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ON VALUED, COMPLETE FIELDS AND

THEIR AUTOMORPHISMS

HANS ARWED KELLER

The following theorem is proved:
THEOREM. Let K be a valued, complete field, and assume that the

valuation topology admits countable neighbourhood bases. All the auto-
morphisms of K are continuous if and only if K is not algebraically closed

Introduction. In this paper we study the following problem: Which
valued, complete fields have the property that all their automoφhisms are
continuous? In the case of Archimedean valuations the answer is well
known: There are only two complete fields, R and C. Aut(R) = {Id}; C
has exactly two continuous automorphisms, but card Aut(C) = 2(2*0),
hence very many τ e Aut(C) are discontinuous. Henceforth we shall
consider exclusively fields K with non-Archimedean valuations φ in the
sense of Krull. We assume that the valuation topology admits countable
neighbourhood bases. Suppose now that (K, φ) is complete. Our main
result is that all the automorphisms of K are continuous if and only if K
is not algebraically closed. Thus there is a perfect analogy to the Archi-
medean case.

If the valuation φ has rank 1, HensePs lemma is available and a rather
short proof can be given (see §4). The case where φ has infinite rank
requires a new method; our proof in §5 will be based on a lemma on
solvability of certain infinite systems of equations. The technique of this
lemma can be applied to other problems on complete fields; two illustra-
tions for this are given in §6.

We should like to mention that the paper was motivated by studies in
the theory of orthomodular spaces. These are, by definition, vector spaces
E endowed with a hermitian form Ψ such that the lattice L = [U c E:
U = {U±)JL) of all orthogonally closed subspaces of (E,Ψ) satisfies the
orthomodular law: U < V => V = U V (V A U -1) for all ί/, V €E L.
Classical examples are the Hubert spaces over R or C. In recent years
numerous non-classical, infinite dimensional orthomodular spaces have
been discovered. All these new spaces are constructed over certain valued,
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complete fields; the valuations in question have infinite rank. Investiga-
tions on the particular properties of these spaces E lead, via the funda-
mental theorem of projective geometry, to maps /: E -> E which are
semilinear, i.e. linear up to some fixed automorphism T of the base field
K. It is then crucial to know that τ and T" 1 are continuous. We refer to [2]
for a comprehensive account on orthomodular spaces.

1. Notations. Let ί be a field and φ: ΛΓ-> Γ U {oo} a Krull
valuation on K, i.e. Γ is an ordered abelian group, written additively, and
for all x, y G K we have (i) φ(x) = oo <=> x = 0, (ϋ) φ(xy) = Φ(x) +
Φ(y), (in) Φ(x + y) > πάn{φ(x),φ(y)}. We assume that Γ Φ {0} and
that φ is onto. The valuation topology y = &~(φ) on K is defined by
taking {Uy(a): γ e Γ}, where Uy(a) = {x ^ K: φ(a - x) > γ}, as a
neighbourhood basis of a e K. Notions as "continuity" etc. always refer
to this topology. Throughout the paper we make the assumption that
^"(Φ) admits a countable zero-neighbourhood basis, or, equivalently, that
Γ contains a countable cofinal subset. Thus by " valued field" we mean a
field with a Krull valuation satisfying this countability condition.

A subgroup Δ < Γ is called isolated if δ <= Δ, γ e Γ, 0 < γ < δ
implies γ e Δ. We set 3) = <®(Γ) = {Δ < Γ: Δ is an isolated subgroup).
Every A G S gives rise to a valuation ΦΔ: K -> (Γ/Δ) U {oo}. The
valuation ring corresponding to ΦΔ is AA = {x e K: φ(x) > 8 for some
S e A } . We let JA denote the maximal ideal of AA; KA = AA/JA is the
residue field of AA. For details see [1, §7].

We denote by <o the set of all finite ordinals.

2. The main theorem. Our purpose is to prove

THEOREM 1. Let the valued field (K, φ) be complete. Then the following

conditions are equivalent:

(a) All automorphisms of K are continuous.

(b) K is not algebraically closed.

The proof will be divided into several steps. We begin with the easy
part.

Proof of the implication (a) => (b). Suppose (K,φ) is complete and
algebraically closed. Let P be the prime field. Then trdeg(J^|P) > No. It
is easy to construct a transcendence basis B = {tμ\ μ ^ M] foτK over P
such that {Φitμ): μ e M} has no upper bound in Γ. Then (by virtue of
the general assumption on Γ) there is a sequence ( ^ ) i e ω , ti e B, with
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φ(/, ) -> oo as i -> oo. Since cardM > N o there exists a y e Γ with
{μ G M: Φ(tμ) < γ} infinite, so we can define a permutation σ: B -* B

such that φ(σ(ί{.)) < γ for all i e ω. σ induces an automorphism τ0 of
P(tμ)μ€=M which is not continuous, and τ0 extends to an automoφhism T:
K -* K, since K is algebraically closed. Hence (a) implies (b).

3. On the rank of φ. The set 2 = 2{T) is totally ordered by the
inclusion c . The order type of (2, c ) is called the rank of the valuation
φ and denoted by rg(φ). The cofinality of 2, denoted by cf(^), is the
least ordinal which is similar to a cofinal subset of (29 c ) . There are two
possibilities.

1st case. cΐ(@) = 1. This means that 2 has a largest element, say Δo.
Then the valuation ΦΔ Q: K -> (Γ/Δo) U {oo} has rank 1, because Δo is
maximal. Furthermore, φΔo defines the same topology on K as φ. Thus, in
the proof of Theorem 1, we may replace φ by φΔo, i.e. we may suppose
that rg(φ) = 1.

2nd case. cί{2) = ω. This means that all ΦΔ(Δ G 2) have infinite
rank.

We now continue the proof of Theorem 1. We have to show that the

existence of a discontinuous r e Aut(^Γ) implies that K is algebraically

closed. The above two cases must be treated differently.

4. The first case: rg(φ) = 1. We need the following

LEMMA 1. Let (K, φ) be a valued field and suppose that r G Aut( K) is
discontinuous. Then

(i) There is a sequence {υi)iGω in Ksuch that vt -> 0 and T ^ ) -> oo

as i -» oo.

(ii) Given a,b e K and γ G Γ there exists a c e K with φ(b — c) > γ

and Φ(a — τ(c)) > y.

Proof, (i) follows by routine arguments. To show (ii) let (υi)ieω be as
in (i). Put ut: = b + (τ~\a) - b) vt (1 4- i;.)"1. Then ut -+ b and T(ut)

-> a, so we can take c = w7 with j sufficiently large.

For the basic properties of henselian fields we refer to [3, Chap. F] or

[1, §16].
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LEMMA 2. Suppose the valued field (K,φ) is henselian. Let L be the
algebraic closure of K and ψ the unique valuation on L which extends φ. If
K has a discontinuous automorphism τ, then K is topologically dense in

Proof. Let Γ and Γ' be the value groups of φ and ψ respectively. Γ is
cofinal in Γ". Let A = {x e K: φ(x) > 0} be the valuation ring of φ, K
its residue field and A: A -> K the canonical epimoφhism.

(1) We assert: given f(x) = Σr

j=oajXJ e K[X] (where ar = 1, r > 1)
and γ e Γ there exist a'Q9...,a're K such that

(i) Φ(Λ; - aj) > γ for 0 <y < r - 1, < = 1.
(ii) /*(X) = Σrj=oa'jXJ decomposes into linear factors in ΛΓ[JΓ].

We show this by induction on r. The case r = 1 is trivial, so let r > 2.
Using Lemma 1, (ii) we find c 0 , . . . , cr_λ e K such that φ(αy — τ(c7)) > γ
forO <j < r- 1, andφ(l - cλ) > 0, φ(0 - cj) > 0 for j = 0,2,...,r -
1. Let A(X) = Σ ^ = o ^ ^ 7 w h e r e c r = l . Then Λ(jr)e^[ΛΓ], h(X) is
monic, and Λ(X) = Σj.0CjXj = X + Xr (= K[X] has a simple root in K.
It follows that A(Z) has a root in #, hence also h\X) = Σ ^ = o

τ ( θ ) ^ 7

has a root in # . Thus hr(X) = (X - t)g(X) where ί e ^ and g(X) =
Σylo^yX7 e ^"[^L ^r-i = l BY ^ e induction hypothesis, applied to
g(X) and ε = max{γ, γ — φ(t)}, there are d^ ..., d ^ G ̂ Γ with
φ{dj - dj) > ε for 0 <j < r - 2, ί/;_x = 1, such that

μ
7 = 0

is a product of linear factors in iίT[^Ί. We determine a'o,... ,a'r so that
Σy.o ajχJ = ( x ~ 0g*( ^ ) Clearly (ii) holds, and (i) is readily checked.

(2) Now let w e L and δ G Γr be given. Let
r

f(X) = in(w9K) = Σ djXj e ΛΓ[Z]
7 = 0

and choose γ e Γ such that γ > max{r δ — j ψ(w): 0 < y < r — 1}.
By (1) there are ΛQ, . . . , α ^ e K with φ(aj - «7) > γ for 0 <j < r - 1,
0^ = 1, such that

/*(*)= Σ a'jXJ= Π (X~tk)
7=0 *-l

where tv ..., tr e K. Then

Π (w-tk)=r(w)=f*(w)-f(w)= Σ (β -βyK
fcl
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It follows that
r

£ ψ(w - tk) > min{ψ((ίij. - β Jw 7): 0 <j < r -

> min{γ + j ψ(w): 0 < j < r - 1} > r δ.

Hence for some fce{l, . . . , r } we have ψ(w — *Λ) > δ and tk&K.

Hence K is dense in L.

COROLLARY 1. Let (K,φ) be a complete field, rg(φ) = 1. If K admits

a discontinuous automorphism, then K is algebraically closed.

Proof. (K, φ) is a henselian field ([3], p. 198) and the assertion follows

immediately from the lemma, because K is topologically closed in L.

Thus we have the implication (b) => (a) in Theorem 1 in case rg(φ) =

1.

COROLLARY 2. Let (K,φ) be a henselian field which has a discontinu-

ous automorphism. Then K is separably algebraically closed. Furthermore,

the value group T of φ is divisible and the residue field K^ is algebraically

closed for all A e i

Proof. With the notations of Lemma 2, let Ks = {w e L: w is

separable over K), ψ' = ψ |^ , and let G = G&1(KS\K). Since ψr is the

unique extension of φ to Ks, ψ' ° σ = ψ' for every σ e G. This implies

that every σ G G i s continuous. K is the fixed field of (?, consequently

,fiΓ = Π σ e G Ker(σ — Id^ ) is topologically closed in Ks. By Lemma 2, K is

dense in L, so dense in Ks. We conclude that K = Ks. The last two

statements follow from the fact that (L, ψ) is an immediate extension of

(AT, φ), because K is dense in L.

5. The second case: cf(^) = ω.

LEMMA 3. Suppose the valued field (K,φ) is complete and ci{2) = ω.

Let (vi)iGω be a sequence in K with vιf -» 0 as i -> oo. Le/ ^(Λ", Z) ==

ΣklaklX
kZι be a polynomial in K[X, Z] with q(O,Q) = 0. Then there exist

elements c 0, cv..., c w , . . . m Ksuch that

(1) ^ = 4f(^m+i^m) = Σ aki^m^m for all m s ω.
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Proof. Let S be the subring of K generated by the coefficients akl of

q(X, Z). We note that {Φ(s): s ^ S] has a lower bound in Γ, by virtue

of the hypothesis cf(^) = ω. Let Yi (i e ω) be new variables and form

the polynomial ring R = S[Yi]i&ω. For each n G ω we define recursively

/«>,...,/,<-> e K by

( 2 )

I /"(y) = αί /•°'"1) Y ) for / = 1 n

Thus /π<^ is a polynomial in y,, Yn_v..., yn_,. We put g<°> =

f^-rt"^ for « > 1 ; then

(3) / l l

(n>= Σ 8U) f o r a l l π ^ ω .
i = 0

We claim that every g(n) G i? has the form

(4) g(n) = Γπ Λ(n)

9 where h(n) G i?.

In fact, for π = 0 this is true because g(0,0) = 0. Let n > 1. Substituting

yw = 0 in (2) we see by induction on j that Λ0) |yΛ=o = / i - ΐ 1 } f o Γ

y = 1, . . . , w. For 7 = w this means that g ( r t ) vanishes at 7W = 0, as

claimed.

We define the homomorphism σ: R -> R by σ | 5 = Id 5 , σ(Y^) = Y^+1

(i G ω). From (2) it follows easily that σ(/ r t

o )) = f}J

+\ for 7 = 0,. . . , π, in

particular

(5) σ(/B<">) =/„<:>! f o r a l l n e ω .

For «, m e ω we set g^ 0 = σ m (g ( M ) ), where σ° = Id Λ . By (4) we have

(6) g(

m

n) = Yn+m • h%\ where h^ = σm(h^) e Λ.

Now we consider the homomorphism η: R -+ K defined by η\s = Id s,

;) = o, (/ e «). We put d^ = η(g™); then, by (6),

(7) dP-vm+m-r,{hW).

We claim that for all m E ω we have

(8) d^^O a s π ^ o o .

In fact, φ is bounded from below on S and on [υ;. i G CO}? therefore

(since cf(<@) = ω) also on η(R) = the subring generated by S and the

f/s. Now fn + w -> 0 as n -> oo, so (8) follows from (7).
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By (8) and by completeness, the series Σ°L0 d$p converges. We set, for

m ^ ω, cm = Σf^od^ and verify that these elements satisfy (1). Let

m ^ ω. For any n £ ω we have

Σ g (0 == f(n + l) = / f(n) γ\ Uγ (2) (3)

i-O

= ί(σ(/i»>),y0) by (5)

= ? ( Σ σ ( g ( / ) ) , i r o ) by (3).

Applying σm we get

k / * 0

and applying η we get

Now we let n -» oo and obtain (1). The proof is complete.

We now show how Lemma 3 can be used to derive consequences from

the existence of a discontinuous T G Aut(K).

LEMMA 4. Let (K,φ) be complete, cf(^) = ω. If K admits a discon-

tinuous automorphism T, then every residue field K& ( Λ e ® ) is algebrai-

cally closed.

Proof. Fix Δ G S and let A: AA -> ^ Δ be the canonical map. Let

p(X) = ά0 + ^JΓ + + α r _ 1 J Γ ~ 1 + Xr e i^Δ[X]; we must find a root

of ^ ( ^ ) in ltΔ . By Lemma 1, (i) there is a sequence (vi)ieω in .fiΓ with

υt -* 0 and 7(1;,.) -> 00 as Ϊ -» 00. We apply Lemma 3 to this sequence

(ϋj) and the polynomial

q(X, Z) = τ-\ao)Zr + r^

We get elements c w e ίΓ (m e ω) such that cm = <?(cm+1, υm) for all m.

We put dm = τ(c m ), wm = r(ϋm); then rfm = qτ(dm+vwm)y that is

(9) J m = aQwr

m + aλdm+xw
r

m-γ + +α r . 1 r f ;- + >m + ^ + i

for all m e ω. Choose a A ' e S such that Δ < Δr and J o , w0 e ^4Δ/; this

is possible since cf(«®) = ω. Note that a0,..., a r _! e ^4Δ/. Now wt -» 00

as 1 -> 00, hence we have vv0,... ,wn_λ e ^4Δ,, wM ί 4̂Δ/ for some « e ω.
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We claim that d0,..., dn e A#. In fact, d0 e A^ by the choice of Δ', and

if dj G ̂ 4Δ,, j < n, then equation (9) with m =j shows that dJ+ι is

integral over A#9 hence rf/.+1 G ̂ 4Δ/ because A# is integrally closed.

Now consider equation (9) with m = n. We divide it by wr

n and get

(10) ^IL = a« + aΛ + ••• + έ i Γ _ 1 ί r - 1 + t\ where / = ^ a ± 1 .

We have JM G ^4Δ, and wn £ ^4Δ/, so dn/wr

n e /Δ, C /Δ C ^4Δ. It follows that

ί e AA, and reducing (10) modulo /Δ we get 0 = ά0 + + α r _ 1 f r " 1 + ?r,

i.e. f G A:Δ is a root of ^ ( X ) .

LEMMA 5. Suppose (K,φ) is complete, cf(^) = co. // every residue

field KA (Δ G ^ ) w algebraically closed, then Kis algebraically closed.

Proof. We fix in ^ a chain Δ o < Δx < < Δπ < with U^ = o Δn

= Γ. We write An9 Jn, Kn instead of AL , J±9 KA , and we let ττn: ^4n -> J^n

be the canonical map. Let be given p(X) = Σr

j=oajXJ G ίΓ[X]. We may

assume that aQ,..., ar G ̂ 4O, ΛΓ = 1. Put

7-0

We construct recursively a sequence ( ί π ) w e ω i n J 5 Γ with

(i) tnt=A0Q An, and wΛ(/Λ) G Kn is a root of £ „ ( * ) (for all /i G ω).

(ii) wn_!(/„_!) = *„_!(*„) for all /i > 1.

Suppose to,...,tn_1 have already been constructed satisfying (i), (ii).

Since Kn is algebraically closed, there are wl9...,wrG An such that

pn(X) = Ur

k=1(X - ττn(wk)). Then p(wk) G /„ c Jo c ^ 0 , i.e. α 0

+ + β r - i w ί " 1 + w ί e ^o> which implies that M^ G ̂ 4O for all fc =

l , . . . , r . The coefficients of p(X) — I\r

k=1{X — wk) lie in Jn9 hence in

Jn_l9 consequently pn_λ(X) = YVk-\(χ " W » - I ( W Λ ) ) Therefore *•„_!(*„_!)

must be equal to ^-xίw^) for some fc G { l , . . . , r } . We put tn = wk;

clearly (i) and (ii) are satisfied.

Now by (ii) we have tn — tn_1 G Jn_λ for n > 1, which shows that

( / J n e ω i s a Cauchy sequence. It follows from (i) that / = l im^^^ tn G K

is a root of ρ(X). This proves the lemma.

Combining Lemmas 4 and 5 we get the implication (b) => (a) in

Theorem 1 in the case where cf(S) = ω. The proof of Theorem 1 is

complete.

6. Applications. We give two applications of the technique of §5.

Theorem 2 below shows that all valued, complete fields have some purely

algebraic features in common.
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THEOREM 2. Let (K,φ) be a valued, complete field and F a proper
subfield of K. Then K is not a purely transcendental extension of F.

Proof. Suppose, indirectly, that K were purely transcendental over F.

It is sufficient to consider the case where lrάeg(K\F) = 1, thus K = F(t)

with t transcendental over F. Of course K is not algebraically closed.
Again (cf. §3) we may assume that either rg(φ) = 1 or cf(^) = ω.

1. Suppose rg(φ) = 1. Replacing / by c t or c t~ι (0 Φ c e F) if

necessary we may assume that φ(t) > 0. Define r e Ant(K) by τ\F = Id F ,

τ(t) = r 1 . Then ti -> 0 as / -> oo, but τ(/'') = r ' -+> 0, which contradicts

Theorem 1.

2. Suppose cf(^) = ω. It is clear that {φ(v): 0 Φ v <Ξ F} c Γ has no

upper bound in Γ, for otherwise there would exist a A e S with φ(t) e Δ

and φ(v) G Δ for all 0 Φ υ e F, so φ(x) G Δ for all 0 Φ x e F(t) = # ,

which is impossible. It follows that there is a sequence ( ^ ) / e ω , 0 # u,. e i7,

with vi -* 0 as / -> oo. Let ̂ (Z, Z ) = 1 2 + / Z G ϋΓ[X, Z]. We use

Lemma 3 to find elements c w € j ξ Γ ( m G ω ) such that cm = ̂ ( c m + 1 , υm)

for all m e ω. Write cm= fm{t)/Sm{t\ where / m ( 0 , g m ( 0 e F[t], rela-

tively prime. We get

f o r a l l m >

By unique factorization in F[/] we conclude that g m (0 = g^+i(0 f° r a ^
m, therefore g w (0 = 1. We are left with

fm{t)-vm-t=fLi{t) forallmeω.
Since 0 Φ vm e F we must have deg/m ^ 0 for all m, but then deg/w =

2 d e g / m + 1 > deg/ m + 1 for all m, a contradiction. This proves the theo-

rem.

Our second application is suggested by the theory of orthomodular
spaces. As mentioned in the introduction, all known non-classical exam-
ples of such spaces are constructed over certain valued, complete fields.
One may ask if some of these ground fields can be embedded algebraically
into R; such an embedding would yield a quick answer to several open
problems. However, we now show

THEOREM 3. A (non-Archimedeanly) valued, complete field (K,φ)

cannot be algebraically isomorphic to a subfield of the reals R.

Proof. Suppose there were a monomorphism p: K -» R. We first

consider the case where cf(^) = ω.
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(1) We construct a sequence (υi)ieω in K with

u,. -> 0 as i -> oo, and p(# z) > 1 for all / e ω.

We choose Δ,. G ̂  (/ e ω) such that Δ o < < Δx < . . . , U*L0

 Δ *

= Γ. For every i e ω we pick a 6, Ξ ^4Δ \^4Δ with p{bt) > 0, then we

choose integers η e Z so that p(6 f )
r | > p(bi+1). Put ^ = b-'/bi+1. Clearly

ρ ( ^ ) > 1, and by choice of the bt

9s we have *;, G «/Δ , hence t;,. -> 0.

(2) Let ?(Jί, Z) = X 2 + Z. We use Lemma 3 to obtain elements

cm e AT (m e ω) such that cm = ^ ( c m + 1 , ι;TO) for all m. Put J w = p ( c j ,

(11) dm =

But dm,wm G R and wm > 1 by construction, so it is obvious that (11)

leads to a contradiction.

It remains to consider the case where rg(φ) = 1. We shall prove, more

generally, that no henselian field can be embedded into R. In fact, let

(K, φ) be henselian. Let A be the valuation ring of φ, / its maximal ideal

and K = A/J. If c h a r £ Φ 2, then 1 + / c K2, hence p(l + / ) c R2. But

this is impossible, because ρ(l + / ) = 1 + p ( / ) is a coset of a non-zero

additive subgroup of R and therefore it must contain negative numbers.

Now suppose char£ = 2. Take any a G /, a Φ 0. Then f(X) = X2 - X

— n - a has a root in K for every « e Z . Choose « e Z such that

n - p(a) < -1/4; then fp(X) = X2 - X - n p(a) is irreducible over R,

a contradiction. This completes the proof.
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