ON POLYNOMIAL GENERATORS IN THE ALGEBRA OF COMPLEX FUNCTIONS ON A COMPACT SPACE

Gabriel Katz

Abstract

In this paper we prove that in the space of all continuous mappings of a k-dimensional compact space X into complex linear space C^{n} the imbeddings $F: X \rightarrow C^{n}$ with the property "any complex continuous function on $F(X)$ can be uniformly approximated by complex polynomials on C^{n} " form a dense subset of type G_{δ}, provided that $k \leq \frac{2}{3} n$.

If is known [2] that if the algebra of continuous complex functions $C(X)$ for a topological space X has k multiplicative generators then X has to be acyclic (with complex coefficients) in dimensions $\geq k$. In particular, $C\left(M^{k}\right)$ has at least $k+1$ generators for any closed orientable k-manifold M. On the other hand, it was proved in [6] that there exist $k+1$ polynomial generators in the algebra $C\left(X^{k}\right)$ for a finite k-dimensional simplicial polyhedron X^{k}. This means that any such function on X^{k} may be uniformly approximated by complex polynomials in certain specially constructed functions $f_{0}^{*}, \ldots, f_{k}^{*} \in C\left(X^{k}\right)$. In other words, there exists a continuous embedding $F^{*}: X^{k} \rightarrow \mathbf{C}^{k+1}$ of the polyhedron X^{k} into complex vector space \mathbf{C}^{k+1} such that any continuous complex valued function on the image $F^{*}\left(X^{k}\right)$ may be approximated by complex polynomials in the coordinate functions $z_{l}: \mathbf{C}^{k+1} \rightarrow \mathbf{C}, 0 \leq i \leq k$.

It seems that analogous results follow for any compact space X^{k} (not only for polyhedra). Moreover, it is quite natural to conjecture that for X^{k} compact the existence of polynomial approximation on $F\left(X^{k}\right) \subset \mathbf{C}^{k+1}$ is a "general position" phenomenon with respect to perturbations of F : $X^{k} \rightarrow \mathbf{C}^{k+1}$. Note, that this would be a complete complex analog of the classical Whitney theorems [9] (see also [4]).

In this paper we prove similar propositions for imbeddings $F: X^{k} \rightarrow$ \mathbf{C}^{n} satisfying the dimensional condition $k \leq \frac{2}{3} n$. In particular, for 2-dimensional compact spaces X^{2} one has the following result ("complex Whitney theorem"): there are 3 multiplicative generators in the algebra $C\left(X^{2}\right)$, in fact, starting with any $f_{1}, f_{2}, f_{3} \in C\left(X^{2}\right)$ one can perturb them by an arbitrarily small amount to get a set of multiplicative generators for $C\left(X^{2}\right)$. Note, that this is the best possible general result for $k=2$.

Our main result is

Theorem A. Let $3 k \leq 2 n$. In the space $\operatorname{Map}\left(X^{k}, \mathbf{C}^{n}\right)$ of all continuous mappings of a k-dimensional compact space X^{k} into complex linear space \mathbf{C}^{n} consider the mappings $F: X^{k} \rightarrow \mathbf{C}^{n}$ satisfying the following properties:

1. F is an imbedding;
2. any continuous function on X^{k} may be approximated by complex polynomials in the multiplicative generators $f_{1}=z_{1} \circ F, \ldots, f_{n}=z_{n} \circ F$, where z_{1}, \ldots, z_{n} are complex coordinate functions on \mathbf{C}^{n};
3. in particular, $F\left(X^{k}\right)$ is polynomially convex in \mathbf{C}^{n}.

These mappings form a dense subset of type G_{δ} in $\operatorname{Map}\left(X^{k}, \mathbf{C}^{n}\right)$.

The proof of this theorem is based on the following proposition.

Theorem B. Let $3 k \leq 2 n$. In the space $\operatorname{SLMap}\left(Y^{k}, \mathbf{C}^{n}\right)$ of simplicially linear mappings of a finite k-dimensional simplicial polyhedron Y^{k} into \mathbf{C}^{n} there exists an open and everywhere dense subset of imbeddings $F: Y^{k} \rightarrow \mathbf{C}^{n}$ such that any continuous function on the image $F\left(Y^{k}\right)$ may be approximated by complex polynomials over \mathbf{C}^{n} and, consequently, $F\left(Y^{k}\right)$ is polynomially convex in \mathbf{C}^{n}.

We don't know if Theorems A and B have immediate analogs for smooth regular imbeddings. For example, it is easy to show that there is no smooth regular imbedding $F: \mathbf{C} P^{2} \rightarrow \mathbf{C}^{6}$ of complex projective space $\mathbf{C} P^{2}$ with the tangent bundle of $F\left(\mathbf{C} P^{2}\right)$ being a totally real subbundle of a trivial complex 6 -dimensional bundle. On the other hand, $3 \cdot \operatorname{dim} \mathbf{C} P^{2}$ $\leq 2 \cdot 6$, which is perfectly consistent with the dimensional assumptions of Theorems A and B.

Prior to the proof of Theorem B we need to introduce some terminology and to prove some auxiliary propositions.

Let \mathscr{L} be any finite family of real affine subspaces $\left\{V_{\alpha}\right\}_{\alpha \in \mathscr{L}}$ of \mathbf{C}^{n} with the property $V_{\alpha} \nsubseteq V_{\beta}$ for any pair $\alpha, \beta \in \mathscr{L}, \alpha \neq \beta$. Consider the subspace $|\mathscr{L}|=\bigcup_{\alpha \in \mathscr{L}} V_{\alpha} \subset \mathbf{C}^{n}$. In fact, it is a stratified set with the stratification induced by the multiple intersections of different spaces V_{α} parameterized by \mathscr{L}.

We say that the family \mathscr{L} is totally real if any $V_{\alpha} \subset|\mathscr{L}|, \alpha \in \mathscr{L}$, is a totally real affine subspace of \mathbf{C}^{n}, i.e. it does not contain any complex line. Of course, if \mathscr{L} is totally real, then its dimension $\operatorname{dim} \mathscr{L}=$ $\max _{\alpha \in \mathscr{L}}\left\{\operatorname{dim}_{\mathbf{R}} V_{\alpha}\right\}$ is not greater than n.

We denote by $V_{\alpha}^{\mathbf{C}}$ the complexification of $V_{\alpha} \subset \mathbf{C}^{n}$ (which for totally real V_{α} is an affine subspace of real dimension $2 \operatorname{dim} V_{\alpha}$). We call a totally real family \mathscr{L} weakly generic if the following holds: $V_{\beta} \nsupseteq V_{\alpha}$ implies $V_{\beta}^{\mathbf{C}} \nsupseteq V_{\alpha}$ for any $\alpha, \beta \in \mathscr{L}$.

One can associate a new family $D \mathscr{L}$ with any (totally real) family \mathscr{L}. This derived family $D \mathscr{L}$ is formed by all the spaces $V_{\alpha, \beta}=V_{\alpha} \cap V_{\beta}^{\mathbf{C}}$, $V_{\beta} \nsupseteq V_{\alpha}$ and which are maximal with respect to inclusion relations. In fact, $|D \mathscr{L}|$ contains $V_{\alpha} \cap V_{\beta}$ for any pair $\alpha, \beta \in \mathscr{L}$. If \mathscr{L} is weakly generic then $\operatorname{dim} \mathscr{L}>\operatorname{dim} D \mathscr{L}$. Moreover, if \mathscr{L} is totally real then $D \mathscr{L}$ also has this property.

We call a totally real family \mathscr{L} perfectly generic if \mathscr{L} and all its derived families $D \mathscr{L}, D(D \mathscr{L}), \ldots$, are weakly generic. Note, that if \mathscr{L} is perfectly generic then its $(k+1)$-derivative $D^{(k+1)} \mathscr{L}=\varnothing$, where $k=\operatorname{dim} \mathscr{L}$.

The following Lemma is the main step to prove Theorem B.

Lemma 1. Given a totally real and perfectly generic family \mathscr{L} of real affine subspace of $\mathbf{C}^{n}, \operatorname{dim} \mathscr{L}<n$, and any compact subset $K \subset|\mathscr{L}|$, then any continuous complex function on K may be uniformly approximated by complex polynomials in coordinate functions z_{1}, \ldots, z_{n} on \mathbf{C}^{n}. In particular, K is polynomially convex in \mathbf{C}^{n}.

Let $C(K)$ be the algebra of all continuous functions on K. Let $\mathscr{P}(K)$ denote the uniform closure in $C(K)$ of the subalgebra multiplicatively generated by the functions $\operatorname{Res}_{K}\left(z_{i}\right), 1 \leq i \leq n$. By Bishop's theorem on maximal antisymmetric subdivisions to prove that $\mathscr{P}(K)=C(K)$ it is sufficient to show that any antisymmetry set Ω for $\mathscr{P}(K)$ is a singleton [3]. Recall, that a subset $\Omega \subseteq K$ is called an antisymmetry set for $\mathscr{P}(K)$ if any function $f \in \mathscr{P}(K)$ which is real valued on Ω, in fact, is constant.

As a first step we prove that any antisymmetry set Ω is a singleton or is contained in the intersection of K with the derived family $|D \mathscr{L}|$ (providing that \mathscr{L} is totally real and weakly generic). Denote by Ω_{α} the intersection $V_{\alpha} \cap \Omega$ and by $\stackrel{\Omega}{\Omega}_{\alpha}$ the intersection $\stackrel{\circ}{V}_{\alpha} \cap \Omega$, where $\stackrel{\circ}{V}_{\alpha}=$ $V_{\alpha} \backslash\left(V_{\alpha} \cap|D \mathscr{L}|\right)=V_{\alpha} \backslash \bigcup_{\beta \neq \alpha}\left(V_{\alpha} \cap V_{\beta}^{\mathbf{C}}\right)$. Note that \mathscr{L} weakly generic implies that $\stackrel{\circ}{\alpha}$ is open and everywhere dense in V_{α}.

For any two points $a, b \in \Omega_{\alpha}, \alpha \in \mathscr{L}$, we construct a polynomial $P_{\alpha}=P_{\alpha}\left(z_{1}, \ldots, z_{n}\right)$ which is real-valued on $|\mathscr{L}|$ and separates a and b. Note, that for any two points $a, b \notin V_{\beta}^{\mathrm{C}}$ one can find a linear polynomial $L_{\beta}: \mathbf{C}^{n} \rightarrow \mathbf{C}$ which is zero on $V_{\beta}^{\mathbf{C}}$ and such that $L_{\beta}(a) \neq 0 \neq L_{\beta}(b)$. Now take the product $Q_{\alpha}=\Pi_{\beta \neq \alpha} L_{\beta}$. The polynomial Q_{α} is zero on each V_{β}, $\beta \neq \alpha$, and $Q_{\alpha}(a) \neq 0 \neq Q_{\alpha}(b)$. Over V_{α} one can represent Q_{α} in the
form $S_{\alpha}+i T_{\alpha}$ where the polynomials $S_{\alpha}: V_{\alpha} \rightarrow \mathbf{C}, T_{\alpha}: V_{\alpha} \rightarrow \mathbf{C}$ are real valued. Denote by $\tilde{Q}_{\alpha}^{*}: V_{\alpha} \rightarrow \mathbf{C}$ the polynomial $S_{\alpha}-i T_{\alpha}$. Using that V_{α} is totally real, one can extend \tilde{Q}_{α}^{*} to a polynomial $Q_{\alpha}^{*}: \mathbf{C}^{n} \rightarrow \mathbf{C}$ (first take the analytic extension of \tilde{Q}_{α}^{*} from V_{α} to $V_{\alpha}^{\mathbf{C}}$ and then use a complex linear projection $\mathbf{C}^{n} \rightarrow V_{\alpha}^{\mathbf{C}}$).

Consider the product $Q_{\alpha} Q_{\alpha}^{*}$ of the polynomials Q_{α} and Q_{α}^{*}. This complex polynomial has the following remarkable properties: (1) $\left.Q_{\alpha} Q_{\alpha}^{*}\right|_{\nu_{\beta}}$ $\equiv 0$ for any $\beta \neq \alpha$; (2) $Q_{\alpha} Q_{\alpha}^{*}$ is real valued on V_{α}; (3) $Q_{\alpha} Q_{\alpha}^{*}(a) \neq 0 \neq$ $Q_{\alpha} Q_{\alpha}^{*}(b)$.

Again, using that V_{α} is totally real, one can construct some polynomial $G_{\alpha}: \mathbf{C}^{n} \rightarrow \mathbf{C}$ which is real-valued on V_{α} and such that $G_{\alpha} Q_{\alpha} Q_{\alpha}^{*}(a)$ $\neq G_{\alpha} Q_{\alpha} Q_{\alpha}^{*}(b)$ (recall, that $Q_{\alpha} Q_{\alpha}^{*}$ cannot simultaneously vanish at a and $b)$. Hence, the polynomial $P_{\alpha}=G_{\alpha} \cdot Q_{\alpha} \cdot Q_{\alpha}^{*}$ separates a and b. Moreover, it is real-valued on V_{α} and vanishes on any $V_{\beta}, \beta \neq \alpha$. Consequently, Ω_{α} is a singleton or $\Omega_{\alpha} \subset|D \mathscr{L}|$. In fact, if $\Omega_{\alpha}=\Omega_{\alpha}$ is a singleton a, then $\Omega=\Omega_{\alpha}$ (note that $Q_{\alpha} Q_{\alpha}^{*}(a) \neq 0$ and, hence, it separates a from $|D \mathscr{L}| \cup$ $\left(\bigcup_{\beta \neq \alpha} V_{\beta}\right) \subset \bigcup_{\beta \neq \alpha} V_{\beta}^{C}$.

To complete the proof of Lemma 1 we apply inductively the same argument to the derived families $D \mathscr{L}, D^{2} \mathscr{L}, \ldots$ and use that \mathscr{L} is perfectly generic (i.e. each $D^{s} \mathscr{L}, s=1,2, \ldots$ is weakly generic and totally real).

As we mentioned before, $|\mathscr{L}|$ is a stratified space with the stratification induced by different intersections $V_{\hat{\alpha}}=V_{\alpha_{1}} \cap V_{\alpha_{2}} \cap \cdots \cap V_{\alpha_{t}}, \alpha_{1}$, $\alpha_{2}, \ldots, \alpha_{t} \in \mathscr{L}$. In this way, starting with \mathscr{L} one can produce a new family $\hat{\mathscr{L}} \supset \mathscr{L}$ of real affine subspaces parameterizing different multiple intersections. Let us say that \mathscr{L} is a generic family if any two spaces $V_{\hat{\alpha}}$ and $V_{\hat{\beta}}^{\mathbf{C}}$ are in "general position" in \mathbf{C}^{n} for each pair $\hat{\alpha}, \hat{\beta} \in \hat{\mathscr{L}}$, i.e. $V_{\hat{\alpha}} \cap V_{\hat{\beta}}^{\mathbf{C}}$ is of the smallest possible dimension, provided that $V_{\hat{\alpha}} \cap V_{\hat{\beta}}$ is fixed. More precisely, the spaces $W_{\hat{\alpha}, \hat{\beta}} \subseteq V_{\alpha}$ and V_{β}^{C} should be in general position as real subspaces of \mathbf{C}^{n}, where $W_{\hat{\alpha}, \hat{\beta}}$ denotes a subspace of $V_{\hat{\alpha}}$ which does not intersect $V_{\hat{\alpha}} \cap V_{\hat{\beta}}$ and which is of a maximal possible dimension.

Denote by $\operatorname{LImb}\left(|\mathscr{L}|, \mathrm{C}^{n}\right)$ the space of all linear imbeddings of the space $|\mathscr{L}|$ into \mathbf{C}^{n}. Here $|\mathscr{L}|$ is considered without the ambient space \mathbf{C}^{n}, but with the fixed real linear structure for each $V_{\hat{\alpha}} \subset|\mathscr{L}|, \hat{\alpha} \in \hat{\mathscr{L}}$. Let $A(2 n, \mathbf{R})$ be the Lie group of all real affine transformations of $\mathbf{R}^{2 n} \simeq \mathbf{C}^{n}$. This group acts naturally on $\operatorname{LImb}\left(|\mathscr{L}|, \mathbf{C}^{n}\right)$. For any $F \in \operatorname{LImb}\left(|\mathscr{L}|, \mathbf{C}^{n}\right)$ and $g \in A(2 n, \mathbf{R})$ we denote by $g(F)$ the imbedding

$$
|\mathscr{L}| \xrightarrow{F} F(|\mathscr{L}|) \xrightarrow{g} g(F(|\mathscr{L}|)) \subset \mathbf{C}^{n} .
$$

Lemma 2. Let $\operatorname{dim} \mathscr{L} \leq n$. Then the linear imbeddings $F:|\mathscr{L}| \rightarrow \mathbf{C}^{n}$ with the property " $F(|\mathscr{L}|)$ is totally real and generic" form an open and everywhere dense set \mathscr{G} in the space $\operatorname{LImb}\left(|\mathscr{L}|, \mathbf{C}^{n}\right)$. Moreover, for any $F_{0} \in \operatorname{LImb}\left(|\mathscr{L}|, \mathbf{C}^{n}\right)$ the set $A_{F_{0}}$ of affine transformations g with the property $g\left(F_{0}\right) \in \mathscr{G}$ form an open and everywhere dense subset of $A(2 n, \mathbf{R})$.

The properties of $F(|\mathscr{L}|)$ being totally real and generic are both general position properties. Hence, the openness of \mathscr{G} in $\operatorname{LImb}\left(|\mathscr{L}|, \mathbf{C}^{n}\right)$ or of $A_{F_{0}}$ in $A(2 n, \mathbf{R})$ is obvious. So, we have to prove that \mathscr{G} and $A_{F_{0}}$ are everywhere dense in the corresponding spaces.

For any $V_{\alpha} \subset F_{0}(|\mathscr{L}|), \alpha \in \mathscr{L}, F_{0} \in \operatorname{LImb}\left(|\mathscr{L}|, \mathbf{C}^{n}\right)$ consider the subset $\rho_{\alpha} \subset A(2 n, \mathbf{R})$ such that $g \in \rho_{\alpha}$ iff $g\left(V_{\alpha}\right)$ is totally real. If $\operatorname{dim} V_{\alpha} \leq n$ then one can check that ρ_{α} is open and everywhere dense in $A(2 n, \mathbf{R})$. Consequently, $\rho_{\mathscr{L}}=\bigcap_{\alpha \in \mathscr{L}} \rho_{\alpha}$ is open and everywhere dense as well. Picking some $\tilde{g} \in \rho_{\mathscr{L}}$ sufficiently close to the identity one can approximate F_{0} by a totally real imbedding $\tilde{F}_{0}=\tilde{g}\left(F_{0}\right)$. Hence, for $\operatorname{dim} \mathscr{L} \leq n$ totally real imbeddings are everywhere dense in $\operatorname{LImb}\left(|\mathscr{L}|, \mathbf{C}^{n}\right)$. Now take any pair of affine subspaces $V_{\hat{\alpha}}, V_{\hat{\beta}} \subset \tilde{F}_{0}(|\mathscr{L}|), \hat{\alpha}, \hat{\beta} \in \hat{\mathscr{L}}$, such that $V_{\hat{\alpha}} \varsubsetneqq V_{\hat{\beta}}$. Recall, that $W_{\hat{\alpha}, \hat{\beta}}$ is a subspace of $V_{\hat{\alpha}}$ of a maximal dimension such that $W_{\hat{\alpha}, \hat{\beta}} \cap$ $\left(V_{\hat{\alpha}} \cap V_{\hat{\beta}}\right)=\varnothing$. Consider the following subset $\Sigma_{\hat{\alpha}, \hat{\beta}} \subset A(2 n, \mathbf{R})$. An element $g \in \Sigma_{\hat{\alpha}, \hat{\beta}}$ iff $g\left(W_{\hat{\alpha}, \hat{\beta}}\right)$ is in general position with the complex subspace [$\left.g\left(V_{\hat{\beta}}\right)\right]^{\mathrm{C}}$. Again, the openness of $\Sigma_{\hat{\alpha}, \hat{\beta}}$ is obvious. To prove that $\Sigma_{\hat{\alpha}, \hat{\beta}}$ is dense in $A(2 n, \mathbf{R})$ we show that the identity transformation $e \in A(2 n, \mathbf{R})$ can be approximated by some $g \in A(2 n, \mathbf{R})$ with the property $g\left(V_{\hat{\beta}}\right)=V_{\hat{\beta}}$ and $g\left(W_{\hat{\alpha}, \hat{\beta}}\right)$ being transversal to $V_{\beta}^{\mathbf{C}}$. Note, that by the construction, $W_{\hat{\alpha}, \hat{\beta}}$ and $V_{\hat{\beta}}$ are in general position in \mathbf{C}^{n}. Take $\tilde{W}_{\hat{\alpha}, \hat{\beta}} \subset \mathbf{C}^{n}$ sufficiently close to $W_{\hat{\alpha}, \hat{\beta}}$ (so it still will be in general position with $V_{\hat{\beta}}$) and transverse to $V_{\hat{\beta}}^{\mathrm{C}}$. Now it is easy to construct a real affine transformation g mapping $W_{\hat{\alpha}, \hat{\beta}}$ onto $\tilde{W}_{\hat{\alpha}, \hat{\beta}}$ and identical on $V_{\hat{\beta}}$. Moreover, this g can be taken close to e. So, the subset $\Sigma_{\dot{\mathscr{L}}}=\rho_{\mathscr{L}} \cap\left(\bigcap_{\left\{V_{\left.\dot{\alpha} \subsetneq V_{\hat{\beta}}\right\}}\right.} \Sigma_{\hat{\alpha}, \hat{\beta}}\right)$ of $A(2 n, \mathbf{R})$ is open and everywhere dense. This implies that totally real and generic imbeddings are open and everywhere dense in $\operatorname{LImb}\left(|\mathscr{L}|, \mathbf{C}^{n}\right)$, provided that $\operatorname{dim} \mathscr{L} \leq n . \square$

Lemma 3. If $\operatorname{dim} \mathscr{L} \leq \frac{2}{3} n$ then \mathscr{L} totally real and generic implies that \mathscr{L} is perfectly generic. Consequently, the set of imbeddings $F \in \mathrm{~L} \operatorname{Imb}\left(|\mathscr{L}|, \mathbf{C}^{n}\right)$ with the property " $\mathscr{P}(K)=C(K)$ " for any compact $K \subset F(|\mathscr{L}|)$ contains an open and everywhere dense subset of $\operatorname{LImb}\left(|\mathscr{L}|, \mathbf{C}^{n}\right)$.

If $\operatorname{dim} V_{\hat{\alpha}}+2 \operatorname{dim} V_{\hat{\beta}} \leq 2 n ; \hat{\alpha}, \hat{\beta} \in \hat{\mathscr{L}}$, and \mathscr{L} is generic then $V_{\hat{\alpha}} \cap V_{\hat{\beta}}^{\mathbf{C}}$ $=V_{\hat{\alpha}} \cap V_{\hat{\beta}}$ (when $V_{\hat{\alpha}} \cap V_{\hat{\beta}} \neq \varnothing$) or $V_{\hat{\alpha}} \cap V_{\hat{\beta}}^{\mathrm{C}}$ is at most a singleton (when $V_{\hat{\alpha}} \cap V_{\hat{\beta}}=\varnothing$ and $\operatorname{dim} V_{\hat{\alpha}}+2 \operatorname{dim} V_{\hat{\beta}}=2 n$) (see Fig. 1). Hence, under
these dimensional assumptions $|D \mathscr{L}|=\left|\mathscr{L}^{\prime}\right| \cup M$, where $\left|\mathscr{L}^{\prime}\right|$ is formed by $V_{\hat{\alpha}}, \hat{\alpha} \in \hat{\mathscr{L}} \backslash \mathscr{L}$ (i.e. $\hat{\alpha}$ is not a maximal element of $\hat{\mathscr{L}}$) and M is a finite set of points (0 -dimensional subspaces) in \mathbf{C}^{n}. Note, that \mathscr{L} generic implies that $\mathscr{L}^{\prime} \cup M$ is a generic family too. In fact, any subfamily of a generic family is generic. So, \mathscr{L}^{\prime} is generic. By the construction $V_{\hat{\beta}}^{\mathbf{C}} \cap M$ $=\varnothing$ for any $\hat{\beta} \in \hat{\mathscr{L}}^{\prime}$. All the higher derivatives $D^{s} \mathscr{L}, s>1$, will be just subfamilies of $\hat{\mathscr{L}}$ and, hence, are generic (weakly generic). So, \mathscr{L} is perfectly generic and Lemmas 1 and 2 imply Lemma 3.

Figure 1

Remark. Lemma 3 is the only place where we are using the dimensional restriction $\operatorname{dim} X \leq \frac{2}{3} n$. We conjecture that this lemma holds just if $\operatorname{dim} \mathscr{L}<n$, which would imply Theorems A and B for compact spaces or for finite polyhedra of dimensions less than n.

Now we are able to prove Theorem B. Any simplicially linear mapping $F: Y^{k} \rightarrow \mathbf{C}^{n}$ is uniquely determined by the images $\left\{F\left(y_{j}\right)\right\}_{j}$ of the vertices $\left\{y_{j}\right\}_{j}$ of the simplicial polyhedron Y^{k}. If the points $\left\{F\left(y_{j}\right)\right\}$ are in general position over the field \mathbf{R} in $\mathbf{C}^{n} \simeq \mathbf{R}^{2 n}$, it follows from standard dimensional considerations that F is an imbedding for $k<n$. Actually, if they are in general position in \mathbf{C}^{n} over \mathbf{C}, then any real affine subspace passing through arbitrary s points $\left\{F\left(y_{j_{e}}\right)\right\}_{e}, s \leq n$, is totally real.

Let $\Delta_{\alpha}^{s} \subset Y^{k}$ denote an s-dimensional simplex of Y^{k}, where index α enumerates such simplices. For any $\Delta_{\alpha}^{s} \subset Y^{k}$ and $F \in \operatorname{SL} \operatorname{Imb}\left(Y^{k}, \mathbf{C}^{n}\right)$ consider the real s-dimensional affine subspace $V_{\alpha, F}$ in \mathbf{C}^{n}, containing $F\left(\Delta_{\alpha}^{s}\right)$. This correspondence $\Delta_{\alpha}^{s} \leadsto V_{\alpha, F}$ defines a family of subspaces $\hat{\mathscr{L}}_{F}$ (the corresponding family \mathscr{L}_{F} consists of $V_{\alpha, F}$, where Δ_{α}^{s} is not a subsimplex of any other simplex of Y^{k}).

Starting with any mapping $F \in \operatorname{SLMap}\left(Y^{k}, \mathbf{C}^{n}\right)$ one can approximate F by an imbedding $\tilde{F}(k<n)$. Note that the group $A(2 n, \mathbf{R})$ acts naturally on $\operatorname{SLMap}\left(Y^{k}, \mathbf{C}^{n}\right)$, moreover, the subspace $\operatorname{SLImb}\left(Y^{k}, \mathbf{C}^{n}\right) \subset$ $\operatorname{SL} \operatorname{Map}\left(Y^{k}, \mathbf{C}^{n}\right)$ obviously is invariant under this action. By Lemma 2 and using the continuity of the correspondence $F \leadsto\left|\mathscr{L}_{F}\right|$ one can approximate $\tilde{F} \in \operatorname{SL} \operatorname{Imb}\left(Y^{k}, \mathbf{C}^{n}\right)$ by some imbedding $g(\tilde{F}), g \in A(2 n, \mathbf{R})$ with the property $g\left(\left|\mathscr{L}_{\tilde{F}}\right|\right)$ is totally real and generic. By Lemma 3 such a family will be perfectly generic, provided that $3 k \leq 2 n$. Hence, by Lemma $1 g\left(\tilde{F}\left(Y^{k}\right)\right) \subset g\left(\left|\mathscr{L}_{\tilde{F}}\right|\right)$ admits polynomial approximation.

The properties " \mathscr{L}_{F} totally real, generic, perfectly generic" obviously are stable with respect to small perturbations of $F \in \operatorname{SLImb}\left(Y^{k}, \mathbf{C}^{n}\right)$. Hence, for $k \leq \frac{2}{3} n$ the subset $\left\{F \in \operatorname{SLImb}\left(Y^{k}, \mathbf{C}^{n}\right) \mid \mathscr{L}_{F}\right.$ is totally real and perfectly generic $\}$ is open and everywhere dense in $\operatorname{SLMap}\left(Y^{k}, \mathbf{C}\right)$, which completes the proof of Theorem B.

Now we derive Theorem A from Theorem B.
Let X^{k} be any compact space. Let $\Theta_{\varepsilon, \delta}$ be the subset of $\operatorname{Map}\left(X^{k}, \mathbf{C}^{n}\right)$ defined by the following two properties: (1) the diameter of the inverseimage $F^{-1}(y)$ of any point $y \in \mathbf{C}^{n}$ is less than δ; (2) the functions $\bar{z}_{1}, \ldots, \bar{z}_{n}$ on $F\left(X^{k}\right)$, where - denotes the complex conjugation, may be approximated to within ε by complex polynomials in z_{1}, \ldots, z_{n}. It is readily verified that $\Theta_{\varepsilon, \delta}$ is an open set of $\operatorname{Map}\left(X^{k}, \mathbf{C}^{n}\right)$.

Now choose some countable monotone sequence $\left\{\varepsilon_{i}\right\} \rightarrow 0,\left\{\boldsymbol{\delta}_{i}\right\} \rightarrow 0$. It is easy to verify that $\bigcap_{i} \Theta_{\varepsilon_{i}, \delta_{i}}$ is the set Θ of all imbeddings F admitting polynomial approximation on $F\left(X^{k}\right)$. Indeed, if we let $\delta_{i} \rightarrow 0$ property (1) of the sets $\Theta_{\varepsilon_{,}, \delta}$ guarantees that the limiting mapping is an imbedding. Property (2) of the sets implies that if $F \in \bigcap_{l} \Theta_{\varepsilon_{i}, \delta_{t}}$ then the functions $\left\{\bar{z}_{j}\right\}$ on the image $F\left(X^{k}\right)$ may be approximated to within arbitrary accuracy by polynomials in $\left\{z_{j}\right\}$. On the other hand, by the Weierstrass-Stone theorem any continuous function on $F\left(X^{k}\right)$ may be approximated by polynomials in $\left\{z_{j}, \bar{z}_{j}\right\}$; hence it may be approximated by polynomials in the variables in the variables $\left\{z_{j}\right\}$ alone.

To complete the proof, it remains to verify that every set $\Theta_{\varepsilon_{i}, \delta_{t}}$ is dense in $\operatorname{Map}\left(X^{k}, \mathbf{C}^{n}\right)$.

Let $F^{\prime} \in \operatorname{Map}\left(X^{k}, \mathbf{C}^{n}\right)$ be an arbitrary mapping. In accordance with the classical Alexandroff construction [1], if $m<n$, then for any $\varepsilon, \delta>0$ there is a mapping $F: X^{k} \rightarrow \mathbf{C}^{n}$ such that $F\left(X^{k}\right)$ is contained in a k-dimensional simplicial polyhedron Y^{k} simplicially-linearly imbedded in \mathbf{C}^{n}, in such a way that
(a) $\rho\left(F^{\prime}, F\right)<\varepsilon$, where ρ is the natural distance between mappings;
(b) $\operatorname{diam}\left(F^{-1}(y)\right)<\delta$ for any point $y \in Y^{k}$.
(A complete proof of this theorem can also be found in [4], Chapter V, §3).

Set $\delta=\delta_{i}$. By a trivial modification of this construction one can guarantee that, in addition to these two properties (a) and (b), the family of affine subspaces $\mathscr{L}_{\text {id }}$ (generated by id: $Y^{k} \rightarrow \mathbf{C}^{n}$) will be totally real and generic (just use the appropriate transformation from $A(2 n, \mathbf{R})$). If $3 k \leq 2 n$ then, by Lemma 3, these properties are a sufficient condition for the existence of polynomial approximation on the polyhedron Y^{k}. The modification is as follows. By Theorem B there exists an imbedding κ : $Y^{k} \rightarrow \mathbf{C}^{n}$, arbitrarily close to the original imbedding id: $Y^{k} \rightarrow \mathbf{C}^{n}$, such that continuous functions admit polynomial approximation on $\kappa\left(Y^{k}\right)$. The imbedding $\kappa \in \operatorname{SLMap}\left(Y^{k}, \mathbf{C}^{n}\right)$ may be chosen in such a way that $\rho\left(F^{\prime}, \kappa \circ F\right)<\varepsilon$, while $\operatorname{diam}\left(F^{-1} \circ \kappa^{-1}(y)\right)<\delta_{t}$ for any $y \in \mathbf{C}^{n}$. Moreover, the functions $\left\{\bar{z}_{j}\right\}$ may be approximated on $\kappa \circ F\left(X^{k}\right)$ to within arbitrary accuracy by polynomials in $\left\{z_{i}\right\}$, i.e., $\kappa \circ F \in \Theta_{\varepsilon_{,}, \delta_{t}}$ and $\kappa \circ F$ is in the ε-neighborhood of the original mapping F^{\prime}. This proves that $\Theta_{\varepsilon_{i}, \delta_{i}}$ is dense in $\operatorname{Map}\left(X^{k}, \mathbf{C}^{n}\right)$.

Recall that for any compact set K in \mathbf{C}^{n} the space of maximal ideals of the algebra $\mathscr{P}(K)$ is precisely the polynomially convex hull of K. Therefore, if $\mathscr{P}(K)$ coincides with the algebra of all complex functions, then K is polynomially convex and this property is hereditary with respect to compact subsets of K. Thus, if $3 k \leq 2 n$ the polynomially convex imbeddings of a k-dimensional compact space into \mathbf{C}^{n} form a massive set (i.e. of type G_{δ}). This completes the proof of Theorem A.

It is obvious that if all continuous functions on a compact subset $K \subset \mathbf{C}^{n}$ admit polynomial approximation, this property is hereditary with respect to closed subsets and therefore, in particular, the intersection $K \cap \mathbf{C}^{l}$ of a compact subset K with any affine complex subspace also admits approximation by polynomials in z_{1}, \ldots, z_{n}. In particular, in the case $k=l$, it follows from the maximum modulus theorem that the set $K \cap \mathbf{C}^{1}$ is necessarily nowhere dense in \mathbf{C}^{1} and has connected complement.

Corollary. Let X^{k} be a k-dimensional compact space. If $3 k \leq 2 n$, the imbeddings $F \in \operatorname{Map}\left(X^{k}, \mathbf{C}^{n}\right)$ such that the intersection of $F\left(X^{k}\right)$ with any complex straight line $\mathbf{C}^{1} \subset \mathbf{C}^{n}$ is nowhere dense in \mathbf{C}^{1} and the complement of the intersection is connected in \mathbf{C}^{1} form a dense subset of type G_{δ}.

Let M^{k} be a PL-manifold. Then starting with an arbitrary locally flat PL-imbedding $F_{0}: M^{k} \rightarrow \mathbf{C}^{n}(k<n)$ it is possible to find an element $g \in A(2 n, \mathbf{R})$ such that $g\left(F_{0}\right)\left(M^{k}\right)$ will generate a totally real and generic
family of affine subspaces and, hence, for $k \leq \frac{2}{3} n$ one has polynomial approximation on $g\left(F_{0}\right)\left(M^{k}\right)$. Moreover, $g\left(F_{0}\right)\left(M^{k}\right)$ is again locally flat. Thus, by Theorem B for $k \leq \frac{2}{3} n$ there exists a PL-imbedding F of M^{k} in C^{n} with $F\left(M^{k}\right)$ having a nice normal PL-bundle and admitting polynomial approximation (hence, $F\left(M^{k}\right)$ is polynomially convex in $\left.\mathbf{C}^{n}\right)$. In particular, the tangent bundle to $F\left(M^{k}\right)$ is formed by "totally real" blocks.

Considering smooth or real-analytic manifolds M^{k}, it would be natural to try to prove "smooth or analytic" analogs of Theorems A and B. But it seems quite unlikely that such propositions can be established. As a matter of fact, for $k \geq \frac{2}{3} n$ there exist profound topological obstacles to the existence of totally real and regular imbedding, i.e., imbeddings $F: M^{k} \rightarrow$ \mathbf{C}^{n} such that $d F$ is nondegenerate and $d F\left(T_{x} M^{k}\right)$ is totally real for any tangent space $T_{x} M^{k}$ of $M^{k}, x \in M^{k}$.

One can find a very good discussion of similar and more delicate analytic phenomena in [7] and [8] §§17, 18 bascially, for the case $k \geq n$.

As an example, let us consider regular imbeddings $F: \mathbf{C} P^{k} \rightarrow \mathbf{C}^{n}$ of complex projective space $\mathbf{C} P^{k}$. Let τ be a tangent bundle of $F\left(\mathbf{C} P^{k}\right)$ and assume that it is a totally real subbundle of the complex tangent bundle to \mathbf{C}^{n}. Hence, its complexification $\tau^{\mathbf{C}}$ is isomorphic to $\tau \oplus J \tau$, where the infinitesimal operator J is induced by multiplication of vectors by the imaginary unit i. Let ν be the bundle complementary to $\tau \oplus J(\tau)$, i.e., $\tau \oplus J(\tau) \oplus \nu=\tau\left(\mathbf{C}^{n}\right) \mid F\left(\mathbf{C} P^{k}\right)$ is the trivial bundle. Since $\tau_{x} \oplus J\left(\tau_{x}\right)$ is a complex subspace of \mathbf{C}^{n}, we may assume that ν is a complex bundle of complex dimension $n-2 k$. The Chern class $c\left(\tau^{\mathbf{C}}\right)$ of $\tau^{\mathbf{C}}$ is equal to

$$
\sum_{i=0}^{k} c_{i}(\tau) \times \sum_{i=0}^{k}(-1)^{i} c_{i}(\tau) \quad \text { or } \quad\left(1-h^{2}\right)^{k+1}
$$

where $h \in H^{2}\left(\mathbf{C} P^{k} ; Z\right)$ is a standard generator and $\left(1-h^{2}\right)^{k+1}$ is considered as an element of the ring $\mathbf{Z}[h] /\left\{h^{k+1}=0\right\}[5]$. Since $\tau^{\mathbf{C}} \oplus \nu$ is trivial, it follows that $c(\nu) \cdot c\left(\tau^{\mathbf{C}}\right)=1$. The element $c\left(\tau^{\mathbf{C}}\right)$ is invertible in the ring $\mathbf{Z}[h] /\left\{h^{k+1}=0\right\}$. As a representative of the inverse element, we take the polynomial $\left[\sum_{i=0}^{[k / 2]} h^{2 l}\right]^{k+1}$, where [k/2] is the integral part of $k / 2$. After factorization modulo $h^{k+1}=0$ we obtain a certain polynomial $\sum_{i=0}^{[k / 2]} \alpha_{i} h^{2 i}$, where $\left\{\alpha_{i}\right\}$ are different from zero. Therefore $c(\nu)=$ $\sum_{i=0}^{[k / 2]} \alpha_{i} h^{2 i}$ and, since $\alpha_{i} \neq 0$, the complex dimension $n-2 k$ of ν cannot be less than $2 \cdot[k / 2]$. Thus, when $n<2 k+2[k / 2]$, there exist no totally real immersions of $\mathbf{C} P^{k}$ into \mathbf{C}^{n}. In fact, the Euler class of the normal bundle of oriented submanifolds in $\mathbf{R}^{2 n}$ should be trivial [5], which ruins the possibility for regular totally real imbeddings $\mathbf{C} P^{k} \hookrightarrow \mathbf{C}^{3 k}, k$ even. Since $\operatorname{dim}_{\mathbf{R}} \mathbf{C} P^{k}=2 k$, it follows that the "allowed" dimensions n satisfy
the conditions $3 \operatorname{dim}_{\mathbf{R}}\left(\mathbf{C} P^{k}\right)<2 n$, which should be compared with the dimensional condition that figures in Theorems A and B.

References

[1] P. Alexandrov and B. Passinkov, Introduction to dimension theory, Nauka, Moscow 1973.
[2] A. Browder, Cohomology of maximal ideal spaces, Bull. A.M.S., 67 (1961), 515-516.
[3] W. Gamelin, Uniform Algebras, Prentice-Hall, Inc., Englewood Cliffs, NJ 1969.
[4] W. Hurewicz and H. Wallman, Dimension Theory, Princeton University Press, 1948.
[5] J. W. Milnor and J. D. Stasheff, Characteristic Classes, Annals of Math. Studies, Princeton University Press 1974.
[6] D. Vodovoz and M. Zeidenberg, On the number of generators of the algebra of continuous functions, Mathematicheskie Zametki (USSR), 10, issue 5, (1971), 537-540.
[7] R. O. Wells, Jr., Function Theory on Differentiable Submanifolds, Contributions to Analysis, Academic Press, New York-London 1974, 407-441.
[8] J. Wermer, Banach Algebras and Several Complex Variables, Springer-Verlag, New York, Heidelberg, Berlin 1976.
[9] H. Whitney, On the topology of differentiable manifolds, Lectures in Topology, Univ. of Michigan Press, 1941, 101-141.

Received June 28, 1984; in revised form February 3, 1985.
Ben-Gurion University of Negev
Beer-Sheva, 84 105, Israel

