RIGID SETS IN Eⁿ

DAVID G. WRIGHT

We construct rigid embeddings of Cantor sets in E^n $(n \ge 3)$ and rigid embeddings of compacta in E^n (n > 3). In each case there are uncountably many different rigid embeddings. The results in this paper generalize three-dimensional theorems by Sher, Shilepsky, Bothe, Martin, and Brechner and Mayer.

1. Introduction. Let X be a subset of Euclidean *n*-space E^n . We say that X is rigid in E^n if the only homeomorphism of X onto itself that is extendable to a homeomorphism of E^n onto itself is the identity homeomorphism. J. Martin has constructed a rigid 2-sphere in E^3 [M]. H. G. Bothe has constructed a rigid simple closed curve in E^3 [Bo]. Arnold Shilepsky constructed many different rigid Cantor sets in E^3 [Shil] by using a result of R. B. Sher on Cantor sets in E^3 [Sher]. More recently, Beverly Brechner and John C. Mayer have used Sher's result to construct uncountably many inequivalent embeddings of certain planar continua in E^3 [B-M].

In this paper all of these results are generalized to E^n ($n \ge 4$).

The rigid Cantor sets in this paper are in stark contrast to the strongly homogeneous but wildly embedded Cantor sets constructed by R. J. Daverman in E^n ($n \ge 5$) [D₁].

2. Definitions and notations. We use S^n , B^n , and E^n to denote the *n*-sphere, the *n*-ball, and Euclidean *n*-space, respectively. If *M* is a manifold, we let Bd(*M*) and Int(*M*) denote the boundary and interior of *M*, respectively. A *disk with holes* is a compact connected 2-manifold that embeds in E^2 . By map we will always mean a continuous function. Let $\Gamma = \{\gamma_1, \gamma_2, \ldots, \gamma_k\}$ be a collection of oriented loops in a space *X*. We shall say Γ bounds a manifold if there is a compact oriented 2-manifold *M* and map $f: M \to X$ so that f|Bd M represents the collection Γ . We shall say that Γ is homologically trivial or nontrivial if the element represented by Γ in $H_1(X)$ is, respectively, trivial or nontrivial where the first homology group $H_1(X)$ is computed with integer coefficients. A solid *n*-torus is a space homeomorphic with $B^2 \times S_1^1 \times S_2^1 \times \cdots \times S_{n-2}^1$ where each S_i^1 is a 1-sphere. A solid 3-torus will be called simply a solid torus. Let *H* be a disk with holes and $f: H \to M$ a map into a manifold *M* so

that $f(Bd(H)) \subset Bd(M)$. Following Daverman $[D_2]$ we call the map f*I-inessential* (interior inessential) if there is a map \tilde{f} from H into Bd(M) with $f|Bd(H) = \tilde{f}|Bd(H)$; otherwise, f is said to be *I-essential*.

Unless otherwise specified *linking* will refer to linking in the sense of homotopy and not homology. If $A \subset E^n$ and γ is a loop or simple closed curve in $E^n - A$, we say that γ links A if γ is not null homotopic in $E^n - A$. If $\Gamma = \{\gamma_1, \gamma_2, \dots, \gamma_k\}$ is a collection of oriented loops in $E^n - A$ we say that Γ links A in case Γ does not bound a disk with holes; i.e., there is no map f of a disk with holes H into $E^n - A$ so that under some orientation of H, f|Bd(H) represents the collection Γ .

Let X be a metric space. If $a \in X$ and $\delta > 0$, we let $N(a, \delta)$ denote the set of points in X whose distance from a is less than δ . If $A \subset X$, we let Cl(A) denote the closure of A in X. Let A be a subset of a metric space X and $a \in Cl(X - A)$. We say X - A is *locally* 1-*connected* at a, written X - A is 1-LC at a, if for each $\varepsilon > 0$ there exists a $\delta > 0$ such that each map of S^1 into $(X - A) \cap N(a, \delta)$ extends to a map of B^2 into $(X - A) \cap N(a, \varepsilon)$. We say X - A is *uniformly locally* 1-*connected* and write X - A is 1-ULC if a $\delta > 0$ exists as above independent of the choice of $a \in Cl(X - A)$. If $A \subset B \subset X$ and $a \in Cl(X - A)$, we say that X - B is *locally* 1-*connected* in X - A at a and write X - B is 1-LC in X - A at a if for each $\varepsilon > 0$ there exists a $\delta > 0$ such that each map of S^1 into $(X - B) \cap N(a, \delta)$ extends to a map of B^2 into $(X - A) \cap$ $N(a, \varepsilon)$. Furthermore, we say X - B is *uniformly locally* 1-*connected* in X - A if the uniform property holds, and we write X - B is 1-ULC in X - A.

A Cantor set X in E^n (or S^n) is said to be *tame* if there is a homeomorphism of E^n (or S^n) onto itself taking X into a polygonal arc. If X is not tame, we say X is *wild*. We will be most interested in the fact that a tame Cantor set in E^n or S^n ($n \ge 3$) has 1-ULC complement.

Let A, B be homeomorphic subsets of E^n . We say that A and B are equivalently embedded if there is a homeomorphism $h: E^n \to E^n$ with h(A) = B. If no such homeomorphism exists, we say that A and B are inequivalently embedded.

Finally, a subset A of E^n is *rigid* if whenever $h: E^n \to E^n$ is a homeomorphism with h(A) = A, then h(x) = x for each $x \in A$.

3. Some 3-dimensional preliminaries. Consider the embedding of k solid tori $(k \ge 4)$ A_1 , A_2 ,..., A_k in a solid torus T as shown in Figure 1 (where k = 6). We call such an embedding an *Antoine embedding*. We say

RIGID SETS IN E^n

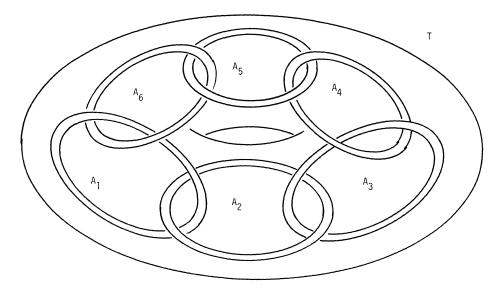


FIGURE 1

that A_i and A_j $(i \neq j)$ are *adjacent* in case A_i is not null homotopic in $T - A_i$. Clearly, each A_i is adjacent to exactly two other solid tori.

LEMMA 3.1. Let P be a polyhedron in a solid torus T such that any loop in P is null homotopic in T. Then there is a collection Γ of loops in Bd T - Pso that Γ is homologically nontrivial in Bd(T) but homologically trivial in T - P. Furthermore, each loop of Γ is nullhomotopic in T.

Proof. Let \tilde{T} be the universal covering space for T. The group of covering transformations of \tilde{T} is isomorphic with the integers. Let ϕ_i be the covering transformation that corresponds with the integer i under some isomorphism. Consider \tilde{T} as a subspace of B^3 so that $B^3 - \tilde{T}$ consists of exactly two points. Let p be any point in \tilde{T} . Let ∞ denote the point in $B^3 - \tilde{T}$ so that the sequence $\phi_1(p), \phi_2(p), \phi_3(p), \ldots$ converges to ∞ . The other point in $B^3 - \tilde{T}$ will be denoted by $-\infty$. Since each loop in P is null homotopic in T, there is a lift $f: P \to \tilde{T}$. Let A = f(P). The set A is compact, and $\phi_i(A) \cap \phi_j(A) = \emptyset$ for $i \neq j$. Setting $X = \{\infty\} \cup \phi_0(A) \cup \phi_1(A) \cup \phi_2(A) \cup \cdots$ and $Y = \{-\infty\} \cup \phi_{-1}(A) \cup \phi_{-2}(A) \cup \phi_{-3}(A) \cup \cdots$, we obtain two disjoint closed sets in B^3 . Hence, there is a properly embedded compact connected piecewise-linear 2-manifold M in B^3 that separates X from Y. Since M is two sided any arc from $-\infty$ to ∞

DAVID G. WRIGHT

in general position with M must pierce M algebraically once. Therefore, homological linking arguments [**Do**] show that Bd(M) (thought of as a 1-cycle induced from some fixed orientation of M) must be nontrivial in $Bd(\tilde{T})$. The projection of Bd(M) into T gives the desired collection Γ .

4. Blankinship Cantor sets in E^n . We describe Cantor sets in E^n similar to the generalizations of Antoine's Necklace [An] given by W. A. Blankinship [Bl]. Our description will be brief. An excellent description of such Cantor sets has been given by W. T. Eaton [E].

Let $M_0 \supseteq$ Int $M_0 \supseteq M_1 \supseteq$ Int $M_1 \supseteq M_2 \supseteq \cdots$ be a nest of compact *n*-manifolds in E^n such that

- 1. M_0 is any solid *n*-torus in E^n .
- 2. Each component of each M_i is a solid *n*-torus.
- 3. For each component N of each M_i there is a projection P of N onto a $B^2 \times S^1$ factor so that $M_{i+1} \cap N$ is $P^{-1}(A)$ for some Antoine embedding A in $B^2 \times S^1$. (See §3.)
- 4. The diameters of the components of M_i tend to zero as *i* aproaches infinity.

The intersection X of such a nest of manifolds is called a *Blankinship* Cantor set. The M_i form a canonical defining sequence for X. We state the following facts about such Cantor sets.

(I) Such Cantor sets may be formed so that the number of components of M_{i+1} in a given component of M_i is any desired integer $k \ge 4$. (In fact k = 2, 3 is also possible. We do not allow k = 2 so that our theory on linking Cantor sets will work. For k = 3 see (II).)

(II) If $f: H \to M_i$ is a map of a disk with holes such that $f(Bd(H)) \subset Bd(M_i)$ and $f(H) \cap X = \emptyset$, then f is *I*-inessential $[D_2]$. If the component of M_i that contains f(H) contains only three components of M_{i+1} , we require the additional hypothesis that f restricted to each boundary curve of H is trivial in M_i . This additional condition may not be necessary. We choose to avoid this case by considering only values of $k \ge 4$ in (I).

(III) If Y is a proper subset of X, then the inclusion induced homomorphism

$$\pi_1(E^n - \operatorname{Int} M_0) \to \pi_1(E^n - Y)$$

is trivial.

(IV) If Z is a closed nowhere dense subset of X, then $E^n - Z$ is 1-ULC.

DEFINITION 4.1. Let X_1 and X_2 be disjoint Cantor sets in E^n . We say X_1 links X_2 if for each connected compact manifold $W \subset E^n$ such that

(i) $X_2 \subset \operatorname{Int} W$,

(ii) $X_1 \cap W = \emptyset$, and

(iii) the fundamental group of W is abelian, then the inclusion induced homomorphism

$$\pi_1(E^n - \operatorname{Int} W) \to \pi_1(E^n - X_2)$$

is nontrivial.

DEFINITION 4.2. Let X and Y be disjoint Cantor sets in E^n . We say X and Y are *linked* if X links Y and Y links X.

DEFINITION 4.3. Let M_j be a canonical defining sequence for a Blankinship Cantor set in E^n . We say that components R and S of M_{i+1} are adjacent if

(i) R, S lie in some component N of M_i

(ii) under the projection P of N onto a $B^2 \times S^1$ factor so that $M_{i+1} \cap N$ is $P^{-1}(A)$ for an Antoine embedding A in $B^2 \times S^1$, the sets P(R) and P(S) are linked solid tori in $B^2 \times S^1$.

In the theorem that follows, let M_j be a canonical defining sequence for a Blankinship Cantor set X in E^n . Let R, S be different components of M_{i+1} . We consider Cantor sets $X_1 \subseteq R \cap X$ and $X_2 \subseteq S \cap X$.

THEOREM 4.4. The Cantor sets X_1 and X_2 are linked if and only if R, S are adjacent, $X_1 = R \cap X$, and $X_2 = S \cap X$.

Proof. If R and S are not adjacent, it is possible to find a compact *n*-manifold W in E^n homeomorphic with $B^3 \times S_1^1 \times S_2^1 \times \cdots \times S_{n-3}^1$ (S_i^1 is a 1-sphere) so that

(i) $S \subset \text{Int } W$ and, hence, $X_2 \subset \text{Int } W$

(ii) $R \cap W = \emptyset$ and, hence, $X_1 \cap W = \emptyset$.

Since the fundamental group of W is abelian and $\pi_1(E^n - \operatorname{Int} W)$ is trivial we see that X_1 and X_2 are not linked.

If $X_1 \neq R \cap X$, then $X_1 \subset \text{Int } R$, $R \cap X_2 = \emptyset$, and $\pi_1(R)$ is abelian. However, by property (III) of Blankinship Cantor sets, the inclusion induced homomorphism

$$\pi_1(E^n - \operatorname{Int} R) \to \pi_1(E^n - X_1)$$

is trivial, and we see that X_1 and X_2 are not linked. A similar argument holds if $X_2 \neq S \cap X$.

DAVID G. WRIGHT

We now assume $X_1 = R \cap X$, $X_2 = S \cap X$ and show that X_1 and X_2 are linked. By the definition of adjacent, R and S lie in a component Nof M_i so that under a projection P of N onto a $B^2 \times S^1$ factor P(R) and P(S) are linked solid tori in $B^2 \times S^1$. By abuse of notation we consider $B^2 \times S^1$ a subset of N. The 3-torus T = P(R) is, therefore, also a subset of E^n . We observe that any nontrivial loop in T links X_2 . Now let W be a compact connected *n*-manifold in E^n so that $X_2 \subset \text{Int } W$, $X_1 \cap W = \emptyset$, and $\pi_1(W)$ is abelian. In W choose a small open collar C of Bd W (a set homeomorphic to Bd $W \times [0, 1)$) that misses X_2 . Set $W^- = W - C$. Let Kbe a polyhedron in T that contains T - W and misses W^- .

Suppose K contains only loops that are null homotopic in T. Then Lemma 3.1 promises the existence of a collection of loops Γ in Bd T - Kso that Γ is nontrivial in the meridional direction of Bd T but homologically trivial in T - K. But $T - K \subset W$; so Γ is homologically trivial in W. Since $\pi_1(W)$ is abelian, Γ bounds a disk with holes in W and hence Γ bounds a disk with holes in the complement of X_1 . Since Γ is nontrivial in the meridional direction of Bd T, we find from linking theory that Γ links Int R, homologically. Let H be a disk with holes and $f: H \to E^n - X_1$ a map so that f|Bd H represents Γ . We may assume, by general position, that each component of $f^{-1}(R)$ is a disk with holes. By property II we find that the restriction of f to each component of $f^{-1}(R)$ is I-inessential. We may therefore redefine f on Int(H) so that $f(H) \cap Int(R) = \emptyset$. But this contradicts the fact that Γ links Int(R). This contradiction arose from supposing K contains only loops that are null homotopic in T. Hence, we can find a loop γ in K that is not null homotopic in T. The loop γ misses W^{-} . Using the collar C, γ is homotopic to a loop in $E^{n} - \text{Int}(W)$ with a homotopy that misses X_2 . Since γ links X_2 , we see that the inclusion induced homomorphism

$$\pi_1(E^n - \operatorname{Int} W) \to \pi_1(E^n - X_2)$$

is nontrivial. Therefore, we have shown that X_1 links X_2 . Similarly, X_2 links X_1 , and we see that X_1 and X_2 are linked.

Let X, Y be Blankinship Cantor sets in E^n with canonical defining sequences M_i and N_i , respectively. We let R_1, R_2, \ldots, R_p denote the components of M_1 and S_1, S_2, \ldots, S_q denote the components of N_1 . The following lemma and theorem will use the above notation.

LEMMA 4.5. Let $h: E^n \to E^n$ be a homeomorphism such that for each i, $1 \le i \le p$, there is a j, $1 \le j \le q$, such that $h(R_i \cap X) \subset S_j \cap Y$. Then either $h(X) \subset S_j$ for some fixed j or (after possible resubscripting) $h(R_i \cap X) = S_i \cap Y$ for each i, p = q, and R_i , R_j are adjacent if and only if S_i and S_i are adjacent. *Proof.* If it is not the case that $h(X) \subset S_j$ for some fixed j, then there are adjacent components that we will call (after possible resubscripting) R_1 and R_2 so that $h(R_1 \cap X) \subset S_1 \cap Y$ and $h(R_2 \cap X) \subset S_2 \cap Y$. Since $R_1 \cap X$ and $R_2 \cap X$ are linked, $h(R_1 \cap X)$ and $h(R_2 \cap X)$ are also linked. But Theorem 4.4 shows that $h(R_1 \cap X) = S_1 \cap Y$, $h(R_2 \cap X) = S_2 \cap Y$, and that S_1 and S_2 are adjacent. By using induction and Theorem 4.4 it is now an easy matter to complete the proof.

THEOREM 4.6. Let $h: E^n \to E^n$ be a homeomorphism such that $h(X) \subset Y$. Then either $h(X) \subset S_j$ for some fixed j or (after possible resubscripting) $h(R_i \cap X) = S_i \cap Y$ for each i, p = q, and R_i, R_j are adjacent if and only if S_i and S_j are adjacent.

Proof. Let *m* be the smallest integer so that for each component *R* of M_m , $h(R \cap X) \subset S_j$ for some *j*. If m = 0 or 1 we are done by Lemma 4.6.

We suppose $m \ge 2$. This implies that there is a component N of M_{m-1} so that for each component R of $M_m \cap N$ $h(R \cap X) \subset S_j$ for some j, but that $h(N \cap X) \not\subset S_j$ for some j. By Lemma 4.6 $h(N \cap X) = Y$. However, since m > 2, we see $X - N \neq \emptyset$, and $h(X - N) \subset Y$. This contradicts the fact that h is a homeomorphism, and we see that $m \ge 2$ is impossible.

5. Distinguishing Blankinship Cantor sets. An Antoine graph G is a graph G so that G is the countable union of nested subgraphs $\emptyset = G_{-1} \subset G_0 \subset G_1 \subset \cdots$. The graph G_0 is a single vertex. For each vertex v of $G_i - G_{i-1}$ there is a polygonal simple closed curve with at least four vertices P(v) in $G_{i+1} - G_i$ so that if v and w are distinct vertices of $G_i - G_{i-1}$, then $P(v) \cap P(w) = \emptyset$. The graph G_{i+1} consists of G_i plus the union of P(v), v a vertex of $G_i - G_{i-1}$, plus edges running between v and the vertices of P(v). See Figure 2. For an Antoine graph G, the subgraphs G_0, G_1, G_2, \ldots are uniquely determined since the vertex in G_0 is the only vertex that does not separate G. For a fixed vertex v of G we associate the unique Antoine subgraph G(v) of G so that $G(v)_0 = \{v\}$.

Given a solid *n*-torus M in E^n and an Antoine graph G, we think of the graph as a set of instructions for constructing a canonical defining sequence M_i for a Blankinship Cantor set in E^n . The vertex in G_0 corresponds to $M_0 = M$. The vertices of $G_i - G_{i-1}$ correspond to components of M_i . If v is a vertex of $G_i - G_{i-1}$ that corresponds to the component N of M_i , then $M_{i+1} \cap N$ contains components corresponding to the vertices of P(v). Furthermore, the components of $M_{i+1} \cap N$ are adjacent if and only if the corresponding vertices bound an edge.

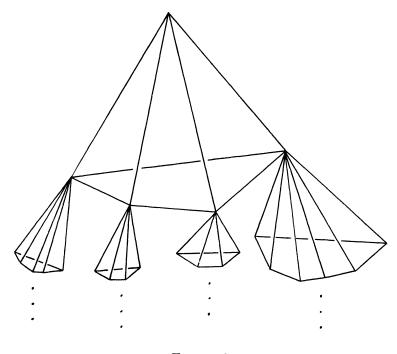


FIGURE 2

On the other hand, given a canonical defining sequence M_i for a Blankinship Cantor set X, we may associate an Antoine graph G(X) so that the defining sequence follows the instructions of the graph as in the previous paragraph. Theorem 4.6 with X = Y and h = identity yields the fact that any two canonical defining sequences for X yield isomorphic Antoine graphs. Hence, G(X) is well defined. We immediately obtain the following theorem and corollary.

THEOREM 5.1. If X and Y are Blankinship Cantor sets so that G(X) is not isomorphic to G(Y), then X and Y are not equivalently embedded in E^n .

COROLLARY 5.2. There are uncountably many inequivalently embedded Blankinship Cantor sets in E^n .

THEOREM 5.3. Suppose X and Y are Blankinship Cantor sets in E^n and h: $E^n \to E^n$ is a homeomorphism. If $h(X) \cap Y$ contains an open subset of either h(X) or Y, then G(X) and G(Y) have isomorphic Antoine subgraphs. *Proof.* Without loss of generality we assume $h(X) \cap Y$ contains an open subset of h(X). Let M_i be a canonical defining sequence for X. Hence there is an integer r and a component T of M_r so that $h(T \cap X) \subset Y$. Theorem 4.6 shows that $G(T \cap X)$ is isomorphic to an Antoine subgraph of G(Y). Clearly $G(T \cap X)$ is isomorphic to an Antoine subgraph of G(X), and the theorem is proved.

6. Rigid Cantor sets in E^n . An Antoine graph G is said to be *rigid* if for each pair of distinct vertices v, w in G, the Antoine subgraphs G(v) and G(w) are not isomorphic.

THEOREM 6.1. Suppose X is a Blankinship Cantor set in E^n so that G(X) is rigid. Then X is rigid.

Proof. Suppose $h: E^n \to E^n$ is a homeomorphism so that h(X) = X and $h|X \neq$ identity. We can find disjoint manifolds M, N that are components of a defining sequence for X such that $h(M \cap X) \subset N \cap X$. By Theorem 5.3 $G(M \cap X)$ and $G(N \cap X)$ have isomorphic Antoine subgraphs. But these correspond to distinct Antoine subgraphs of G(X) which is a contradiction.

THEOREM 6.2. There are uncountably many rigid Blankinship Cantor sets X_{α} in E^n $(n \ge 3)$ such that for $\alpha \ne \beta$ and any homeomorphism h: $E^n \rightarrow E^n$, $h(X_{\alpha}) \cap X_{\beta}$ is a nowhere dense subset of each.

Proof. We leave it as a manageable exercise for the reader to construct uncountably many rigid Antoine subgraphs G_{α} so that for $\alpha \neq \beta$, G_{α} and G_{β} do not have isomorphic Antoine subgraphs. The theorem then follows from Theorems 6.1 and 5.3.

7. Rigid Sets in E^n $(n \ge 4)$. We state our main theorem of this section.

THEOREM 7.1. Let W be a compactum in S^{n-1} ($n \ge 4$) with no isolated points. There are uncountably many inequivalent embeddings of W in E^n each of which is rigid.

We will use as a tool the following theorem of J. W. Cannon [C].

THEOREM 7.2. Suppose X is a compact subset of an (n-1)-sphere Σ in E^n and dim $X \le n-3$. Then $E^n - \Sigma$ is 1-ULC in $E^n - X$ if and only if $E^n - X$ is 1-ULC.

The following theorem will provide us with the means to construct our embeddings.

THEOREM 7.3. Let W be a compactum in $S^{n-1} = \operatorname{Bd} B^n$ with no isolated points. Given a sequence X_1, X_2, X_3, \ldots of Cantor sets in E^n , there is an embedding $e: B^n \to E^n$ and disjoint Cantor sets Y_1, Y_2, Y_3, \ldots in E^n such that setting $\Sigma = e(S^{n-1})$

- (i) $\bigcup Y_i$ is a dense subset of e(W),
- (ii) Y_i is equivalent embedded as X_i ,
- (iii) for each integer k > 0 there is an embedding f_k: Σ → Eⁿ such that
 (a) f_k moves points less than 1/k,
 - (b) $f_k | \bigcup_{i=1}^k Y_i$ is the identity,
 - (c) $f_k(\Sigma \bigcup_{i=1}^k Y_i)$ is locally flat,
 - (d) $\bigcup_{i=1}^{k} Y_i$ is a tame subset of $f_k(\Sigma)$
 - (e) $f_k(\Sigma) \cap e(B^n) = \bigcup_{i=1}^k Y_i$

Proof. By standard techniques [Al], [Bl], [O] it is well known that given a tame Cantor set Z in S^{n-1} and any Cantor set Y in $E^n - B^n$ there exists an embedding h of B^n in E^n so that h(Z) = Y and $h(S^{n-1}) - Y$ is locally flat. Furthermore, if $Z \cup Y$ is contained in an open n-ball U whose intersection with S^{n-1} is an open (n-1)-ball, then h can be chosen so h(x) = x if $x \notin U$ and $h(U \cap S^{n-1}) \subset U$.

Given any Cantor set Y in E^n and any open set U, it is an easy matter to find a Cantor set in U that is equivalently embedded as Y. The above theorem follows from this fact by taking a limit of embeddings e_k using the standard techniques. Care must be taken so that the limit e of the e_k is an embedding. The functions f_k are constructed along with the e_k .

Addendum to Theorem 7.3. Let $W = \sum -\bigcup_{i=1}^{\infty} Y_i$. Then $E^n - \sum$ is 1-ULC in $E^n - W$. If $n \ge 4$ and $Z_i \subset Y_i$ is a compact subset so that $E^n - Z_i$ is 1-ULC, then, setting $W' = \sum -\bigcup(Y_i - Z_i)$, $E^n - \sum$ is 1-ULC in $E^n - W'$.

Proof. The Addendum is proved by using the f_k and the fact that $f_k(\Sigma) - \bigcup_{i=1}^k Y_i$ is 1-ULC for $n \ge 4$.

Let W be a compactum in S^{n-1} with no isolated points; $X_1, X_2, ...$ be a sequence of Cantor sets in E^n ; and Σ an (n - 1)-sphere constructed as in Theorem 7.3. The following lemma will make the proof of Theorem 7.1 transparent.

RIGID SETS IN E^n

LEMMA 7.4. Let Y be a Cantor set in E^n $(n \ge 4)$ such that for each homeomorphism h: $E^n \to E^n$, $E^n - (h(Y) \cap X_i)$ is 1-ULC for each i. If g: $E^n \to E^n$ is a homeomorphism such that $g(Y) \subset \Sigma$, then $E^n - Y$ is 1-ULC.

Proof. We use Y_i to denote the Cantor sets as in Theorem 7.3 and set $Z_i = g(Y) \cap Y_i$. Then $E^n - Z_i$ is 1-ULC for each *i*. Since $g(Y) \subset W' = \Sigma - \bigcup (Y_i - Z_i)$, the Addendum to Theorem 7.3 shows that $E^n - \Sigma$ is 1-ULC in $E^n - g(Y)$. Hence Cannon's theorem, Theorem 7.2, shows that $E^n - g(Y)$ is 1-ULC. Clearly $E^n - Y$ is 1-ULC.

Proof of Theorem 7.1. Let W be a compactum in S^{n-1} $(n \ge 4)$ with no isolated points. Using Theorem 6.2, choose rigid Blankinship Cantor sets X_1, X_2, X_3, \ldots and X'_1, X'_2, X'_3, \ldots in E^n such that for each pair of Cantor sets the associated Antoine graphs do not have isomorphic Antoine subgraphs. Let Σ and Σ' be the (n - 1)-spheres promised by Theorem 7.3 corresponding to the Cantor sets X_i and X'_i , respectively. Let $X \subset \Sigma$ and $X' \subset \Sigma'$ be the resulting embeddings of W. We need to show that X and X' are inequivalently embedded and that each is rigid. To this end we let Y_i and Y'_i be the Cantor sets promised by 7.3 such that $\bigcup Y_i$ is dense in X, $\bigcup Y'_i$ is dense in X', and Y_i (respectively Y'_i) is equivalently embedded as X_i (respectively X'_i).

From Theorem 6.2 and fact (IV) about Blankinship Cantor sets we see that for each homeomorphism $h: E^n \to E^n$, $E^n - (h(X_i) \cap X'_j)$ is 1-ULC for all i, j. If $g: E^n \to E^n$ is a homeomorphism such that g(X) = X', then $g(Y_i) \subset \Sigma'$ and, by Lemma 7.4, $E^n - Y_i$ is 1-ULC, a contradiction. Hence, we see that X and X' are not equivalently embedded.

The proof that X and X' are rigid is similar to the above proof with minor modifications.

Since there are uncountably many rigid Blankinship Cantor sets as described in Theorem 6.2, it is now a simple matter to find uncountably many inequivalent embeddings of W in E^n each of which is rigid.

Notice that Theorem 7.3 applies in E^3 , but the Addendum does not. Thus we are led to the following question.

Question 7.5. Let W be a compactum in S^2 with no isolated points. Are there uncountably many inequivalent embeddings of W in E^3 each of which is rigid?

DAVID G. WRIGHT

References

- [A] J. W. Alexander, Remarks on a point set constructed by Antoine, Proc. Nat. Acad. Sci., 10 (1924), 10–12.
- [An] L. Antoine, Sur l'homeomorphie de deux figures et de leur voisinages, J. Math. Pures Appl., 4 (1929), 221-325.
- [BI] W. A. Blankinship, Generalization of a construction of Antoine, Ann. of Math., (2) 53 (1951), 276–291.
- [Bo] H. G. Bothe, Eine Fixierte Kurve in E³, General topology and its relations to modern analysis and algebra, II (Proc. Second Prague Topological Symposium, 1966) Academia, Prague 1967, 68–73.
- [B-M] B. L. Brechner and J. C. Mayer, *Inequivalent embeddings of planer continua in E*³, manuscript.
- [C] J. W. Cannon, Characterizations of tame subsets of 2-spheres in E³, Amer. J. Math., 94 (1972), 173–188.
- [D₁] R. J. Daverman, Embedding phenomena based upon decomposition theory: Wild Cantor sets satisfying strong homogenity properties, Proc. Amer. Math. Soc., 75 (1979), 177–182.
- [D₂] _____, On the absence of tame disks in certain wild cells, Geometric Topology (Proc. Geometric Topology Conf., Park City, Utah 1974) (L. C. Glaser and T. B. Rushing, editors), Springer-Verlag, Berlin and New York, 1975, 142–155.
- [Do] A. Dold, Lectures on Algebraic Topology, Springer-Verlag, Berlin, Heidelberg, New York, (1972).
- [E] W. T. Eaton, A generalization of the dog bone space to E^n , Proc. Amer. Math. Soc., **39** (1973), 379–387.
- [M] J. M. Martin, A rigid sphere, Fund. Math., 59 (1966), 117-121.
- [O] R. P. Osborne, Embedding Cantor sets in a manifold, II. An extension theorem for homeomorphisms on Cantor sets, Fund. Math., 65 (1969), 147–151.
- [Sher] R. B. Sher, Concerning uncountably many wild Cantor sets in E³, Proc. Amer. Math. Soc., 19 (1968), 1195–1200.
- [Shil] A. C. Shilepsky, A rigid Cantor set in E³, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys., 22 (1974), 223–224.

Received July 9, 1984.

DEPARTMENT OF MATHEMATICS BRIGHAM YOUNG UNIVERSITY PROVO, UT 84602