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GROTHENDIECK LOCALLY CONVEX SPACES
OF CONTINUOUS VECTOR VALUED FUNCTIONS

FRANCISCO J. FRENICHE

Let ^{X, E) be the space of continuous functions from the com-
pletely regular Hausdorff space X into the Hausdorff locally convex
space E, endowed with the compact-open topology. Our aim is to
characterize the ^(X, E) spaces which have the following property:
weak-star and weak sequential convergences coincide in the equicontinu-
ous subsets of ^(X, E)'. These spaces are here called Grothendieck
spaces. It is shown that in the equicontinuous subsets of E' the σ(E', E)-
and β(E', ^-sequential convergences coincide, if ^(X, E) is a
Grothendieck space and X contains an infinite compact subset. Con-
versely, if X is a G-space and E is a strict inductive limit of
Frechet-Montel spaces ^(X, E) is a Grothendieck space. Therefore, it
is proved that if £ is a separable Frechet space, then E is a Montel space
if and only if there is an infinite compact Hausdorff X such that

, E) is a Grothendieck space.

1. Introduction. In this paper X will always denote a completely
regular Hausdorff topological space, E a Hausdorff locally convex space,
and &( X, E) the space of continuous functions from Xinto E, endowed
with the compact-open topology. When E is the scalar field of reals or
complex numbers, we write ^(X) instead ^( X, E).

It is well known that Ή{X, E) is a Montel space whenever ^(X) and
E so are, hence, if and only if X is discrete and E is a Montel space (see
[5], [16]).

We study what happens when X has the following weaker property:
the compact subsets of X are G-spaces (see below for definitions).

We obtain in Theorem 4.4 that if £ is a Frechet-Montel space and X
has that property, then ^( X, E) is a Grothendieck locally convex space.
The key in the proof is the following fact: every countable equicontinuous
subset of ^(X, E)' lies, via a Radon-Nikodym theorem, in a suitable
L\τ9 Eβ). As a consequence of a theorem of Mύjica [10], the same result
is true when E is a strict inductive limit of Frechet-Montel spaces.

In §3 we study the converse of 4.4. In Corollary 3.3 it is proved that if
X contains an infinite compact subset, E is a Frechet separable space and
#( X, E) is a Grothendieck space, then E is a Montel space. This property
characterizes the Montel spaces among the Frechet separable spaces.
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Finally, in §5 we study the Grothendieck property in &(Σ, E), the

space of Σ-totally measurable functions, by using the results for %?{X, E).

2. Generalities. A compact Hausdorff topological space K is called

a G-space whenever ^(K) is a Grothendieck Banach space, i.e. the

weak-star and weak sequential convergences coincide in %>(Ky [6].

We extend here this concept to completely regular spaces.

2.1. DEFINITION. X is a G-space if every compact subset K of X is a

G-space.

If XΊs compact, both definitions coincide [6]. Let us remark that there

exist non-compact non-discrete (/-spaces. Indeed, the topological subspace

of the Stone-Cech compactification of a countable discrete set obtained

removing a cluster point, is such a space.

We introduce a new definition of Grothendieck locally convex space,

so that <&{ X) is a Grothendieck space if and only if X is a G-space.

2.2. DEFINITION. E is a Grothendieck space whenever the σ(E', E)-

and σ(E\ E'^-sequential convergences coincide in the equicontinuous

subsets of E'.

In [17] the ΓG-spaces are defined as those spaces E in which the

σ(E', E)- and σ(E\ Zs'^-sequential convergences coincide. When one

deals with ^ ( X) spaces, our definition seems to be more reasonable than

that of [17] (see 2.4 and 2.5).

The following permanence properties of the class of Grothendieck

locally convex spaces are easy to see, thus we state them without proof.

2.3. PROPOSITION, (a) E is a Grothendieck space if and only if every, or

some, dense subspace of E so is.

(b) Let T: E —> F be a linear continuous operator such that for every

bounded subset B of F there is a bounded subset C of E so that B is contained

in the closure ofT(C). Then F is a Grothendieck space if E so is.

(c) // E is the inductive limit of the sequence (En) of Grothendieck

spaces, and if every bounded subset of E is contained in some En, then E is a

Grothendieck space.

2.4. THEOREM. <g(X, E) is a Grothendieck space if and only if <tf(K, E)

so is for every compact subset K of X. In particular, X is a G-space if and

only if %?(X) is a Grothendieck space.
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Proof. Let us recall that, if K is a compact subset of X, the restriction
map Γis a continuous linear operator from ^(X, E) into ^(K, E).

If B c %{K, E) is bounded, then the bounded subset C of <V(X9 E\
whose elements g can be written g = Σ π < w /„(-)en with/M € ^( X), 0 < /„
< 1, Σn<mfn ^ 1? and <?„ e U{A(*:): Λ e 5}, satisfies Γ(C) z> 5 (see
[14,1.5.3]).

If «χ X, £ ) is a Grothendieck space, #( JBΓ, E) so is by 2.3(b).
Conversely, let (g'n) be an equicont inuous and

σ(V(X, E)\ V(X9 £))-null sequence. By [14, III.3 and III.4], there exist a
compact subset K of X and an equicontinuous sequence (h'n) in ^(K, E)'
such that g'n=h'noT for all /ι e N. Since (A'J is σ(V(K9 E)'9
T(tf(K, £)))-null and equicontinuous, it is also σ(<g(K9 E)\
<V(K9 E)")-nυΆ if V(K, E) is a Grothendieck space. It follows that (g'n)
is σ(ίf(Z, E)\ V(X, E)")-mύl.

2.5. REMARK. We use an example of Haydon [4] to show that, while in
the class of barrelled spaces the ΓG-spaces and the Grothendieck spaces
do coincide, this is not true in general.

Choose, for each infinite sequence in N, a cluster point in the
Stone-Cech compactification of N, and let X be the topological subspace
of that compactification, formed by N and these cluster points. Then
every compact subset of X is finite, V(X) is infrabarrelled and every
/ e V(X) is bounded. By Theorem 2.4, X is a G-space. Let /„'(/) =
n~ιf(n) for all/ e <g(X) and n e N. Then (/;) is a σ(^(X) r, V(X))-nuΆ
sequence in &(X)\ that is not o((S(X)\<^{Xyynu\\ because it is not
equicontinuous.

3. Necessary conditions for Ή(X, E) to be a Grothendieck space. It
is well known, and easy to see, that Φ(X) and E are topologically
isomorphic to complemented subspaces of V(X9 E). By 2.3(b), V(X) and
E must be Grothendieck spaces if ΦζX, E) is such a space.

However, unless X is pseudofinite, i.e. their compact subsets are finite
(hence ίf(-Y, E) is a Grothendieck space if and only if E so is, by
Theorem 2.4), E has a stronger property if Φ(X9 E) is a Grothendieck
space, as we prove in the next theorem. To prove it we recall the following
result of [2]:

THEOREM A. Let E and F be Hausdorff locally convex spaces, and
suppose that F contains a subspace topologically isomorphic to the subspace
ofc0 whose elements have only finitely many non-zero coordinates.

If the infective tensor product F <8>εE is a Grothendieck space, then the
σ(E\ E)- and β(E\ E)-sequential convergences coincide in the equicontinu-
ous subsets of Er.
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As was noted in [2], if X is not pseudofinite, then ^( X) contains a
subspace topologically isomorphic to the above mentioned subspace of cQm

Moreover, the injective tensor product <g(X)®εE can be linear and
topologically identified with a dense subspace of ^{X, E), namely, the
subspace of all finite dimensional valued elements of ^{X, E). Thus we
obtain from Theorem A and Proposition 2.3 (a):

3.1. THEOREM. // ^(X, E) is a Grothendieck space and X contains an
infinite compact subset, then the σ(E', E)- and β(E\ E)-sequential conver-
gences coincide in the equicontinuous subsets of E'.

3.2. REMARK. By Theorem 2.4, if X is pseudofinite and £ is a
Grothendieck Banach space, ^(X, E) is a Grothendieck space. However,
if E is infinite dimensional, the conclusion of Theorem 3.1 does not hold
[11].

Using Theorem 3.1 and [7, 11.6.2], we obtain the following corollary,
converse of Theorem 4.4:

3.3. COROLLARY. If E is a Frechet separable space, X is not pseudofinite
and ^(X, E) is a Grothendieck space, then E is a Montel space.

3.4. REMARK. It is unknown for us if Corollary 3.3 is true without the
separability assumption on E. This is related with the following question
raised in [7, pg. 247]: is a Frechet space E already a Montel space if every
σ(E', ^-convergent sequence in E' converges for β(E', E)Ί

4. Sufficient conditions for V(X9 E) to be a Grothendieck space.
We shall need some facts about vector integration, many of those can be
found in [1] and [15].

Let (X, Σ, T) be a complete measure space with τ(X) < 1. We denote
by S?(Σ,E) (resp. @(Σ,E), L\τ, E), L°°(τ, E)) the vector space of
Σ-simple (resp. Σ-totally measurable, τ-integrable, τ-essentially bounded)
E-valued (classes of) functions. Recall that Sf{Σ,E) and @(Σ, E) are
endowed with the uniform convergence topology, and that the topology of
Lι{τ, E) is defined by the seminorms u -> /p(u(x)) dτ(x), where/? runs
over the set of all continuous seminorms in E (unless contrary specifica-
tion, all integrals will be extended to X).

The following Radon-Nikodym theorem is proved in [1]:

THEOREM B. // E is a quasi-complete (CM)-space, μ: Σ -> E is a
count ably additive vector measure, of bounded variation and τ-absolutely
continuous, then there exists u e Lι(τ, E) such that μ{A) = jA u(x) dτ(x)
for every A ^ Σ.
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Let us recall that E is a quasi-complete (CM)-space, if, for instance, it

is either a Frechet-Montel space or a (DF)-Montel space [1].

Firstly we extend the classical duality theorem Lι - L00 to L\τ9 Eβ),

where E is a Frechet-Montel space.

The following lemma can be easily proved. As usual, pL will denote

the gauge of the absolutely convex set L in its linear span.

4.1. LEMMA. // u e ^ ( Σ , E'\ namely, u = Σi^mχAe
/

i with (Ai)i^m

disjoint in Σ, then

ί pBo(u(x))dτ{x) < τl U AήsuppBo(e;)

for every bounded subset B of E.

4.2. THEOREM. Let E be a Frechet-Montel space. The relation

(1) u'{u)= f u{x){υ{x))dτ{x) for all u €= Z/(τ, E'β)

defined for uf e L\τ> Eβ)' and v e L°°(τ, E), is an algebraic isomorphism

between L\τ, E'β)' andU°(τ9 E\

Proof. Let υ e L°°(τ, E). The map x -» u{x)(υ(x)) is measurable for

every u e L\r9 Eβ), because v is strongly measurable and the assertion is

clearly true when v e ^ ( Σ , E).

Furthermore, if Z G Σ is a τ-null set such that B = v(S\Z) is

bounded, then we have

(2) \u(x)(v(x))\<pB0(u(x))

for every x ^ X \ Z.

Hence x -> w(jc)(ί;(x)) is τ-integrable, and we can define a linear

form «' on Lι(τ, Eβ) by (1). Moreover, it follows from (2) that u' is

continuous.

Conversely, fix u' G LX(T, ί^)'. There exists a bounded subset B of E

such that

(3) ί PB°(U(X)) dτ(x) < 1 implies (w^w)) < 1

for every w e L\τ, Eβ).

We define a map μ: Σ -* £"' by

(4) μMXeO = «'(χ^0

for every A e Σ and e' e £ ' (it follows easily from Lemma 4.1 and (3)

that μ(A) e E"). Since £ is reflexive we can suppose that μ(A) e £.
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Clearly, μ: Σ -> E is a finitely additive vector measure. We shall show

that μ is countably additive: let A be the union of the disjoint sequence

(An) in Σ. Given an absolutely convex zero-neighborhood U in E and

ε > 0, we chodse λ with 0 < λ < oo such that B c λU, and ra0 e N such

that λτ(U r t > w J(rt) < ε for every m > m0. Since

e'{μ{A)) - £ e'(μ{An)) = u'(xun>mAn

e')
n<m

it follows from Lemma 4.1 and (3) that

e'(μ(A)) - Σ e'(μ(An)) < e
n<m

for every m > m0 and e' e C/°, as desired.

Furthermore, iΐ A =Un<mAn where {An)n<m is disjoint in Σ, and if

ε > 0, there exists (e'n)n<min U° such that

Σ Pv(μ(An)) < Σ e'MAH)) + ε = «'( Σ XΛΔ + e.
n<m n<m n<m

Hence thep^variation of μ satisfies the inequality Vpuμ(A) < λτ(A),

from Lemma 4.1 and (3) again.

Thus μ is τ-absolutely continuous and has bounded variation. By

Theorem B, there exists v e Lx(τ, E) such that

(5) μ(A) = ί υ{x)dτ{x) for every A <Ξ Σ.
JA

We claim that υ is τ-essentially bounded and satisfies (1). Indeed, let

{UJ)J be a countable basis in E of absolutely convex zero-neighborhoods.

Choose, for eachj e N, λy such that 0 < λy < oo and B c λ^I/,.

By Lemma 4.1, (3), (4) and (5), we have

(6) ( e'(v(x)) dτ(x) <λfτ(A)
JA

for all e' <Ξ U/, A e Σ andy <Ξ N.

Let (e'j k)k be a sequence in Uf such that pυ(e) = supk\e'jk(e)\ for

every e & E.

By (6), there exists Z e Σ with τ(Z) = 0 such that \ef

jΛ{v(x))\ < λj

for sΛ\x ^ X\Z and ally, fc G N. Hence υ(X\ Z) is bounded in £\

Finally, it follows from (4) that (1) is true for all M G y ( Σ , £"), and,

by density, for every u ̂  Lι(τ, Eβ). This concludes the proof.

Assume that X is compact Hausdorff and Σ contains the Borel

subsets of X. For each u e L\τ, Eβ), denote by vu the vector measure of

density u with respect to T. If p is a continuous seminorm in E, the subset



GROTHENDIECK LOCALLY CONVEX SPACES 351

F of L\τ, Eβ) defined by the condition Vpvu{X) < oo, is a linear sub-

space. If M G JF then vu has bounded semivariation, thus it defines a

continuous linear form on <^(Σ, £ ) , which extends by continuity to the

whole space &(Σ, E) [15]. Let ΓwG <g(X, E)' be the restriction to

V( X, E) of this linear form, i.e.

(7) (Tu)(g) = f g(x) dvu(x)

for every g €Ξ <g(X9 E).

4.3. LEMMA. ΓΛe map T: F -> # ( * , J?)' έfe/ineJ fry (7) is <2 linear

continuous operator, when ^{Xy E)' is endowed with the strong topology

with respect to <g(X9 E).

Proof. We have, for each u e F,

(8) (Tu)(g) = f u(x)(g(x)) dr(x)

for every g E ^{X9E). Indeed, the dominated convergence theorem and

a standard density argument show that it suffices to see (8) when g

belongs to5^(Σ, E), that is trivially true.

Let H be a bounded subset of ί?( JST, £ ) . Then B = U{g(X): g e i f}

is a bounded subset of E. Hence, by (8), \(Tu)(g)\ < jpBo(u(x)) dτ(x)

and the lemma follows.

We are now ready to prove the sufficient condition:

4.4. THEOREM. Let X be a completely regular Hausdorff G-space and E

a Frechet-Montel space. Then ^(X, E) is a Grothendieck space.

Proof. By 2.4 we can suppose, without loss of generality, that X is

compact.

Let (gf

n)n be an equicontinuous sequence in ̂ (X, E)'. By [14, IΠ.4.5]

there exists a continuous seminorm p in E such that Vpμn(X) < 1, for

every n e N, where μn is the representing measure of gf

n [14, III].

Let T = Σn2~nVpμn. T is a countably additive [0,l]-valued Borel

measure, by [14, ΠI.2.5]. Let Σ be the completed σ-field of the Borel field

of X with respect to T. We shall denote also by T and μn the natural

extensions of the earlier measures to Σ.
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Since E is a Montel space, the measure μn: Σ -> E£ is countably

additive. Clearly Vpμn < 2", thus μn has bounded variation and is τ-abso-

lutely continuous (when it is considered as an £^-valued measure).

We apply Theorem B, obtaining, for each n G N, a function un G

L ^ T , 2?̂ ) such that μw is the vector measure of density un with respect to

T.

Clearly un G i 7 and 7M n = g ,̂ for every n G N.

Fix g " G <g(X, E)". By Lemma 4.3 and Theorem 4.2, there exists

υ e L°°(τ, £ ) such that gr/(g^) = / WΠ(JC)(I;(JC)) dτ(x) for every /i G N.

Let Z be a set in Σ with τ(Z) = 0 and v(X\Z) bounded. The

function vλ = χX\Zv is totally measurable, because E is Montel and

metrizable.

Given ε > 0, we can choose v2 G y(Σ, E) such that/?(ί;3(jc)) < ε/2,

for every x G X9 if u3 = vλ — v2. Hence,

(9) un(x)(v3(x)) dτ(x) ϋ3(x) dμn{x) <ε/2

for every n G N, because F^μrt( X) < 1.

On the other hand, if (g'n) is σ(^(X, £ ) r , ίf(Z, £))-nuU, then

(μn(A)(e)) is a null sequence, for every e G E and ^ E I Indeed, since X

is a G-space, for each e G 2S, the weak-star null sequence (μn( )(^)) i n

# ( Λ y , is also weak null, hence (μn(A)(e)) is null for every Borel subset A

of X, and so for every A ^ Σ.

Since u2 i
s simple, it follows that

(10) lim [ un(x)(v2(x)) dτ(x) = 0.

By (9) and (10), (g/r(g^)) i s a n u H sequence, and we have shown that (g'n)

is σ(V(X9 E)\ V(X9 E)")-nvM.

4.5. COROLLARY. Let X be a completely regular Hausdorff G-space and

E the inductive limit of the sequence (En) of Frechet-Montel spaces, such

that every bounded subset of E is localized in some En. Then ^(X, E) is a

Grothendieck space.

Proof. We can again suppose X compact. By [10], the inductive limit

of the sequence ( # ( Z , En)) is a dense topological subspace of <#(X, E).

By Proposition 2.3 (a) and (c), and Theorem 4.4, it follows that <g(X, E)

is a Grothendieck space.
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4.6. COROLLARY. Let E be a Frechet separable space. The following

conditions are equivalent:

(a) E is a Montel space.

(b) There exists a non-pseudofinite completely regular Hausdorff space

X such that Ή(X, E) is a Grothendieck space.

(c) For every completely regular Hausdorff G-space X, <&(X9 E) is a

Grothendieck space.

Proof. Use 4.4 and 3.3.

5. Application to spaces of totally measurable functions. Let X be a

nonempty set and Σ a field of subsets of X. We will say that a subset B of

X is open if for every x e B there is A e Σ with x ^ A and A c B.

Endowed X with this topology, let X* be the Hausdorff space associated

to X, <π\ X -> X* the quotient map, and Σ* = {π(A): A e Σ} .

The following lemma is easily established:

5.1. LEMMA (a) X* is a completely regular Hausdorff zero-dimensional

topological space.

(b) The map A ^ Σ -> π(A) ^ Σ* is a Boolean isomorphism.

(c) The map g e ^ ( Σ * , £ ) - > g ° τ r G ^ ( Σ , £ ) w α topological iso-

morphism, and its restriction toSf(Σ*, E) so is ontoSf(Σ, E).

(d) The map x* e X* -> { 5 * e Σ*: x * e ΰ * } e ^ ( Σ * ) is

By using 5.1, when one studies the linear topological properties of

, /?), it can be supposed that X is a dense subspace of a Hausdorff

compact zero-dimensional topological space K (namely, the Stone space of

the Boolean algebra Σ), and Σ is the trace in X of the Boolean algebra of

open and closed subsets of K. In this context we have the following

theorem:

5.2. THEOREM. There exists a subspace ofSS(Σ, E), containing &'(Σ, E),

that is topologically isomorphic to ^(K, E).

Proof. It is easy to check that the set of restrictions to X of all

elements of ^(K, E) is such a subspace.

By Proposition 2.3 (a), it follows that SS(Σ, E) is a Grothendieck

space if and only if ^(K, E) so is. Hence we can apply to 38(Σ, E) the

results of §§3 and 4.



354 FRANCISCO J. FRENICHE

5.3. REMARK. The question of when 38 (Σ) (equivalently, ^(K)) is a

Grothendieck space is related to the validity of the Vitali-Hahn-Saks

theorem for finitely additive scalar measures on Σ, of bounded variation.

For instance, if Σ is σ-complete, or more generally, Σ has the subsequen-

tial interpolation property, then 38 (Σ) is a Grothendieck space (see [13]

and [3]).

Finally, we show that the following result of Mendoza [8], can be

easily deduced from their earlier results in [9] and our Theorem 5.2.

5.4. THEOREM. Suppose Σ infinite. Then 38 (Σ9 E) is infrabarrelled

(resp. barrelled) if and only if E'β has property (B) of Pietsch [12, 1.5.8], and

E is infrabarrelled {resp. barrelled).

Proof. Let us observe that ^ ( Σ , is) is a large dense subspace of

38(Σ9 E). Indeed, if H is a bounded subset of 38{Σ9 £) , then the set of all

g in S?(Σ9 E) for which there exists h e H with g(X) c h(X)9 is a

bounded subset of S?(Σ9 E) whose closure in 38 (Σ9 E) contains H.

Thus Theorem 5.2 implies that ^?(Σ, E) is infrabarrelled whenever

^(K, E) so is, hence we have the first equivalence of the theorem, by [9].

If 38 (Σ9 E) is barrelled, then E is barrelled and 38 {Σ9 E) is infrabar-

relled, so Eβ has property (B). The converse follows easily because

^(K, E) is topologically isomorphic to a dense subspace of 38{Σ9 E), by

5.2.

5.5. REMARK. We have also shown in 5.4 that, if Σ is infinite, S?(Σ9 E)

is infrabarrelled if and only if Eβ has property (B) and E is infrabarrelled,

a result of Mendoza [8]. In [2] we prove that Sf(Σ9 E) is barrelled if and

only if ^ ( Σ ) and E so are, and E is nuclear.
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