ON POLYNOMIAL GENERATORS IN THE ALGEBRA OF COMPLEX FUNCTIONS ON A COMPACT SPACE

GABRIEL KATZ

In this paper we prove that in the space of all continuous mappings of a k-dimensional compact space X into complex linear space C^n the imbeddings $F: X \to C^n$ with the property "any complex continuous function on F(X) can be uniformly approximated by complex polynomials on C^n " form a dense subset of type G_{δ} , provided that $k \leq \frac{2}{3}n$.

If is known [2] that if the algebra of continuous complex functions C(X) for a topological space X has k multiplicative generators then X has to be acyclic (with complex coefficients) in dimensions $\geq k$. In particular, $C(M^k)$ has at least k+1 generators for any closed orientable k-manifold M. On the other hand, it was proved in [6] that there exist k+1 polynomial generators in the algebra $C(X^k)$ for a finite k-dimensional simplicial polyhedron X^k . This means that any such function on X^k may be uniformly approximated by complex polynomials in certain specially constructed functions $f_0^*, \ldots, f_k^* \in C(X^k)$. In other words, there exists a continuous embedding F^* : $X^k \to \mathbb{C}^{k+1}$ of the polyhedron X^k into complex vector space \mathbb{C}^{k+1} such that any continuous complex valued function on the image $F^*(X^k)$ may be approximated by complex polynomials in the coordinate functions z_i : $\mathbb{C}^{k+1} \to \mathbb{C}$, $0 \leq i \leq k$.

It seems that analogous results follow for any compact space X^k (not only for polyhedra). Moreover, it is quite natural to conjecture that for X^k compact the existence of polynomial approximation on $F(X^k) \subset \mathbb{C}^{k+1}$ is a "general position" phenomenon with respect to perturbations of $F: X^k \to \mathbb{C}^{k+1}$. Note, that this would be a complete complex analog of the classical Whitney theorems [9] (see also [4]).

In this paper we prove similar propositions for imbeddings $F: X^k \to \mathbb{C}^n$ satisfying the dimensional condition $k \leq \frac{2}{3}n$. In particular, for 2-dimensional compact spaces X^2 one has the following result ("complex Whitney theorem"): there are 3 multiplicative generators in the algebra $C(X^2)$, in fact, starting with any $f_1, f_2, f_3 \in C(X^2)$ one can perturb them by an arbitrarily small amount to get a set of multiplicative generators for $C(X^2)$. Note, that this is the best possible general result for k=2.

Our main result is

THEOREM A. Let $3k \leq 2n$. In the space Map (X^k, \mathbb{C}^n) of all continuous mappings of a k-dimensional compact space X^k into complex linear space \mathbb{C}^n consider the mappings $F: X^k \to \mathbb{C}^n$ satisfying the following properties:

- 1. F is an imbedding;
- 2. any continuous function on X^k may be approximated by complex polynomials in the multiplicative generators $f_1 = z_1 \circ F, \ldots, f_n = z_n \circ F$, where z_1, \ldots, z_n are complex coordinate functions on \mathbb{C}^n ;
 - 3. in particular, $F(X^k)$ is polynomially convex in \mathbb{C}^n . These mappings form a dense subset of type G_δ in Map (X^k, \mathbb{C}^n) .

The proof of this theorem is based on the following proposition.

THEOREM B. Let $3k \leq 2n$. In the space $SL \operatorname{Map}(Y^k, \mathbb{C}^n)$ of simplicially linear mappings of a finite k-dimensional simplicial polyhedron Y^k into \mathbb{C}^n there exists an open and everywhere dense subset of imbeddings $F: Y^k \to \mathbb{C}^n$ such that any continuous function on the image $F(Y^k)$ may be approximated by complex polynomials over \mathbb{C}^n and, consequently, $F(Y^k)$ is polynomially convex in \mathbb{C}^n .

We don't know if Theorems A and B have immediate analogs for smooth *regular* imbeddings. For example, it is easy to show that there is no smooth regular imbedding $F: \mathbb{C}P^2 \to \mathbb{C}^6$ of complex projective space $\mathbb{C}P^2$ with the tangent bundle of $F(\mathbb{C}P^2)$ being a totally real subbundle of a trivial complex 6-dimensional bundle. On the other hand, $3 \cdot \dim \mathbb{C}P^2 \le 2 \cdot 6$, which is perfectly consistent with the dimensional assumptions of Theorems A and B.

Prior to the proof of Theorem B we need to introduce some terminology and to prove some auxiliary propositions.

Let $\mathscr L$ be any finite family of real affine subspaces $\{V_{\alpha}\}_{\alpha\in\mathscr L}$ of $\mathbb C^n$ with the property $V_{\alpha} \not\subset V_{\beta}$ for any pair α , $\beta \in \mathscr L$, $\alpha \neq \beta$. Consider the subspace $|\mathscr L| = \bigcup_{\alpha \in \mathscr L} V_{\alpha} \subset \mathbb C^n$. In fact, it is a stratified set with the stratification induced by the multiple intersections of different spaces V_{α} parameterized by $\mathscr L$.

We say that the family \mathscr{L} is totally real if any $V_{\alpha} \subset |\mathscr{L}|$, $\alpha \in \mathscr{L}$, is a totally real affine subspace of \mathbb{C}^n , i.e. it does not contain any complex line. Of course, if \mathscr{L} is totally real, then its dimension $\dim \mathscr{L} = \max_{\alpha \in \mathscr{L}} \{\dim_{\mathbb{R}} V_{\alpha}\}$ is not greater than n.

We denote by $V_{\alpha}^{\mathbf{C}}$ the complexification of $V_{\alpha} \subset \mathbf{C}^{n}$ (which for totally real V_{α} is an affine subspace of real dimension $2 \dim V_{\alpha}$). We call a totally real family \mathscr{L} weakly generic if the following holds: $V_{\beta} \not\supseteq V_{\alpha}$ implies $V_{\beta}^{\mathbf{C}} \not\supseteq V_{\alpha}$ for any $\alpha, \beta \in \mathscr{L}$.

One can associate a new family \mathcal{DL} with any (totally real) family \mathcal{L} . This derived family \mathcal{DL} is formed by all the spaces $V_{\alpha,\beta} = V_{\alpha} \cap V_{\beta}^{C}$, $V_{\beta} \not\supseteq V_{\alpha}$ and which are maximal with respect to inclusion relations. In fact, $|\mathcal{DL}|$ contains $V_{\alpha} \cap V_{\beta}$ for any pair α , $\beta \in \mathcal{L}$. If \mathcal{L} is weakly generic then dim $\mathcal{L} > \dim \mathcal{DL}$. Moreover, if \mathcal{L} is totally real then \mathcal{DL} also has this property.

We call a totally real family \mathscr{L} perfectly generic if \mathscr{L} and all its derived families $D\mathscr{L}$, $D(D\mathscr{L})$,..., are weakly generic. Note, that if \mathscr{L} is perfectly generic then its (k+1)-derivative $D^{(k+1)}\mathscr{L} = \varnothing$, where $k = \dim \mathscr{L}$.

The following Lemma is the main step to prove Theorem B.

LEMMA 1. Given a totally real and perfectly generic family \mathcal{L} of real affine subspace of \mathbb{C}^n , dim $\mathcal{L} < n$, and any compact subset $K \subset |\mathcal{L}|$, then any continuous complex function on K may be uniformly approximated by complex polynomials in coordinate functions z_1, \ldots, z_n on \mathbb{C}^n . In particular, K is polynomially convex in \mathbb{C}^n .

Let C(K) be the algebra of all continuous functions on K. Let $\mathscr{P}(K)$ denote the uniform closure in C(K) of the subalgebra multiplicatively generated by the functions $\operatorname{Res}_K(z_i)$, $1 \le i \le n$. By Bishop's theorem on maximal antisymmetric subdivisions to prove that $\mathscr{P}(K) = C(K)$ it is sufficient to show that any antisymmetry set Ω for $\mathscr{P}(K)$ is a singleton [3]. Recall, that a subset $\Omega \subseteq K$ is called an antisymmetry set for $\mathscr{P}(K)$ if any function $f \in \mathscr{P}(K)$ which is real valued on Ω , in fact, is constant.

As a first step we prove that any antisymmetry set Ω is a singleton or is contained in the intersection of K with the derived family $|D\mathcal{L}|$ (providing that \mathcal{L} is totally real and weakly generic). Denote by Ω_{α} the intersection $V_{\alpha} \cap \Omega$ and by $\mathring{\Omega}_{\alpha}$ the intersection $\mathring{V}_{\alpha} \cap \Omega$, where $\mathring{V}_{\alpha} = V_{\alpha} \setminus (V_{\alpha} \cap |D\mathcal{L}|) = V_{\alpha} \setminus \bigcup_{\beta \neq \alpha} (V_{\alpha} \cap V_{\beta}^{\mathbf{C}})$. Note that \mathcal{L} weakly generic implies that \mathring{V}_{α} is open and everywhere dense in V_{α} .

For any two points $a, b \in \mathring{\Omega}_{\alpha}$, $\alpha \in \mathscr{L}$, we construct a polynomial $P_{\alpha} = P_{\alpha}(z_1, \ldots, z_n)$ which is real-valued on $|\mathscr{L}|$ and separates a and b. Note, that for any two points $a, b \notin V_{\beta}^{\mathbf{C}}$ one can find a linear polynomial $L_{\beta} : \mathbf{C}^n \to \mathbf{C}$ which is zero on $V_{\beta}^{\mathbf{C}}$ and such that $L_{\beta}(a) \neq 0 \neq L_{\beta}(b)$. Now take the product $Q_{\alpha} = \prod_{\beta \neq \alpha} L_{\beta}$. The polynomial Q_{α} is zero on each V_{β} , $\beta \neq \alpha$, and $Q_{\alpha}(a) \neq 0 \neq Q_{\alpha}(b)$. Over V_{α} one can represent Q_{α} in the

form $S_{\alpha} + iT_{\alpha}$ where the polynomials S_{α} : $V_{\alpha} \to \mathbb{C}$, T_{α} : $V_{\alpha} \to \mathbb{C}$ are real valued. Denote by \tilde{Q}_{α}^* : $V_{\alpha} \to \mathbb{C}$ the polynomial $S_{\alpha} - iT_{\alpha}$. Using that V_{α} is totally real, one can extend \tilde{Q}_{α}^* to a polynomial Q_{α}^* : $\mathbb{C}^n \to \mathbb{C}$ (first take the analytic extension of \tilde{Q}_{α}^* from V_{α} to $V_{\alpha}^{\mathbb{C}}$ and then use a complex linear projection $\mathbb{C}^n \twoheadrightarrow V_{\alpha}^{\mathbb{C}}$).

Consider the product $Q_{\alpha}Q_{\alpha}^{*}$ of the polynomials Q_{α} and Q_{α}^{*} . This complex polynomial has the following remarkable properties: (1) $Q_{\alpha}Q_{\alpha}^{*}|_{V_{\beta}} \equiv 0$ for any $\beta \neq \alpha$; (2) $Q_{\alpha}Q_{\alpha}^{*}$ is real valued on V_{α} ; (3) $Q_{\alpha}Q_{\alpha}^{*}(a) \neq 0 \neq Q_{\alpha}Q_{\alpha}^{*}(b)$.

Again, using that V_{α} is totally real, one can construct some polynomial $G_{\alpha} \colon \mathbb{C}^n \to \mathbb{C}$ which is real-valued on V_{α} and such that $G_{\alpha}Q_{\alpha}Q_{\alpha}^*(a) \neq G_{\alpha}Q_{\alpha}Q_{\alpha}^*(b)$ (recall, that $Q_{\alpha}Q_{\alpha}^*$ cannot simultaneously vanish at a and b). Hence, the polynomial $P_{\alpha} = G_{\alpha} \cdot Q_{\alpha} \cdot Q_{\alpha}^*$ separates a and b. Moreover, it is real-valued on V_{α} and vanishes on any V_{β} , $\beta \neq \alpha$. Consequently, Ω_{α} is a singleton or $\Omega_{\alpha} \subset |D\mathcal{L}|$. In fact, if $\Omega_{\alpha} = \Omega_{\alpha}$ is a singleton a, then $\Omega = \Omega_{\alpha}$ (note that $Q_{\alpha}Q_{\alpha}^*(a) \neq 0$ and, hence, it separates a from $|D\mathcal{L}| \cup (\bigcup_{\beta \neq \alpha} V_{\beta}) \subset \bigcup_{\beta \neq \alpha} V_{\beta}^{\mathbb{C}}$.

To complete the proof of Lemma 1 we apply inductively the same argument to the derived families $D\mathcal{L}$, $D^2\mathcal{L}$,... and use that \mathcal{L} is perfectly generic (i.e. each $D^s\mathcal{L}$, s = 1, 2, ... is weakly generic and totally real). \square

As we mentioned before, $|\mathcal{L}|$ is a stratified space with the stratification induced by different intersections $V_{\hat{\alpha}} = V_{\alpha_1} \cap V_{\alpha_2} \cap \cdots \cap V_{\alpha_t}$, α_1 , $\alpha_2, \ldots, \alpha_t \in \mathcal{L}$. In this way, starting with \mathcal{L} one can produce a new family $\hat{\mathcal{L}} \supset \mathcal{L}$ of real affine subspaces parameterizing different multiple intersections. Let us say that \mathcal{L} is a generic family if any two spaces $V_{\hat{\alpha}}$ and $V_{\hat{\beta}}^{\mathbf{C}}$ are in "general position" in \mathbf{C}^n for each pair $\hat{\alpha}$, $\hat{\beta} \in \hat{\mathcal{L}}$, i.e. $V_{\hat{\alpha}} \cap V_{\hat{\beta}}^{\mathbf{C}}$ is of the smallest possible dimension, provided that $V_{\hat{\alpha}} \cap V_{\hat{\beta}}$ is fixed. More precisely, the spaces $W_{\hat{\alpha},\hat{\beta}} \subseteq V_{\alpha}$ and $V_{\beta}^{\mathbf{C}}$ should be in general position as real subspaces of \mathbf{C}^n , where $W_{\hat{\alpha},\hat{\beta}}$ denotes a subspace of $V_{\hat{\alpha}}$ which does not intersect $V_{\hat{\alpha}} \cap V_{\hat{\beta}}$ and which is of a maximal possible dimension.

Denote by L Imb($|\mathcal{L}|$, \mathbb{C}^n) the space of all linear imbeddings of the space $|\mathcal{L}|$ into \mathbb{C}^n . Here $|\mathcal{L}|$ is considered without the ambient space \mathbb{C}^n , but with the fixed real linear structure for each $V_{\hat{\alpha}} \subset |\mathcal{L}|$, $\hat{\alpha} \in \hat{\mathcal{L}}$. Let $A(2n, \mathbf{R})$ be the Lie group of all real affine transformations of $\mathbb{R}^{2n} \simeq \mathbb{C}^n$. This group acts naturally on L Imb($|\mathcal{L}|$, \mathbb{C}^n). For any $F \in L$ Imb($|\mathcal{L}|$, \mathbb{C}^n) and $g \in A(2n, \mathbb{R})$ we denote by g(F) the imbedding

$$|\mathscr{L}| \stackrel{F}{\to} F(|\mathscr{L}|) \stackrel{g}{\to} g(F(|\mathscr{L}|)) \subset \mathbb{C}^n.$$

LEMMA 2. Let dim $\mathcal{L} \leq n$. Then the linear imbeddings $F: |\mathcal{L}| \to \mathbb{C}^n$ with the property " $F(|\mathcal{L}|)$ is totally real and generic" form an open and everywhere dense set \mathcal{L} in the space $\operatorname{LImb}(|\mathcal{L}|,\mathbb{C}^n)$. Moreover, for any $F_0 \in \operatorname{LImb}(|\mathcal{L}|,\mathbb{C}^n)$ the set A_{F_0} of affine transformations g with the property $g(F_0) \in \mathscr{G}$ form an open and everywhere dense subset of $A(2n, \mathbb{R})$.

The properties of $F(|\mathcal{L}|)$ being totally real and generic are both general position properties. Hence, the openness of \mathcal{G} in L Imb($|\mathcal{L}|$, \mathbb{C}^n) or of A_{F_0} in $A(2n, \mathbb{R})$ is obvious. So, we have to prove that \mathcal{G} and A_{F_0} are everywhere dense in the corresponding spaces.

For any $V_{\alpha} \subset F_0(|\mathcal{L}|)$, $\alpha \in \mathcal{L}$, $F_0 \in L \operatorname{Imb}(|\mathcal{L}|, \mathbb{C}^n)$ consider the subset $\rho_{\alpha} \subset A(2n, \mathbf{R})$ such that $g \in \rho_{\alpha}$ iff $g(V_{\alpha})$ is totally real. If dim $V_{\alpha} \leq n$ then one can check that ρ_{α} is open and everywhere dense in $A(2n, \mathbf{R})$. Consequently, $\rho_{\mathscr{L}} = \bigcap_{\alpha \in \mathscr{L}} \rho_{\alpha}$ is open and everywhere dense as well. Picking some $\tilde{g} \in \rho_{\mathscr{S}}$ sufficiently close to the identity one can approximate F_0 by a totally real imbedding $\tilde{F}_0 = \tilde{g}(F_0)$. Hence, for dim $\mathcal{L} \leq n$ totally real imbeddings are everywhere dense in L Imb($|\mathcal{L}|$, \mathbb{C}^n). Now take any pair of affine subspaces $V_{\hat{\alpha}}$, $V_{\hat{\beta}} \subset \tilde{F}_0(|\mathcal{L}|)$, $\hat{\alpha}$, $\hat{\beta} \in \hat{\mathcal{L}}$, such that $V_{\hat{\alpha}} \subseteq V_{\hat{\beta}}$. Recall, that $W_{\hat{\alpha},\hat{\beta}}$ is a subspace of $V_{\hat{\alpha}}$ of a maximal dimension such that $W_{\hat{\alpha},\hat{\beta}}$ \cap $(V_{\hat{\alpha}} \cap V_{\hat{\beta}}) = \emptyset$. Consider the following subset $\Sigma_{\hat{\alpha},\hat{\beta}} \subset A(2n,\mathbf{R})$. An element $g \in \Sigma_{\hat{\alpha},\hat{\beta}}$ iff $g(W_{\hat{\alpha},\hat{\beta}})$ is in general position with the complex subspace $[g(V_{\hat{\beta}})]^{\mathbf{C}}$. Again, the openness of $\Sigma_{\hat{\alpha},\hat{\beta}}$ is obvious. To prove that $\Sigma_{\hat{\alpha},\hat{\beta}}$ is dense in $A(2n, \mathbf{R})$ we show that the identity transformation $e \in A(2n, \mathbf{R})$ can be approximated by some $g \in A(2n, \mathbf{R})$ with the property $g(V_{\hat{R}}) = V_{\hat{R}}$ and $g(W_{\hat{\alpha},\hat{\beta}})$ being transversal to V_{β}^{C} . Note, that by the construction, $W_{\hat{\alpha},\hat{\beta}}$ and $V_{\hat{\beta}}$ are in general position in \mathbb{C}^n . Take $\tilde{W}_{\hat{\alpha},\hat{\beta}} \subset \mathbb{C}^n$ sufficiently close to $W_{\hat{\alpha},\hat{\beta}}$ (so it still will be in general position with $V_{\hat{\beta}}$) and transverse to $V_{\hat{\beta}}^{\mathbb{C}}$. Now it is easy to construct a real affine transformation g mapping $W_{\hat{\alpha},\hat{\beta}}$ onto $\tilde{W}_{\hat{\alpha},\hat{\beta}}$ and identical on $V_{\hat{\beta}}$. Moreover, this g can be taken close to e. So, the subset $\Sigma_{\hat{\mathscr{L}}} = \rho_{\mathscr{L}} \cap (\bigcap_{\{V_{\hat{\alpha}} \subseteq V_{\hat{\beta}}\}} \Sigma_{\hat{\alpha},\hat{\beta}})$ of $A(2n, \mathbb{R})$ is open and everywhere dense. This implies that totally real and generic imbeddings are open and everywhere dense in L Imb($|\mathcal{L}|$, \mathbb{C}^n), provided that dim $\mathcal{L} \leq n.\square$

LEMMA 3. If dim $\mathcal{L} \leq \frac{2}{3}n$ then \mathcal{L} totally real and generic implies that \mathcal{L} is perfectly generic. Consequently, the set of imbeddings $F \in L \operatorname{Imb}(|\mathcal{L}|, \mathbb{C}^n)$ with the property " $\mathcal{P}(K) = C(K)$ " for any compact $K \subset F(|\mathcal{L}|)$ contains an open and everywhere dense subset of $L \operatorname{Imb}(|\mathcal{L}|, \mathbb{C}^n)$.

If dim $V_{\hat{\alpha}} + 2 \dim V_{\hat{\beta}} \leq 2n$; $\hat{\alpha}$, $\hat{\beta} \in \hat{\mathcal{L}}$, and \mathcal{L} is generic then $V_{\hat{\alpha}} \cap V_{\hat{\beta}}^{C} = V_{\hat{\alpha}} \cap V_{\hat{\beta}}$ (when $V_{\hat{\alpha}} \cap V_{\hat{\beta}} \neq \emptyset$) or $V_{\hat{\alpha}} \cap V_{\hat{\beta}}^{C}$ is at most a singleton (when $V_{\hat{\alpha}} \cap V_{\hat{\beta}} = \emptyset$ and dim $V_{\hat{\alpha}} + 2 \dim V_{\hat{\beta}} = 2n$) (see Fig. 1). Hence, under

these dimensional assumptions $|D\mathcal{L}| = |\mathcal{L}'| \cup M$, where $|\mathcal{L}'|$ is formed by $V_{\hat{\alpha}}$, $\hat{\alpha} \in \hat{\mathcal{L}} \setminus \mathcal{L}$ (i.e. $\hat{\alpha}$ is not a maximal element of $\hat{\mathcal{L}}$) and M is a finite set of points (0-dimensional subspaces) in \mathbb{C}^n . Note, that \mathcal{L} generic implies that $\mathcal{L}' \cup M$ is a generic family too. In fact, any subfamily of a generic family is generic. So, \mathcal{L}' is generic. By the construction $V_{\hat{\beta}}^C \cap M = \emptyset$ for any $\hat{\beta} \in \hat{\mathcal{L}}'$. All the higher derivatives $D^s \mathcal{L}$, s > 1, will be just subfamilies of $\hat{\mathcal{L}}$ and, hence, are generic (weakly generic). So, \mathcal{L} is perfectly generic and Lemmas 1 and 2 imply Lemma 3.

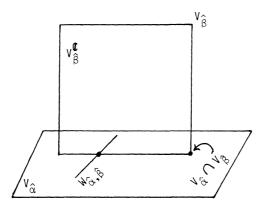


FIGURE 1

REMARK. Lemma 3 is the only place where we are using the dimensional restriction dim $X \le \frac{2}{3}n$. We conjecture that this lemma holds just if dim $\mathcal{L} < n$, which would imply Theorems A and B for compact spaces or for finite polyhedra of dimensions less than n.

Now we are able to prove Theorem B. Any simplicially linear mapping $F: Y^k \to \mathbb{C}^n$ is uniquely determined by the images $\{F(y_j)\}_j$ of the vertices $\{y_j\}_j$ of the simplicial polyhedron Y^k . If the points $\{F(y_j)\}$ are in general position over the field \mathbb{R} in $\mathbb{C}^n \simeq \mathbb{R}^{2n}$, it follows from standard dimensional considerations that F is an imbedding for k < n. Actually, if they are in general position in \mathbb{C}^n over \mathbb{C} , then any real affine subspace passing through arbitrary s points $\{F(y_{j_s})\}_e$, $s \le n$, is totally real.

Let $\Delta_{\alpha}^s \subset Y^k$ denote an s-dimensional simplex of Y^k , where index α enumerates such simplices. For any $\Delta_{\alpha}^s \subset Y^k$ and $F \in \operatorname{SLImb}(Y^k, \mathbb{C}^n)$ consider the real s-dimensional affine subspace $V_{\alpha,F}$ in \mathbb{C}^n , containing $F(\Delta_{\alpha}^s)$. This correspondence $\Delta_{\alpha}^s \leadsto V_{\alpha,F}$ defines a family of subspaces $\hat{\mathcal{L}}_F$ (the corresponding family \mathcal{L}_F consists of $V_{\alpha,F}$, where Δ_{α}^s is not a subsimplex of any other simplex of Y^k).

Starting with any mapping $F \in SL \operatorname{Map}(Y^k, \mathbb{C}^n)$ one can approximate F by an imbedding $\tilde{F}(k < n)$. Note that the group $A(2n, \mathbb{R})$ acts naturally on $SL \operatorname{Map}(Y^k, \mathbb{C}^n)$, moreover, the subspace $SL \operatorname{Imb}(Y^k, \mathbb{C}^n) \subset SL \operatorname{Map}(Y^k, \mathbb{C}^n)$ obviously is invariant under this action. By Lemma 2 and using the continuity of the correspondence $F \leadsto |\mathcal{L}_F|$ one can approximate $\tilde{F} \in SL \operatorname{Imb}(Y^k, \mathbb{C}^n)$ by some imbedding $g(\tilde{F})$, $g \in A(2n, \mathbb{R})$ with the property $g(|\mathcal{L}_{\tilde{F}}|)$ is totally real and generic. By Lemma 3 such a family will be perfectly generic, provided that $3k \leq 2n$. Hence, by Lemma 1 $g(\tilde{F}(Y^k)) \subset g(|\mathcal{L}_{\tilde{F}}|)$ admits polynomial approximation.

The properties " \mathscr{L}_F totally real, generic, perfectly generic" obviously are stable with respect to small perturbations of $F \in SL \operatorname{Imb}(Y^k, \mathbb{C}^n)$. Hence, for $k \leq \frac{2}{3}n$ the subset $\{F \in SL \operatorname{Imb}(Y^k, \mathbb{C}^n) | \mathscr{L}_F \text{ is totally real and perfectly generic}\}$ is open and everywhere dense in $SL \operatorname{Map}(Y^k, \mathbb{C})$, which completes the proof of Theorem B.

Now we derive Theorem A from Theorem B.

Let X^k be any compact space. Let $\Theta_{\varepsilon,\delta}$ be the subset of Map (X^k, \mathbb{C}^n) defined by the following two properties: (1) the diameter of the inverse-image $F^{-1}(y)$ of any point $y \in \mathbb{C}^n$ is less than δ ; (2) the functions $\bar{z}_1, \ldots, \bar{z}_n$ on $F(X^k)$, where $\bar{z}_1, \ldots, \bar{z}_n$ denotes the complex conjugation, may be approximated to within ε by complex polynomials in z_1, \ldots, z_n . It is readily verified that $\Theta_{\varepsilon,\delta}$ is an open set of Map (X^k, \mathbb{C}^n) .

Now choose some countable monotone sequence $\{\varepsilon_i\} \to 0, \{\delta_i\} \to 0$. It is easy to verify that $\bigcap_i \Theta_{\varepsilon_i, \delta_i}$ is the set Θ of all imbeddings F admitting polynomial approximation on $F(X^k)$. Indeed, if we let $\delta_i \to 0$ property (1) of the sets $\Theta_{\varepsilon_i, \delta_i}$ guarantees that the limiting mapping is an imbedding. Property (2) of the sets implies that if $F \in \bigcap_i \Theta_{\varepsilon_i, \delta_i}$ then the functions $\{\bar{z}_j\}$ on the image $F(X^k)$ may be approximated to within arbitrary accuracy by polynomials in $\{z_j\}$. On the other hand, by the Weierstrass-Stone theorem any continuous function on $F(X^k)$ may be approximated by polynomials in $\{z_j, \bar{z}_j\}$; hence it may be approximated by polynomials in the variables in the variables $\{z_i\}$ alone.

To complete the proof, it remains to verify that every set $\Theta_{\epsilon_i,\delta_i}$ is dense in Map(X^k, \mathbb{C}^n).

Let $F' \in \operatorname{Map}(X^k, \mathbb{C}^n)$ be an arbitrary mapping. In accordance with the classical Alexandroff construction [1], if m < n, then for any $\varepsilon, \delta > 0$ there is a mapping $F: X^k \to \mathbb{C}^n$ such that $F(X^k)$ is contained in a k-dimensional simplicial polyhedron Y^k simplicially-linearly imbedded in \mathbb{C}^n , in such a way that

- (a) $\rho(F', F) < \varepsilon$, where ρ is the natural distance between mappings;
- (b) diam $(F^{-1}(y)) < \delta$ for any point $y \in Y^k$.

(A complete proof of this theorem can also be found in [4], Chapter V, §3).

Set $\delta = \delta_i$. By a trivial modification of this construction one can guarantee that, in addition to these two properties (a) and (b), the family of affine subspaces \mathcal{L}_{id} (generated by id: $Y^k \to \mathbb{C}^n$) will be totally real and generic (just use the appropriate transformation from $A(2n, \mathbb{R})$). If $3k \leq 2n$ then, by Lemma 3, these properties are a sufficient condition for the existence of polynomial approximation on the polyhedron Y^k . The modification is as follows. By Theorem B there exists an imbedding κ : $Y^k \to \mathbb{C}^n$, arbitrarily close to the original imbedding id: $Y^k \to \mathbb{C}^n$, such that continuous functions admit polynomial approximation on $\kappa(Y^k)$. The imbedding $\kappa \in \text{SL Map}(Y^k, \mathbb{C}^n)$ may be chosen in such a way that $\rho(F', \kappa \circ F) < \varepsilon$, while $\text{diam}(F^{-1} \circ \kappa^{-1}(y)) < \delta_i$ for any $y \in \mathbb{C}^n$. Moreover, the functions $\{\bar{z}_j\}$ may be approximated on $\kappa \circ F(X^k)$ to within arbitrary accuracy by polynomials in $\{z_i\}$, i.e., $\kappa \circ F \in \Theta_{\varepsilon_i, \delta_i}$ and $\kappa \circ F$ is in the ε -neighborhood of the original mapping F'. This proves that $\Theta_{\varepsilon_i, \delta_i}$ is dense in $\text{Map}(X^k, \mathbb{C}^n)$.

Recall that for any compact set K in \mathbb{C}^n the space of maximal ideals of the algebra $\mathscr{P}(K)$ is precisely the polynomially convex hull of K. Therefore, if $\mathscr{P}(K)$ coincides with the algebra of all complex functions, then K is polynomially convex and this property is hereditary with respect to compact subsets of K. Thus, if $3k \leq 2n$ the polynomially convex imbeddings of a k-dimensional compact space into \mathbb{C}^n form a massive set (i.e. of type G_{δ}). This completes the proof of Theorem A.

It is obvious that if all continuous functions on a compact subset $K \subset \mathbb{C}^n$ admit polynomial approximation, this property is hereditary with respect to closed subsets and therefore, in particular, the intersection $K \cap \mathbb{C}^l$ of a compact subset K with any affine complex subspace also admits approximation by polynomials in z_1, \ldots, z_n . In particular, in the case k = l, it follows from the maximum modulus theorem that the set $K \cap \mathbb{C}^1$ is necessarily nowhere dense in \mathbb{C}^1 and has connected complement.

COROLLARY. Let X^k be a k-dimensional compact space. If $3k \le 2n$, the imbeddings $F \in \operatorname{Map}(X^k, \mathbb{C}^n)$ such that the intersection of $F(X^k)$ with any complex straight line $\mathbb{C}^1 \subset \mathbb{C}^n$ is nowhere dense in \mathbb{C}^1 and the complement of the intersection is connected in \mathbb{C}^1 form a dense subset of type G_{δ} .

Let M^k be a PL-manifold. Then starting with an arbitrary locally flat PL-imbedding $F_0: M^k \to \mathbb{C}^n$ (k < n) it is possible to find an element $g \in A(2n, \mathbb{R})$ such that $g(F_0)(M^k)$ will generate a totally real and generic

family of affine subspaces and, hence, for $k \leq \frac{2}{3}n$ one has polynomial approximation on $g(F_0)(M^k)$. Moreover, $g(F_0)(M^k)$ is again locally flat. Thus, by Theorem B for $k \leq \frac{2}{3}n$ there exists a PL-imbedding F of M^k in \mathbb{C}^n with $F(M^k)$ having a nice normal PL-bundle and admitting polynomial approximation (hence, $F(M^k)$ is polynomially convex in \mathbb{C}^n). In particular, the tangent bundle to $F(M^k)$ is formed by "totally real" blocks.

Considering smooth or real-analytic manifolds M^k , it would be natural to try to prove "smooth or analytic" analogs of Theorems A and B. But it seems quite unlikely that such propositions can be established. As a matter of fact, for $k \geq \frac{2}{3}n$ there exist profound topological obstacles to the existence of totally real and regular imbedding, i.e., imbeddings $F: M^k \to \mathbb{C}^n$ such that dF is nondegenerate and $dF(T_xM^k)$ is totally real for any tangent space T_xM^k of M^k , $x \in M^k$.

One can find a very good discussion of similar and more delicate analytic phenomena in [7] and [8] §§17, 18 bascially, for the case $k \ge n$.

As an example, let us consider regular imbeddings $F: \mathbb{C}P^k \to \mathbb{C}^n$ of complex projective space $\mathbb{C}P^k$. Let τ be a tangent bundle of $F(\mathbb{C}P^k)$ and assume that it is a totally real subbundle of the complex tangent bundle to \mathbb{C}^n . Hence, its complexification $\tau^{\mathbb{C}}$ is isomorphic to $\tau \oplus J\tau$, where the infinitesimal operator J is induced by multiplication of vectors by the imaginary unit i. Let ν be the bundle complementary to $\tau \oplus J(\tau)$, i.e., $\tau \oplus J(\tau) \oplus \nu = \tau(\mathbb{C}^n)|F(\mathbb{C}P^k)$ is the trivial bundle. Since $\tau_x \oplus J(\tau_x)$ is a complex subspace of \mathbb{C}^n , we may assume that ν is a complex bundle of complex dimension n-2k. The Chern class $c(\tau^{\mathbb{C}})$ of $\tau^{\mathbb{C}}$ is equal to

$$\sum_{i=0}^{k} c_i(\tau) \times \sum_{i=0}^{k} (-1)^i c_i(\tau) \quad \text{or} \quad (1-h^2)^{k+1},$$

where $h \in H^2(\mathbb{C}P^k; Z)$ is a standard generator and $(1-h^2)^{k+1}$ is considered as an element of the ring $\mathbb{Z}[h]/\{h^{k+1}=0\}$ [5]. Since $\tau^C \oplus \nu$ is trivial, it follows that $c(\nu) \cdot c(\tau^C) = 1$. The element $c(\tau^C)$ is invertible in the ring $\mathbb{Z}[h]/\{h^{k+1}=0\}$. As a representative of the inverse element, we take the polynomial $[\sum_{i=0}^{\lfloor k/2 \rfloor} h^{2i}]^{k+1}$, where $\lfloor k/2 \rfloor$ is the integral part of k/2. After factorization modulo $h^{k+1}=0$ we obtain a certain polynomial $\sum_{i=0}^{\lfloor k/2 \rfloor} \alpha_i h^{2i}$, where $\{\alpha_i\}$ are different from zero. Therefore $c(\nu) = \sum_{i=0}^{\lfloor k/2 \rfloor} \alpha_i h^{2i}$ and, since $\alpha_i \neq 0$, the complex dimension n-2k of ν cannot be less than $2 \cdot \lfloor k/2 \rfloor$. Thus, when $n < 2k + 2\lfloor k/2 \rfloor$, there exist no totally real immersions of $\mathbb{C}P^k$ into \mathbb{C}^n . In fact, the Euler class of the normal bundle of oriented submanifolds in \mathbb{R}^{2n} should be trivial [5], which ruins the possibility for regular totally real imbeddings $\mathbb{C}P^k \hookrightarrow \mathbb{C}^{3k}$, k even. Since $\dim_{\mathbb{R}} \mathbb{C}P^k = 2k$, it follows that the "allowed" dimensions n satisfy

the conditions $3 \dim_{\mathbb{R}}(\mathbb{C}P^k) < 2n$, which should be compared with the dimensional condition that figures in Theorems A and B.

REFERENCES

- [1] P. Alexandrov and B. Passinkov, Introduction to dimension theory, Nauka, Moscow 1973
- [2] A. Browder, Cohomology of maximal ideal spaces, Bull. A.M.S., 67 (1961), 515-516.
- [3] W. Gamelin, Uniform Algebras, Prentice-Hall, Inc., Englewood Cliffs, NJ 1969.
- [4] W. Hurewicz and H. Wallman, *Dimension Theory*, Princeton University Press, 1948.
- [5] J. W. Milnor and J. D. Stasheff, Characteristic Classes, Annals of Math. Studies, Princeton University Press 1974.
- [6] D. Vodovoz and M. Zeidenberg, On the number of generators of the algebra of continuous functions, Mathematicheskie Zametki (USSR), 10, issue 5, (1971), 537-540.
- [7] R. O. Wells, Jr., Function Theory on Differentiable Submanifolds, Contributions to Analysis, Academic Press, New York-London 1974, 407-441.
- [8] J. Wermer, Banach Algebras and Several Complex Variables, Springer-Verlag, New York, Heidelberg, Berlin 1976.
- [9] H. Whitney, On the topology of differentiable manifolds, Lectures in Topology, Univ. of Michigan Press, 1941, 101-141.

Received June 28, 1984; in revised form February 3, 1985.

BEN-GURION UNIVERSITY OF NEGEV BEER-SHEVA, 84 105, ISRAEL