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RIGID SETS IN En

DAVID G. WRIGHT

We construct rigid embeddings of Cantor sets in En (n > 3) and
rigid embeddings of compacta in E" (n > 3). In each case there are
uncountably many different rigid embeddings. The results in this paper
generalize three-dimensional theorems by Sher, Shilepsky, Bothe, Martin,
and Brechner and Mayer.

1. Introduction. Let Xbe a subset of Euclidean π-space En. We say
that X is rigid in En if the only homeomorphism of X onto itself that is
extendable to a homeomorphism of En onto itself is the identity homeo-
morphism. J. Martin has constructed a rigid 2-sphere in E3 [M]. H. G.
Bothe has constructed a rigid simple closed curve in E3 [Bo]. Arnold
Shilepsky constructed many different rigid Cantor sets in E3 [Shil] by
using a result of R. B. Sher on Cantor sets in E3 [Sher]. More recently,
Beverly Brechner and John C. Mayer have used Sher's result to construct
uncountably many inequivalent embeddings of certain planar continua in
E3 [B-M].

In this paper all of these results are generalized to En (n > 4).
The rigid Cantor sets in this paper are in stark contrast to the strongly

homogeneous but wildly embedded Cantor sets constructed by R. J.
Daverman in En (n > 5) [DJ.

2. Definitions and notations. We use Sn, Bn, and En to denote the
^-sphere, the w-ball, and Euclidean «-space, respectively. If M is a
manifold, we let Bd(M) and Int(M) denote the boundary and interior of
M, respectively. A disk with holes is a compact connected 2-manifold that
embeds in E2. By map we will always mean a continuous function. Let
Γ = {γ1?γ2? •>%} be a collection of oriented loops in a space X. We
shall say Γ bounds a manifold if there is a compact oriented 2-manifold M
and map /: M -> X so that /|Bd M represents the collection Γ. We shall
say that Γ is homologically trivial or nontrivial if the element represented
by Γ in Hλ(X) is, respectively, trivial or nontrivial where the first
homology group Hλ(X) is computed with integer coefficients. A solid
w-torus is a space homeomorphic with B1 X S\x S\x XS*_2 where
each S} is a 1-sphere. A solid 3-torus will be called simply a solid torus.
Let H be a disk with holes and /: H -> M a map into a manifold M so
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that /(Bd(i/)) c Bd(M). Following Daverman [D2] we call the map /
I-inessential (interior inessential) if there is a map / from H into Bd( M)
with f\Bd(H) = /|Bd(/f); otherwise, / is said to be I-essential.

Unless otherwise specified linking will refer to linking in the sense of
homotopy and not homology. If A c En and γ is a loop or simple closed
curve in En — A, we say that γ links A if γ is not null homotopic in
En — A At Γ = {γl9 γ 2 , . . . , yk} is a collection of oriented loops in En — A
we say that Γ links A in case Γ does not bound a disk with holes; i.e.,
there is no map / of a disk with holes H into En — A so that under some
orientation of i/, f\Bd(H) represents the collection Γ.

Let J bea metric space. If a e X and 8 > 0, we let N(a,δ) denote
the set of points in X whose distance from a is less than δ. If A c X, we
let Cl(A) denote the closure of A in X. Let A be a subset of a metric
space X and a e Cl(X — A). We say X — A is locally 1-connected at a,
written X — A is 1-LC at a, if for each ε > 0 there exists a δ > 0 such
that each map of Sι into (X — A) Γ) N(a,δ) extends to a map of B2 into
( I - ^ ) n ^ ( f l , £ ) . We say X - A is uniformly locally 1-connected and
write X — ̂ 4 is 1-ULC if a δ > 0 exists as above independent of the
choice of a <E Cl( X - A). If ^ c B c X and a e Cl( Z - Λ), we say that
X — B is locally 1-connected in X — A at a and write X — 5 is 1-LC in
X — A at α if for each ε > 0 there exists a δ > 0 such that each map of
S1 into (X - B) Γ\N(a,δ) extends to a map of B2 into (X - A) Π
N(a,ε). Furthermore, we say X — B is uniformly locally l-connected in
X — ̂ 4 if the uniform property holds, and we write X — B is 1-ULC in

A Cantor set X in En (or Sn) is said to be tame if there is a
homeomorphism of En (or S") onto itself taking X into a polygonal arc.
If X is not tame, we say X is wild. We will be most interested in the fact
that a tame Cantor set in En or Sn (n > 3) has 1-ULC complement.

Let A, B be homeomorphic subsets of £". We say that A and 5 are
equivalently embedded if there is a homeomorphism /*: En -* En with
Λ(v4) = 5. If no such homeomorphism exists, we say that A and B are
inequiυalently embedded.

Finally, a subset yί of 2?" is rigid if whenever /r. En -+ En is a
homeomorphism with h(A) = A, then Λ(Λ ) = x for each x ^ A.

3. Some 3-dimensional preliminaries. Consider the embedding of k
solid tori (k > 4) ^4l9 A2,...,Ak in a solid torus T as shown in Figure 1
(where k = 6). We call such an embedding an Antoine embedding. We say
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FIGURE 1

that Ai and A} (i Φ j) are adjacent in case Ai is not null homotopic in
T — Aj. Clearly, each Ai is adjacent to exactly two other solid tori.

LEMMA 3.1. Let P be a polyhedron in a solid torus T such that any loop
in P is null homotopic in T. Then there is a collection Γ of loops in Bd T — P
so that Γ is homologically nontriυial in Bd(Γ) but homologically trivial in
T — P. Furthermore, each loop of Γ is nullhomotopic in T.

Proof. Let f be the universal covering space for T. The group of
covering transformations of t is isomorphic with the integers. Let φ. be
the covering transformation that corresponds with the integer / under
some isomorphism. Consider f as a subspace of B3 so that B3 — f
consists of exactly two points. Let p be any point in f. Let oo denote the
point in B3 — f so that the sequence φλ(p), Φ2(p)> Φ?>{p)i converges
to oo. The other point in B3 — t will be denoted by -oo. Since each loop
in P is null homotopic in T, there is a lift f:P-*f. Let A = f(P). The
set A is compact, and φj(A) Π Φj{A) = 0 for i Φ j . Setting X = {oo} U
ΦO(A) U φx(A) U φ2(A) U and 7 = {-oo} U φ_λ(A) U φ_2(A) U
φ_3(A) U , we obtain two disjoint closed sets in B3. Hence, there is a
properly embedded compact connected piecewise-linear 2-manifold M in
B3 that separates X from Y. Since M is two sided any arc from -oo to oo
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in general position with M must pierce M algebraically once. Therefore,
homological linking arguments [Do] show that Bd(Λf) (thought of as a
1-cycle induced from some fixed orientation of M) must be nontrivial in
Bd(f). The projection of Bd(M) into T gives the desired collection Γ.

4. Blankinship Cantor sets in En. We describe Cantor sets in En

similar to the generalizations of Antoine's Necklace [An] given by W. A.
Blankinship [Bl]. Our description will be brief. An excellent description of
such Cantor sets has been given by W. T. Eaton [E].

Let Mo 2 Int Mo Ξ> M\ D Int Mγ D M2 D be a nest of compact
H-manifolds in En such that

1. Λf0 is any solid «-torus in En.
2. Each component of each Mi is a solid π-torus.
3. For each component N of each Mi there is a projection P oί N

onto a B2 X S1 factor so that Mi+1 Π N is P~\A) for some
Antoine embedding A in B2 X S1. (See §3.)

4. The diameters of the components of Mt tend to zero as / aproaches
infinity.

The intersection X of such a nest of manifolds is called a Blankinship
Cantor set. The Mi form a canonical defining sequence for X. We state the
following facts about such Cantor sets.

(I) Such Cantor sets may be formed so that the number of compo-
nents of Mi+1 in a given component of Mz is any desired integer k > 4.
(In fact k = 2, 3 is also possible. We do not allow k = 2 so that our
theory on linking Cantor sets will work. For k = 3 see (II).)

(II) If /: H -> M, is a map of a disk with holes such that f(Bd(H))
c Bd(Afy) and f(H)ΠX= 0, then / is /-inessential [D2]. If the compo-
nent of Mi that contains f(H) contains only three components of Mi+l9

we require the additional hypothesis that / restricted to each boundary
curve of H is trivial in M(. This additional condition may not be
necessary. We choose to avoid this case by considering only values of
k > 4 in (I).

(III) If 7 is a proper subset of X, then the inclusion induced
homomorphism

πx{En - IntM0) ^ πx(En - Y)

is trivial.
(IV) If Z is a closed nowhere dense subset of X, then En - Z is

1-ULC
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DEFINITION 4.1. Let Xλ and X2 be disjoint Cantor sets in En. We say
Xx links X2 if for each connected compact manifold W c En such that

(i) X2 c IntW,
(ii) XXΠ W= 0,and

(iii) the fundamental group of W is abelian, then the inclusion
induced homomorphism

is nontrivial.

DEFINITION 4.2. Let X and Y be disjoint Cantor sets in En. We say
X and Y are linked if X links Y and Y links X

DEFINITION 4.3. Let M} be a canonical defining sequence for a
Blankinship Cantor set in En. We say that components R and S of Mι + ι

are adjacent if
(ϊ) R, S lie in some component N of Aff.

(ii) under the projection P oί N onto a B2 X Sι factor so that
Afί + 1 Π TV is P ' 1 ^ ) for an Antoine embedding A in B2 X 511, the sets
P(i?) and P(S) are linked solid tori in B2 X Sι.

In the theorem that follows, let My be a canonical defining sequence
for a Blankinship Cantor set X in En. Let /?, S be different components
of Λf/ + 1. We consider Cantor sets ^ c ί n l and I 2 c S n I

THEOREM 4.4. The Cantor sets Xλ and X2 are linked if and only if R, S
are adjacent, Xx = R Π X, and X2 = S Π X.

Proof. If R and S are not adjacent, it is possible to find a compact
^-manifold W in En homeomorphic with i 3 X Sf X S) X XS*_3

(S} is a 1-sphere) so that
(i) S c IntfFand, hence, X2 c IntϊF

(ii) R Π W= 0 and, hence, Xτ n W = 0.
Since the fundamental group of W is abelian and π^E" — intW) is
trivial we see that Xλ and X2 are not linked.

If Xγ Φ R Π X, then Xx c. Int R, R Π X2 = 0, and TΓ^P) is abelian.
However, by property (III) of Blankinship Cantor sets, the inclusion
induced homomorphism

πλ(En - intR) -> <nY(En - Xx)

is trivial, and we see that Xλ and X2 are not linked. A similar argument
holds if X2 Φ S Π X.
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We now assume Xλ = R Π X, X2 = S Π X and show that Xx and X2

are linked. By the definition of adjacent, R and S lie in a component N
of Mf. so that under a projection P of N onto a 2?2 X Sι factor P(i?) and
P(»S) are linked solid tori in B2 X S1. By abuse of notation we consider
B2 X Sι a subset of JV. The 3-torus Γ = P(R) is, therefore, also a subset
of En. We observe that any nontrivial loop in T links X2. Now let W be a
compact connected w-manifold in £ n so that X2 c intW, Xλ Γ\ W = 0,
and πx(W) is abelian. In Wchoose a small open collar C of Bd W (a set
homeomorphic to Bd W X [0,1)) that misses X2. Set W = W - C. Let K
be a polyhedron in T that contains T — W and misses fF~.

Suppose K contains only loops that are null homotopic in T. Then
Lemma 3.1 promises the existence of a collection of loops Γ in Bd T — K
so that Γ is nontrivial in the meridional direction of Bd T but homologi-
cally trivial in T — K. But T — K c W\ so Γ is homologically trivial in
W. Since πλ(W) is abelian, Γ bounds a disk with holes in W and hence Γ
bounds a disk with holes in the complement of Xv Since Γ is nontrivial in
the meridional direction of Bd Γ, we find from Unking theory that Γ links
Int i?, homologically. Let H be a disk with holes and /: H -> En — Xλ a
map so that f\ Bd H represents Γ. We may assume, by general position,
that each component of f'ι(R) is a disk with holes. By property II we
find that the restriction of / to each component of f~ι(R) is /-inessential.
We may therefore redefine / on Int(iί) so that f(H) Π Int(i?) = 0 . But
this contradicts the fact that Γ links Int(i?). This contradiction arose from
supposing K contains only loops that are null homotopic in T. Hence, we
can find a loop γ in K that is not null homotopic in T. The loop γ misses
W~. Using the collar C, γ is homotopic to a loop in En — \nt(W) with a
homotopy that misses X2. Since γ links X2, we see that the inclusion
induced homomorphism

ir^E" - intW) -> πλ{En - X2)

is nontrivial. Therefore, we have shown that Xλ links X2. Similarly, X2

links Xl9 and we see that Xx and X2 are linked.

Let X, Y be Blankinship Cantor sets in En with canonical defining

sequences Mέ and Ni9 respectively. We let Rl9 R2,...,Rp denote the

components of Mλ and Sl9 S2,...,Sq denote the components of Nv The

following lemma and theorem will use the above notation.

LEMMA 4.5. Let h: En -» En be a homeomorphism such that for each /,

1 < / < / > , there is a j \ 1 <j < q, such that h{Rt Π X) c Sj Π Y.

Then either h(X) c Sj for some fixed j or (after possible resubscripting)

h(Ri Π X) = Si Π Y for each i, p = q, and Ri9 Rj are adjacent if and only

if Si and Sj are adjacent.
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Proof. If it is not the case that h(X) <z S; for some fixed j , then there

are adjacent components that we will call (after possible resubscripting)

JRX and R2 so that h(Rλ Π X) c Sx Π Y and A(# 2 Π I ) c S2 n 7. Since

RλΠ X and i? 2 Π X are linked, A ^ Π X) and Λ(i?2 Π X) are also

linked. But Theorem 4.4 shows that h(Rx Π X) = Sλ Π 7, A(i?2 Π X) =

S2 Π 7, and that Sj and S2 are adjacent. By using induction and Theorem

4.4 it is now an easy matter to complete the proof.

THEOREM 4.6. Let A: En -> En be a homeomorphism such that h{ X) c

Y. Then either h{ X) c £• /or some fixed j or (after possible resubscripting)

h(R( Π X) = S{ Π Y for each /, p = q, and Ri9 Ry are adjacent if and only

if St and Sj are adjacent.

Proof. Let m be the smallest integer so that for each component R of

Mm9 h(R Π X) c Sj for some j . If m = 0 or 1 we are done by Lemma

4.6.

We suppose m > 2. This implies that there is a component N of

M m _ x so that for each component R of Mm Π N h(R Π X) c Sf for

some j \ but that h(N Π X) <t Sj for some j . By Lemma 4.6 h(N Π X) =

7. However, since m > 2, we see X — N Φ 0 , and A(X — JV) c y. This

contradicts the fact that A is a homeomorphism, and we see that m > 2 is

impossible.

5. Distinguishing Blankinship Cantor sets. An Antoine graph G is a

graph G so that G is the countable union of nested subgraphs 0 = G_x c

Go c Gx c . The graph Go is a single vertex. For each vertex v of

G, — G /_ 1 there is a polygonal simple closed curve with at least four

vertices P(v) in Gi+ι - G, so that if v and w are distinct vertices of

G{ - G,_ l 9 then P(υ) Π P(w) = 0 . The graph G/ + 1 consists of G7 plus

the union of P(v), y a vertex of G; — G/_1, plus edges running between υ

and the vertices of P(u). See Figure 2. For an Antoine graph G, the

subgraphs Go, G l 9 G 2 , . . . are uniquely determined since the vertex in Go

is the only vertex that does not separate G. For a fixed vertex υ of G we

associate the unique Antoine subgraph G(v) of G so that G ( ^ ) o = {^}.

Given a solid /i-torus M in £ w and an Antoine graph G, we think of

the graph as a set of instructions for constructing a canonical defining

sequence Mt for a Blankinship Cantor set in En. The vertex in Go

corresponds to Mo = M. The vertices of G, — G /_1 correspond to compo-

nents of Mr If υ is a vertex of Gt — Gt_x that corresponds to the

component TV of M/5 then Mι + ι Π N contains components corresponding

to the vertices of P(v). Furthermore, the components of Mi+1 Π N are

adjacent if and only if the corresponding vertices bound an edge.
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FIGURE 2

On the other hand, given a canonical defining sequence Mt for a

Blankinship Cantor set X, we may associate an Antoine graph G(X) so

that the defining sequence follows the instructions of the graph as in the

previous paragraph. Theorem 4.6 with X = Y and h = identity yields the

fact that any two canonical defining sequences for X yield isomoφhic

Antoine graphs. Hence, G(X) is well defined. We immediately obtain the

following theorem and corollary.

THEOREM 5.1. If X and Y are Blankinship Cantor sets so that G(X) is

not isomorphic to G(Y), then Xand Y are not equiυalently embedded in En.

COROLLARY 5.2. There are uncountably many inequivalently embedded

Blankinship Cantor sets in En.

THEOREM 5.3. Suppose X and Y are Blankinship Cantor sets in En and

h: En -> En is a homeomorphίsm. If h(X) Π Y contains an open subset of

either h(X) or Y, then G(X) and G{Y) have isomorphic Antoine sub-

graphs.
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Proof. Without loss of generality we assume h(X) Π Y contains an

open subset of h(X). Let Mi be a canonical defining sequence for X.

Hence there is an integer r and a component T of Mr so that h (T Π X) c Y.

Theorem 4.6 shows that G(T (Ί X) is isomorphic to an Antoine subgraph

of G(Y). Clearly G(T Π Z) is isomorphic to an Antoine subgraph of

G( X), and the theorem is proved.

6. Rigid Cantor sets in En. An Antoine graph G is said to be rigid

if for each pair of distinct vertices υ9 w in G, the Antoine subgraphs G(v)

and G(H>) are not isomorphic.

THEOREM 6.1. Suppose X is a Blankinship Cantor set in En so that

G(X) is rigid. Then X is rigid.

Proof. Suppose h: En -> En is a homeomorphism so that h(X) = X

and h \ X Φ identity. We can find disjoint manifolds M, N that are

components of a defining sequence for X such that h(M Π X) a N Γ) X.

By Theorem 5.3 G(M Π X) and G(N Π X) have isomorphic Antoine

subgraphs. But these correspond to distinct Antoine subgraphs of G(X)

which is a contradiction.

THEOREM 6.2. There are uncountably many rigid Blankinship Cantor

sets Xa in En (n > 3) such that for a Φ β and any homeomorphism h:

En -» En, h(Xa) Π Xβ is a nowhere dense subset of each.

Proof. We leave it as a manageable exercise for the reader to construct

uncountably many rigid Antoine subgraphs Ga so that for a Φ β, Ga and

Gβ do not have isomorphic Antoine subgraphs. The theorem then follows

from Theorems 6.1 and 5.3.

7. Rigid Sets in En (n > 4). We state our main theorem of this

section.

THEOREM 7.1. Let Wbe a compactum in Sn~ι (n > 4) with no isolated

points. There are uncountably many inequiυalent embeddings of W in En

each of which is rigid.

We will use as a tool the following theorem of J. W. Cannon [C].

THEOREM 7.2. Suppose X is a compact subset of an (n — l)-sphere Σ in

En and dim X <n - 3. Then En - Σ is 1-ULC in En - X if and only if

En - Xisl-ULC.
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The following theorem will provide us with the means to construct

our embeddings.

THEOREM 7.3. Let W be a compactum in Sn~ι = BdBn with no

isolated points. Given a sequence Xv X2, X3,... of Cantor sets in En, there

is an embedding e: Bn —> En and disjoint Cantor sets Yv Y2, Y3,... in En

such that setting Σ = e(Sn~ι)

(i) U Yj is a dense subset of e( W),

(ii) Yt is equivalent embedded as Xo

(iii) for each integer k > 0 there is an embedding fk\ Σ -» En such that

(a) fk moves points less than I/A:,

(b) fk\ Uf=1Y; is the identity,

(c) fk(Σ - Uf = 1 ^) is locally flat,

(d) Uf= ly; is a tame subset offk(Σ)

Proof. By standard techniques [Al], [Bl], [O] it is well known that

given a tame Cantor set Z in Sn~ι and any Cantor set 7 in En ~ Bn

there exists an embedding h oί Bn in En so that h(Z) = Y and

h(S"~ι) — Y is locally flat. Furthermore, if Z U Y is contained in an

open fl-ball U whose intersection with Sn~ι is an open (n — l)-ball, then

h can be chosen so h(x) = x if x $ U and h(U Π Sn~ι) c U.

Given any Cantor set Y in En and any open set U, it is an easy

matter to find a Cantor set in U that is equivalently embedded as Y. The

above theorem follows from this fact by taking a limit of embeddings ek

using the standard techniques. Care must be taken so that the limit e of

the ek is an embedding. The functions fk are constructed along with the

Addendum to Theorem 7.3. Let W = Σ - U?=ιYr Then En - Σ is

1-ULC in E" — W. If n > 4 and Z, c ^ is a compact subset so that

En - Zι is 1-ULC, then, setting W = Σ - \J(Yt: - Zf ), En - Σ is 1-ULC

in En - W.

Proof. The Addendum is proved by using the fk and the fact that

fk(Σ) - Uf= 17, is 1-ULC for n > 4.

Let W be a compactum in S"2"1 with no isolated points; Xv X2, "

be a sequence of Cantor sets in En\ and Σ an(/i - l)-sphere constructed

as in Theorem 7.3. The following lemma will make the proof of Theorem

7.1 transparent.
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LEMMA 7.4. Let Y be a Cantor set in En (n > 4) such that for each
homeomorphism h: E" -» E\ En - (h(Y) Π X.) is 1-ULC for each i. If
g: En -» En is a homeomorphism such that g(Y) c Σ, then En - Y is
1-ULC.

Proof. We use Yt to denote the Cantor sets as in Theorem 7.3 and set
Z, = g(y)Π 1). Then £ n - Z, is 1-ULC for each j . Since g(F) c W =
Σ - U(yj - Z,.), the Addendum to Theorem 7.3 shows that 2?" - Σ is
1-ULC in En — g(Y). Hence Cannon's theorem, Theorem 7.2, shows that
En - g(Y) is 1-ULC. Clearly En - 7 is 1-ULC.

Proof of Theorem 7.1. Let W be a compactum in S"2"1 (n > 4) with
no isolated points. Using Theorem 6.2, choose rigid Blankinship Cantor
sets Xl9 X2, X3,... and X{, Xr

2, X^,... in En such that for each pair of
Cantor sets the associated Antoine graphs do not have isomorphic Antoine
subgraphs. Let Σ and Σ' be the (n — l)-spheres promised by Theorem 7.3
corresponding to the Cantor sets Xi and X?9 respectively. Let X c Σ and
X' c Σ r be the resulting embeddings of W. We need to show that X and
Xf are inequivalently embedded and that each is rigid. To this end we let
Yt and Y/ be the Cantor sets promised by 7.3 such that U^ is dense in X,
Uiy is dense in X\ and Yt (respectively Y/) is equivalently embedded as
X{ (respectively X{).

From Theorem 6.2 and fact (IV) about Blankinship Cantor sets we
see that for each homeomorphism h: En -> En, En - (h{Xt) Π XJ) is
1-ULC for all /, j . If g: En -+ En is a homeomorphism such that
g(X) = JT, then g(Y;.) c Σ7 and, by Lemma 7.4, En - Y.^ is 1-ULC, a
contradiction. Hence, we see that X and X' arc not equivalently em-
bedded.

The proof that X and X' are rigid is similar to the above proof with
minor modifications.

Since there are uncountably many rigid Blankinship Cantor sets as
described in Theorem 6.2, it is now a simple matter to find uncountably
many inequivalent embeddings of W in En each of which is rigid.

Notice that Theorem 7.3 applies in E3, but the Addendum does not.
Thus we are led to the following question.

Question 7.5. Let W be a compactum in S2 with no isolated points.
Are there uncountably many inequivalent embeddings of W in E3 each of
which is rigid?
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