a standard density argument show that it suffices to see (8) when g
belongs to £ (2, E), that is trivially true.

Let H be a bounded subset of €( X, E). Then B =U{g(X): g€ H}
is a bounded subset of E. Hence, by (8), (Tu)(g)| < [ ppo(u(x)) dr(x)
and the lemma follows.

We are now ready to prove the sufficient condition:

4.4. THEOREM. Let X be a completely regular Hausdorff G-space and E
a Fréchet-Montel space. Then €( X, E) is a Grothendieck space.

Proof. By 2.4 we can suppose, without loss of generality, that X is
compact.

Let (g.), be an equicontinuous sequence in % (X, E)’. By [14, 111.4.5]
there exists a continuous seminorm p in E such that V,p, (X) <1, for
every n € N, where p,, is the representing measure of g, [14, III].

Let 7=%,27"V,p,. 7 is a countably additive [0,1]-valued Borel
measure, by [14, I11.2.5]. Let X be the completed o-field of the Borel field
of X with respect to 7. We shall denote also by 7 and p, the natural
extensions of the earlier measures to 2.
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Since E is a Montel space, the measure p,: £ — Ej is countably
additive. Clearly V,u, < 2", thus p, has bounded variation and is 7-abso-
lutely continuous (when it is considered as an Eg-valued measure).

We apply Theorem B, obtaining, for each n € N, a function u, €
L'(7, Eg) such that p, is the vector measure of density u, with respect to
T.

Clearly u, € Fand Tu, = g,, for everyn € N.

Fix g” € €(X, E)”. By Lemma 4.3 and Theorem 4.2, there exists -
v € L*(7, E)such that g"”(g,) = [u,(x)(v(x)) dr(x) for every n € N.

Let Z be a set in 2 with 7(Z) =0 and v(X\ Z) bounded. The
function v, = x .\ 2z is totally measurable, because E is Montel and
metrizable.

Given & > 0, we can choose v, € (2, E) such that p(vy(x)) < &/2,
for every x € X, if v; = v; — v,. Hence,

O | [ w0 ar(x) <e2

| [ o) ()

for every n € N, because V,p,(X) < 1.

On the other hand, if (g,) is o(¥(X, E)’, ¥(X, E))-null, then
(u,(A)(e)) is a null sequence, for every e € E and A € Z. Indeed, since X
is a G-space, for each e € E, the weak-star null sequence (p,(-)(e)) in
€ (X)’, is also weak null, hence (p,(A)(e)) is null for every Borel subset 4
of X, and so for every 4 € 2.

Since v, is simple, it follows that

(10) Jim [ u, (x)(02(x)) dr(x) = 0.

By (9) and (10), (g”’(g;)) is a null sequence, and we have shown that (g,)
iso(¥(X, E), €(X, E)”)-null.

4.5. COROLLARY. Let X be a completely regular Hausdorff G-space and
E the inductive limit of the sequence (E,) of Fréchet-Montel spaces, such
that every bounded subset of E is localized in some E,. Then €(X, E) is a
Grothendieck space.

Proof. We can again suppose X compact. By [10], the inductive limit
of the sequence (% (X, E,)) is a dense topological subspace of €(X, E).
By Proposition 2.3 (a) and (c), and Theorem 4.4, it follows that €( X, E)
is a Grothendieck space.
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4.6. COROLLARY. Let E be a Fréchet separable space. The following
conditions are equivalent:

(a) E is a Montel space.

(b) There exists a non-pseudofinite completely regular Hausdorff space
X such that €( X, E) is a Grothendieck space.

(c) For every completely regular Hausdorff G-space X, €(X, E) is a
Grothendieck space.

Proof. Use 4.4 and 3.3.

5. Application to spaces of totally measurable functions. Let X be a
nonempty set and X a field of subsets of X. We will say that a subset B of
X is open if for every x € B there is 4 € 2 with x € 4 and 4 C B.
Endowed X with this topology, let X* be the Hausdorff space associated
to X, #: X — X* the quotient map, and 2* = {7(A): 4 € X}.

The following lemma is easily established:

5.1. LEMMA (a) X'* is a completely regular Hausdorff zero-dimensional
topological space.

(b) The map A € = — w(A) € Z* is a Boolean isomorphism.

(c) The map g € #(Z*, E) > gowm € #(Z, E) is a topological iso-
morphism, and its restriction to ¥ (Z*, E) so is onto ¥ (2, E).

(d) The map x* € X* — {B* € Z*: x* € B*} € P(Z*) is one-to-
one.

By using 5.1, when one studies the linear topological properties of
%(Z, E), it can be supposed that X is a dense subspace of a Hausdorff
compact zero-dimensional topological space K (namely, the Stone space of
the Boolean algebra 2), and 2 is the trace in X of the Boolean algebra of
open and closed subsets of K. In this context we have the following
theorem:

5.2. THEOREM. There exists a subspace of #(2, E), containing ¥ (Z, E),
that is topologically isomorphic to €(K, E).

Proof. It is easy to check that the set of restrictions to X of all
elements of ¥(K, E) is such a subspace.

By Proposition 2.3 (a), it follows that #(Z, E) is a Grothendieck
space if and only if (K, E) so is. Hence we can apply to #(Z, E) the
results of §§3 and 4.
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5.3. REMARK. The question of when #(2) (equivalently, €(K)) is a
Grothendieck space is related to the validity of the Vitali-Hahn-Saks
theorem for finitely additive scalar measures on X, of bounded variation.
For instance, if = is o-complete, or more generally, 2 has the subsequen-
tial interpolation property, then #(X) is a Grothendieck space (see [13]
and [3]).

Finally, we show that the following result of Mendoza [8], can be
easily deduced from their earlier results in [9] and our Theorem 5.2.

5.4. THEOREM. Suppose 2 infinite. Then %(2, E) is infrabarrelled
(resp. barrelled) if and only if E; has property (B) of Pietsch [12, 1.5.8], and
E is infrabarrelled (resp. barrelled).

Proof. Let us observe that ¥ (X, E) is a large dense subspace of
#(Z, F). Indeed, if H is a bounded subset of Z(Z, E), then the set of all
g in (2, E) for which there exists # € H with g(X) c h(X), is a
bounded subset of (2, E) whose closure in Z(Z, E) contains H.

Thus Theorem 5.2 implies that Z(Z, E) is infrabarrelled whenever
% (K, E) so is, hence we have the first equivalence of the theorem, by [9].

If #(Z, E) is barrelled, then E is barrelled and #(2, E) is infrabar-
relled, so E; has property (B). The converse follows easily because
¥(K, E) is topologically isomorphic to a dense subspace of Z(2, E), by
5.2.

5.5. REMARK. We have also shown in 5.4 that, if X is infinite, (2, E)
is infrabarrelled if and only if E; has property (B) and E is infrabarrelled,
a result of Mendoza [8]. In [2] we prove that #(Z, E) is barrelled if and
only if #(Z) and E so are, and E is nuclear.
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