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INVERSE THEOREMS FOR MULTIDIMENSIONAL
BERNSTEIN OPERATORS

Z. DlTZIAN

Let Bnf be the m-dimensional Bernstein polynomials on a simplex
or on a cube. The class of functions for which \\Bnf - f\\ = O(n~a) is
determined. That is, necessary and sufficient conditions on the smooth-
ness of / in the simplex or the cube and especially near their boundaries
are given so that \\Bnf — f\\ = O(n~a). Interpolation of spaces, and in
particular the characterization of the interpolation space, is one of the
tools used.

For a sequence of approximation operators an inverse theorem is a
result determining necessary and sufficient conditions on the rate of
convergence for the function to belong to a certain class of functions
generally satisfying some smoothness conditions. A more restrictive view
is that which calls the necessary and the sufficient conditions above direct
and inverse theorems respectively. Here the inverse results will be of the
first variety.

The Bernstein polynomials on C[0,1] are given by

(l.i) *„(/,*)- i
k=0

For Bn(f, x) it was shown by Berens and Lorentz [1] that

1 ^ ( / ^ ) - / ( X ) N M ( ( X ( 1
W " X ) ) ) " / 2 forO<«<2

occurs if and only if

)| = | / (* - A) - 2f(x) +f(x + h)\<Mh«

for [x - h, x + h] c [0,1].

The Bernstein polynomial on the simplex
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is given by

(1.2) Bm(f,x)m Σ r.

where x = (xv...,xm), v = (vv..., vj and

V ί Λ \ n ~ V \ ~ '" ~Vm

and the Bernstein polynomial on the box B, B = {(xλ,..., x w ); 0 <
1}, is given by

(i 4) *:........(/,*)- Σ

where PΠj^(jcf.) is given by PnΛ(x) in (1.1).
It will be shown that for m > 1 the class of functions given by Lip* a

is no longer adequate to characterize the rate of convergence oίBn(f, x) —
/(*) or !?*(/, x ) - / ( x ) .

It was observed by K. Ivanov [5] that for 0 < a < 2

(1.5) \\vn(f, •) "/(•) ||c(o,i] = O(n-^2) - En(f)

Ξ inf |/-P||cio,i]=0(/!-β).
deg P<n

We conjecture this is the case for the multidimensional Bernstein poly-
nomials too.

For inverse theorems for approximation processes on D such that
span D = Rm and m > 1 the present result seems to be the first dealing
differently with points of different distance from the boundary of D.
Probably this is the reason that so few inverse results are known in the
multivariate case, none of which exhibit the above phenomenon. (This
phenomenon was shown by many authors to be natural for one-dimen-
sional approximation processes.)

We will show that \\Bnf — f\\ = O(n~a/2) is equivalent to a certain
inteφolation space in stages. The direct result will be proved in §4 and the
converse result in §5. We will then characterize the inteφolation space
and the ΛΓ-functional in terms of smoothness. As the result for m dimen-
sions is not substantially different in ideas from that for two dimensions
but is somewhat loaded with indices, we will present the result for two
dimensions and comment in §§8 and 9 about the m-dimensional case.
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2. Preliminary results. Some preliminary results on two-dimensional
Bernstein polynomials on the simplex (triangle) will be necessary in later
sections. For two dimensions Bn(f, x) given in (1.2) and (1.3) can also be
given by

n n-k . v t llr 1

(2 1) B ( f x v) = Y y I I \n be V(Ί - x - vY~ f\ — -
A: = o / = 0 V ' V * 7 \n n

n n-k i , , v

z^ Zw rnykAx>y)J\n' w i

We can now prove the following lemma:

LEMMA 2.1. For Bn(f, x9 y) given in (2.1) we have:

n n —A;

- x - y)"-k-'-ι[k{\ -x-y)-(n-k- l)x};

(2.3) f-Bn(f,x,y)
dxz

X [k(k - 1)(1 - x-yf - 2k(n - k - l)x(l - x - y)

+ {n- k- l){n- k- I- l)x

- x-y)2 -(ky + lx)(n - k- /)(1 - x - y)

+ (n - k - l)(n - k - I -

(2.5) ±Bm
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(2.6) JL1Bm(f,x,y)91
foe3

n n — k

= n{n - 1) Σ Σ
n = 2 /=0

n n — k

= n(n-l)Σ Σ PΛ-2.k-ij-ι(x>y)
k = l /=1

\J\n' n J\ n n) I n n

Proof. Equations (2.2), (2.3) and (2.4) are actually straightfor-
ward derivatives of (2.1). We derive (2.5), (2.6) and (2.7) from (2.2),
(2.3) and (2.4) by comparing coefficients of xk~ιyι(l — x — y)n~k~ι,
xk~2yl{l - x -y)n-k~ι and xk-ιyι~\l - x - yγ-k~ι respectively. To
prove (2.5), (2.6) and (2.7) we have to show

11)(- 7 *7 *) - *<* - »)(Ϊ)(" 7 *)

and

(0 . ( .- iH i ϊH
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To show that (a), (b) and (c) are valid is a tedious but elementary
computation.

REMARK. The expressions (d/dy)Bn(f, x9 y) and (d2/dy2) Bn(f9 x9 y)
can be obtained by interchanging / and y with k and x.

LEMMA 2.2. For Bn(f,x,y) given by (2.1) and for φ^x, y) given by

Φi(*> y)= x, <t>i(x> y) = y and §-λχ > y)= 1 ~ χ ~ y

(2.8) Bn(φi9x9y)-φi and Bn(l9x9y) = 1;

(2.9) J ^ , ; . , , ) - f r ( * , ;
and

(2.10) Bn(*&j,χ,y) = Φi(χ,y)Φj(χ,y)(i - V«) fan ΦJ.

Proof. We can write

/(*,**)- Σ r
*_o /-

From this

Bn(l,x,y) = F(x,y,l-x-y) = l

and

atz = l — x— ̂  which yields (2.8). To prove (2.9), which we do only for
φl9 we write

a t z = l — x — y and, therefore,

To prove (2.10), which we do only for / = 1, j = 2, we write

at z = 1 — x — >̂, or
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3. Rate of approximation, optimal case for x + y < 3/4. One can use
Korovkin's theorem and the fact that l9x, y9 x

2 and y2 is a Korovkin
system to obtain \\Bn(f, x, y) - f(x, y)\\ = o(l) as n -> oo where ||g|| will
mean ||g||C(iS). We can also prove the following estimate.

LEMMA 3.1. Forf(x, y) e C2(S) satisfying

dx2 f(χ,y)

and

we have

dy
;f(χ,y) M

d2

dxdy f(χ,y)

(3.1) \Bn(f,x,y) -f(x,y)\<2M-(x(l - x)

We will need for the present paper a somewhat more delicate result
and the next lemma will constitute that result for a partial domain.

LEMMA 3.2. Forf(x, y) <= C(S), fis C2 locally in the interior of S and

(3.2) Φ o ( / ) ^ max
x+y<3/4\ ox By2

we have

(3.3) max \BH(f,x,y) -f{x,y)\ <
x +y < 2/3

where M is independent of n.

3x3 yJ

M(Φ0(f) + Il/H)

> y)

Proof. To estimate convergence in the domain x + y < 2/3 we may
assume f(x, y) = 0 in the domian x 4- y > 3/4 as fx(x) = f(x) in x + y
< 3/4 and fλ(x) = 0 in x + y > 3/4 satisfies there

^ + Φ2 - x-y)\x,y)

Recalling Taylor's formula

tF"(t)dt
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where

and writing

we have for x + y < 2/3

as |3//3x|, |3//3^| and | / | are bounded on the domain x + y < 2/3 by
M2(\\f\\ + Φo(/)). We now write ψ = ψx + ψ2 + ψ3 where (3/3x)2,
(SVδ^δ^) and (3/3j) 2 appear in ψ1? ψ2 and ψ3 respectively. We esti-
mate

x

n) Jo \k/n + t(x - k/n)

k/n

as for £ between x and (fc/Ό l(έ ~ k/n)/ξ\ < |(x - A:/«)/x|. Similarly,
|ψ3 | < ΦO(/)(J - //«)2/V and

I Ψ 2 U \ n)V n)J0

φ

n \ n I n

t(x- k/n){y - k/n) dt

_ L\\ dt
n j j

f
o \k/n + t(x - k/nψ2\l/n + t(y - l/nψ2

%U)[f
\Jk/n

(€ " k/n) di
^

1/2

Φ0(/) χ--\\y -~
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We now write /, = Σ.ψjPntkj(x, y) and, using the above, we can write

-y)\χ,y)

and

- χ\

4. Rate of approximation, direct theorem. It is known that if
\Bn(f,x,y) -f(x,y)\ = 0(1 A ) , even locally, then f(x,y) satisfies in S
the elliptic differential equation

= 0

which for this case would be in the "trivial" class of functions for the
present approximation process. Globally the result is still all solutions of
the elliptic equation, but since we have the side condition /(x, y) e C(S),
only constants will be admitted. Therefore, the optimal approximation
rate is O(l/n).

In the preceding section a condition for Bn(f,x, y) — f(x, y) to
behave like O(l/n) in x + y < 2/3 is related to the behaviour of the
derivatives of f(x, y) in Λ: + y < 3/4. We now generalize the result to all
of S.

We now define the transformations Tt

= (l-x-y,y)9 T2(x, y) = ( x , l - x - y) and(4.1)

and the seminorm Φ(/),

(4.2) Φ ( / ) = , m a X 2 Φ / ( / ) where Φ,(/) = Φ0(/z) for / = 1,2

where Φo(/) is given in (3.2).
We observe that Φx(/), for example, can be written explicitly as

Φ x (/) = max

" x " y ) ] y)

where ξ = (1, -1).
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The result on optimal rate of convergence can be written now as
follows:

THEOREM 4.1. For f EL C(S) which is twice continuously differentiable
in the interior ofS we have

(4.3) \Bn(f,χ,y)-f(χ,y)\<M{Φ(f)+\\f\\)/n.

Proof. We can conclude the proof if we show \Bn(f,x,y) — f(x, y)\
< M(Φ,(/) + H/ID/Λ for x > 1/3 and y > 1/3 where i = 1 and i = 2
respectively. We can write

n n — k

n n — l

Σ Σ

,n-k-l

i

n\
ny n] (n- I - m)\l\m\

Xx n-l-mΛA>y<(l-x-y

This implies Bn(f, x, y) = Bn{fx, u, υ) where (u, v) = 7\(x, y), and simi-
larly, Bn(f,x,y) = Bn(f2,u,υ) where (u,υ) = T2(x, y). We can now
apply Lemma 3.2 to the domains x > 1/3 and y > 1/3 as well. There-
fore, Φoί/x) < M implies

for u + v < 2/3, or x > 1/3. We have

moreover,

u 9 '
9 " 2

f ί \ (
y'ZχiJKΛ>y>

v*2 f(- -"
vdv2fΛ 9

8 2

^ 3 ^

as

and similarly

- x ~
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DEFINITION. The subspace A of C(S) is the collection of /
for which the seminorm Φ(/) = max(Φ0(/), Φ^/), Φ2(/)) is bounded
where Φ(/) and Φ,(/) are defined in (4.2). We assume that / is locally
twice differentiate in the interior of S and that f,(d/dx)f and (d/dy)f
are locally absolutely continuous in both variables.

DEFINITION. The interpolation space (C, A)a is the collection of all
/<= C(S) for which K(f,t) < M(f)ttt for all / < t0 where K(f,i) s

THEOREM 4.2. Forf e (C(5), Λ)Λ, 0 < α < 1, we have

(4.4) | * n ( / , x, y) - f(x, y) \\ < M&'*.

Proof. For / = \/n and K(f,l/n) < M(F){\/n)a we have g <Ξ A
such that \\f-g\\ + n^Φig) < 2M{f)n~a or \\f - g\\ < 2M(f)n~a and
Φ(g) < 2M(f)nι~a. We write now

< \Bn(f - g, x, y) -f{x, y) + g(χ, y) | + |Λπ(g, x, >) - g(x, y) \

<\Bn(f- g,x,y)\ + \\f- g\\ + M{Φ(g)+\g\)/n

<2\\f-g\\ + M{Φ(g) + 2\\f\\)/n

-a + 2\\f\\/n.

We used ||g|| < 2||/|| which follows the definition of the interpolation
space. This concludes the proof of Theorem 4.2.

In §6 we will characterize (C(S), A)a using smoothness properties of

fe(C(S),A)a

5. The inverse result We will prove in this section that the rate of
approximation O{n~a) implies / e (C, A)a.

THEOREM 5.1. For f e C(S) and a < 2, \\f(x, y) - Bn(f,x,y)\\ <
Mn~a, implies f e (C(S), A)a.

Proof. Obviously Bn(f, x, y) belongs to C 2 locally in the interior of
S. Therefore,

K(f, t) < \\f(x, y) - BH(f, x, y) \\ + tΦ(Bn(f)).
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If we prove the following two inequalities:

(5.1) Φ(Bn(f)) < Ln\\f\\

and

(5.2) Φ(Bn(f))<LΦ(f)

we will have K(f,t) < Mn~a 4- tnLK(f, n'1). The latter inequality com-

bined with the fact that K(f,t0) < \\f\\ and the established procedure of

Berens and Lorentz [1] yield K(f, t) < Mλt
a. Therefore, we will finish our

proof when (5.1) and (5.2) will be established in Lemmas 5.2 and 5.3

respectively.

LEMMA 5.2. ForftΞ C(S) we have Φ(Bn(f)) < Ln\\f\\.

Proof. We first show Φ0(Bn(f)) < L#i||/||. We use (2.6) and (2.7) to

show

(5.3)

d2

-Bn(f,x,y)

An'

< 4n:

and

dxdyJ

and the same for (d2/dy2)Bn(f). Now we use (2.3) to obtain

k 1

x (1 - x - y) k^o ι=o χ n n>

n n

n n n n n

n n — l

Σ
x (1 - Λ: - j ) ^=o /=o v Λ

n n \ n n ]

(continues)
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(l-x-y)2 x+ y)2,x,y)

—2Bn(<S>x, x, y)
2

( l - x - y )

*> y)

In'

< ( ! - * - , ) " V I Ψ l

- x) + n(x+y) + n
x + +

1 — x — y x 1 — x — y

In2

x(l-x-y)\ n

x 1 — x — y

Actually we proved the part of the estimate of (d2/dx2)Bn(f,x, y) in
x + y < 3/4 where we use for x < \/n (or 1 — x — y < 1/n)

< 4n:

and for x > \/n and x + y < 3/4 (or 1 — x — y > \/n and x > 1/4)
the estimate

x 1 — x — y

with L < 15. Of course, the estimate \(d/dy)2Bn(f, x, y)\ is similar. To
estimate (3/3x3y)Bn(f, x, y) in addition to using (5.3) we use (2.4) and,
after some computation and using the Cauchy-Schwarz inequality, we
write
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dxdy
Bn(f,χ,y)

xy(l - x - y)

n n — kn n~κ ί Ίr 1 \

xy

+ \x +y -

-(H
-(H

n J \ n

ι "2 (

(1-x-j)2

n

k I
n n

[χ + y -

μ,

/

n

xy

k
n

k
n

[ —

n

2

7

n

I
n

x-

k
n

y(l-

y)

--)-χy
n) n

-x-y)

-x-y))

X

(1 - x - y) x(l - x - y)

(l - x) \ ι/2(

Therefore for x + y < 3/4 we have

32

3x9j "v
L\\f\\n

{xy

We now have essentially proved the result for Φ0(Bn(f)). To prove the
result for Φx(Bn(f)) we use the transformation u = 1 — x — y and v = y
and the identity Bn(f, 1 — w — υ, υ) = Bn(fl9 u, v) where fx(u9 v) =
f(l-u-v,υ) and following (4.1) and (4.2), Φx(/) = Φ0(/i) and

= H/ill Similarly, we prove the result for Φ2(Bn(f)).

LEMMA 5.3. For / e C(5), / e C2

ftΞAwe have Φ(Bn(f)) < LΦ(f).
/>z ίA^ interior of S and
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Proof. We first examine the expression Φ^ for which we take the
maximum only on the region x + y < 2/3 (rather than o n x + j < 3/4
as done for Φo). This would not matter, as a short computation shows

Φ(g) = max (Φ,(g)) < C max (Φ*(g))
/ = 0, l ,2 i = 0, l ,2

where Φf is maximum on the regions x + y < 2/3, x > 1/3 and y > 1/3
for i = 0, i" = 1 and i = 2 respectively.

Let us denote ΔΛe/( ) =/(• + **)-/(•) . For ^ = (1,0), A: > 1,
/ > 0 and k + I < 3n/4 we have

max
nΦ0(f)

Similarly, for / > 1 and k > 0 we have

fit I)
n4

where e2 = (0,1) and for k > 1 and / > 1

n2

For k = 0 we can write

{kl

For k = I = 0 we have

Ί / Λ

Aχ,y) dxdy

φo(f W

For A: = 0 and / Φ 0 (or similarly for / = 0 and fc =£ 0) we have

3 2

f(χ,y) dx

1/2
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Using (2.6) for x + y < 2/3 the fact that, for k > 1, k/(k + 1) < 2, and
Lemma 3.2 of [2], and (3.6), we have

n n — k

Σ Σ P iι(χ>y)
fc-2 /=0 ' ~"

w-2 n—k—2 ~

Σ ^ , v n — 2
Λ n-2,k,l\'Λ'> y ) /, I 1

32

(for H < 2(w - 2) or n > 4). Using (2.7) for x + y < 2/3, and the esti-
mates above we have

32 " ""* n - 2
Σ Σ PΛ-2,k-i.ι-i(χ,

/n-2 n-fc _ ~ \l/2

1̂6Φ0(/) Σ ΣΛ-wA^ΪTT
\ A: = 0 /=0 /

Σ Σ Λ-UA^TT
0 /0 / t- 1

This completes the proof that Φ<?(£„(/)) < 16Φ0(/). To prove that the
same result is true for the relation between Φf( !?„(/)) and Φχ(/) we
recall again the transformation u = 1 — x — y and v = y for Bn(f, x, y)
and that

where /x(w, v) = / ( I — u — υ, υ).

6. The equivalence relation. We will use the symmetric difference

Δhef(v)=f(v + \he) -f(v - \he) and Δ2

hef(v) = ΔAe(ΔAβ/(ι;)) for a
vector υ, h G i?+, and a fixed vector e. Actually, earlier we used forward
differences because of convenience as they naturally appeared in the
derivatives of Bernstein polynomials. However, we will use only the final
estimates achieved earlier which do not involve difference (forward or
otherwise) and therefore, using the present form should cause neither
difficulty nor confusion.
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We let ex = (1,0), e2 = (0,1) and e3 = (1, -1) and may now state our

equivalence (inverse) results.

THEOREM 6.1. The function f with domain S belongs to (C, A)a, where

A was given in §4, if and only if for (x, y) ^ S we have:

(a) In case x + y < 3/4: \xaΔ\eJ\ < Mh2a for x > h and y > 0;

\yaΔ2

heJ\ < Mh2« fory > h andx > θ | and Kxy)a/2ΔheiΔkeif\ < M(hk)«

for x > h/2 andy > k/2.

(b) In case x > 1/4: |(1 — JC — y)a&heJ\ < Mh2a for 1 - x - y > h

andy > 0, \yaΔ\eJ\ < Mh2a fory >handl-x-y>0; and

for 1 - x — y > h/2 and y > k/2. (That is, (a) is valid for fx(x, y) =

(c) In case y > 1/4 the roles of x and y in (b) are interchanged, ((a) is

valid for f2(x,y)=f(T2(x,y)).)

Note that with the above restrictions if h and k are small enough, say

h,k < 1/16, all points mentioned will be in S.

We can also have the following somewhat different description of

(C,A)a.

THEOREM 6.2. The function f(x, y) belongs to (C, A)a if and only if the

following conditions are satisfied.

(a) For x + y < 3/4: \ΔhφteJ\ < Mh2a for x > h2 and y > 0;

| Δ 2 ^ 2 / | < Mh2* for y>h2 and x > 0; and I Δ ^ Δ ^ / I < M{hk)a

forx > \h2 andy > \k2.

(b) Condition (a) is valid for fλ(x, y) where fλ(x, y) = /(I — x — y9 y).

(c) Condition (a) is valid for f2(x, y) where f2(x, y) = f(x, 1 — x — y).

Proof of Theorem 6.2 assuming Theorem 6.1. We have to show that

(a), (b) and (c) of Theorem 6.1 and 6.2 are equivalent but for a fixed

(JC, y) (for (a) say) h = hx of Theorem 6.2 correspond to h = hλ/x in

Theorem 6.1 and they are the same conditions etc.

This phenomenon is particular to C(S), in Lp such forms would not

be equivalent (see Totik [9] and [10]). The second form was introduced

here too as this and not the form in Theorem 6.1 is the likely candidate

for generalizing to Lp.
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Proof of Theorem 6.1. We first show that if fe(C9A)a9 the 3
conditions (a), (b) and (c) are satisfied. We observe that it is enough to
show those conditions for x + y < 2/3, x > 1/3 and y > 1/3 instead of
showing them for x + y < 3/4, x > 1/4 and y > 1/4 for (a), (b) and (c)
respectively. We will actually show just condition (a) but the transforma-
tions mentioned in (4.1) Tt imply Φ f(/) = Φ0(Λ) and Bn(f,x,y) =
Bn(fnu,v), where 7](jc, y) = (w, v), will imply that it is sufficient. For
/ €Ξ ( C , A)awe have, for any t,f = ftχ + fu2 where \x(d/dx)%2(x, y)\ <
Mta~x and \ft±(x,y)\ < Mta where M is independent of t. Choosing
t = Λ2/JC, we have \t£heJtil(x, y)\ < AMhla/xa. We can now write

I Cx— /

ΔheJ,a(χ> y) I ^ 2 m a x / (« - x
J X

h)

u2JU2

x+h (u — X

~ ' U

Since \f*+h(u - x - h)/udu\ < h2/2x,

du

and

\L

r

( w - x

(u- x + h)

- Λ)
— for x > 2h
4x

du
x-h

< f du <2h forx < 2h,

and using the choice / = h2/x, we have in all three cases / < Mx{h2/x)a.
To estimate ^xy)a/2ΔheιΔ.keJ(x,y)\ we choose ftl and fί2 to match
/ = hk/(xyγ/2 for which

\ft.ι(x,y)\*Mt" and
d2

Mt α - l

Therefore, we have

and

I < 4M(hk)a/(xy)a/2

z + h/2 ry + k/2 3 2

y-

<M
rx + h/2 ryrx + h/2 ry + k/2

*y-k/2
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The estimate of I2 can now be written as follows: for x > h and y > k

I2 < 2Mta~ιhk/fiϊ = 2M(hk)a/(xy)a/2;

f or x > h and y < k

I2 < &Mt-*± Ck/1 *jL < AMt
yx Ό v v yx

( \ a/1 v / \ a/1 '

xy) y (xy)
ίoτ x < h and y > k

I2<4M(hk)a/(xy)a/2,

and f or x < h and y < k

τ , i ί3h/2 du f^k/i dv

(χy)
a/2

All other estimates follow similarly, and therefore / G (C, A)a impUes (a),
(b),and(c).

We now prove that conditions (a), (b) and (c) imply that for every t
there exists a function gt such that | | / - gt\\ < Mta and Φ(gt) < Mta~ι.
We first observe that it is enough to find such functions gt that will satisfy
| | / - gt\\ < Mta and Φz(g,) < Mta~x for / = 0,1,2, that is, find gt that
will fit Φo, then a function gt that will fit Φλ etc. This is possible since we
can have ψz > 0 for / = 0,1,2 satisfying Σψ, (jc, j ) = 1, ψ, e C α , ψ0 = 1
in x + y < 1/3 and ψ0 = 0 in x + y > 2/3, ψr = 1 for x > 2/3 and
ψx = 0 for x < 1/3, and ψ2 = 1 in 7 > 2/3 and ψ2 = 0 for y < 1/3. We
now only have to construct gt to fit one of the functional, Φo say, as all
of them can be achieved from the same construction if we use the affine
transformation discussed earlier first, then construct the function and then
use the inverse transformation which is actually the same transformation.
The construction of the function gt follows our method in [2] and [4] but
here we have the added difficulty of dealing with the two-dimensional
problem (which makes it more interesting). The multidimensional problem
is treated in a very similar way. As a preliminary to our construction we
define

(6.1) Flut2(x,y)

l2\2l2\2fh/2 fh/2 rt/2 rt/2.
= \T\\T) / / / μf(χ + u1 + u2,y + v1 + v1)

-f(x + 2uλ + 2u2, y + 2υ1 + 2υ2)] du1du2dv1dv2.
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Elementary manipulations yield

(6.2) Δ2

Tιeι+T2eJ(x + τlty + τ2)

= f(x,y)-2f(x + τ1>y + τ2) +f(x + 2τ 1 ; y + 2τ 2)

= A\eif(x + τ l 5 y) + H\eJ(x + 2τx, y + τ2)

+ 2Δ T i e Δ T 2 e 2 /(x+|τ 1 , y+\r2).

This will imply

\f(x,y)-Fίuh(x,y)\
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^
+ W2

2α

duλdu7

/ 2 \ 2 fh/2 ft2/2 Vι + V2 Ya

\ h I Jo Jo \ P + Ό1 + Ό2 )

2 \2I 2 \2 Γh/2 M/2 rt2/2 rt2/2 '

hi \t2) ^o •'o •'o ^o

υΛ 4-

XI

Therefore

(63)\f(x,y)-FhJ2(x,y)\

< Nf{τώΆ{tla/xa, /f) + mi

4- l(ux + u2)
du1du2dv1dv2.

Following the standard techniques of Stekelov-type averages, we have

-Δ\eJ(x + h> y + 2vi + 2υ2)} dv1dv2

and, therefore, using the conditions in the theorem,

(6.4)
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Similarly,

and

(6.5)

Z. DITZIAN

V, V
To construct the functions in question we remember that the function that
would fit Φo does not have even to be defined for x + y > 2/3, etc. We
restrict t so that for x 4- y < 2/3, x + It + >> + It < 3/4 or in other
words / < 1/50; this is not a serious restriction as the interesting part is
when t tends to zero, and otherwise it just modifies the constants. We
choose ψ(x) to satisfy ψ(x) = 1 for x < 1/4, \p(x) = 0 for x > 3/4,
ψ(x) decreasing and ψ(x) e Ca. We define also ψ/(x) = ψ(4/jc). We are
now able to define in x + >> < 2/3, /, 2 for Φo which we denote by gt and
ftl will therefore be just /-ft2. For 2'ι~ι < t <2~ι (and of course
t < 1/50), we write

(6.6)
/i

= Σ Σ
m = 0

fe = 0

/-I

/ /
Ξ Σ Σ Ft2-*,t2-(x> > y)

Of course, the preparation up to now was in order that for x 4- y < 2/3
we have |/(x, y) - gti{x, y)\ < Mt2a. We observe first that if in the
definition of gti(x, y) in (6.6) f(x, y) would replace Ft2-kt2-m for all m
and k (including m = / and k = /), /(x, y) would also replace g^(x, y)
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on the other side, or in other words in the region prescribed the coeffi-
cients are a partition of unity. We observe that for every x and y at most
four terms are different from zero. Moreover, for 4~r~ι < x < 4~r,
ψΛ(jc)(l — ψk+ι(x)) Φ 0 only at most for k < r 4- 1 and r — 1 < k, or
only k = r + 1 and k = r are possible (not always both). For x < 4~ι~λ,
ψ/(x) is the only non-zero coefficient of Ft2-kt2-m. Therefore, using (6.3)
for tx = 2~kt and ί2

 = 2~mt when x — 4~k and j> — 4~w respectively, and
for tλ = 2~ιt and t2 = 2"7/ when x < 4~ι~ι and y < 4~ι~ι respectively,
we complete the estimate of \f — gti\ by recalling

o < Ψ*(*)ψmω(i - Ψ*+I(JC))(I - *m+ί(y)) z i

and only at most four of them are different from 0 at any point (x, y).
To estimate Φ0(g,2), we first estimate x(8/3x)2gr2(x,;;). (We should

get \x(d/dx)2gti(x, y)\ < Mi2"'2.) We write

' ' / 3

Σ Σ 2xί^

ιιιι / 8 \ 2

Σ Σ *(^,2-^2-(*>JO or *

= Jλ + J2 + J3.

First we estimate Jv Recalling that at most four terms in the sum are
different from zero, we have only to estimate a term of Jv The function
Φ/c,m(χ>y) satisfies 0 < Ψkm < 1 and Ψkm Φ 0 implies x - 4~k and
y — 4~m unless k and/or m are equal to /, in which case x < 3 4~ι~ι

and/or y < 3 4~ι~ι respectively. In both cases using (6.4) the term is
smaller than Λί^2""2, as for x ~ 4~k

and for x < 3 4~ι~ι

Mx{t2-l)~\t2-lY < 3MΓ2 ta2~ίa < Mλt
2a-2.

Estimating J2 and /3, we have to distinguish between two situations: (A)
Ψkm(x, y) is constant in x9 for which points (x, y) the corresponding
summands of J2 and J3 are equal to zero. (B) 4~k~ι < x < 34~^~1 in
which case
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and

for m < /, k < /; and

Z. DITZIAN

and

Now we have to estimate for J2 and /3 their summands J2(k, m) and
/3(/::, m) given by

J2(k,m) = c, y) -F,2-**ι,a-(x>

and

J3(k,m) = x{Ft2-*tl2-m(x,y) - , y)}

Since

and

YΨk{x)\ < MAki for i = 1,2, we have

\J2(k,m)\ <M

\J3(k, m) I < M\{

,y)}

, y) -

The estimate of J3(k,m) follows immediately now from (6.3) as restric-
tions on m and k in relation to x and y imply

Mt 2a

and therefore \J2(k, m)\ < M4kt2a < Mt2a"2. The estimate of J2(k,m)
though bit more complicated follows from

~ a)\\φ"(x)\\CίaM
\\Ψ'(x

where M is independent of [a, b] and φ (see [3, Lemma 3.1] for instance);
we set φ(x) = Fί2-kt2-m(x, y) - Ft2-k+itt2-m(x9 y) and [a, b] = [4"*" 1 ,

3 . 4"/c"1] and the estimate of J2(k, m) reduces to one similar to Jx and
one similar to J3(k, m).

We now have to estimate

and
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but these estimates are similar to the above and are omitted. To get the
estimates for the other regions, we transform the vertex of the simplex to
(0,0) as prescribed earlier, construct the function with the correct estimate
and take the inverse transformation after completion. (We will have a
fixed constant multiplying our estimates as the transformation is not
orthogonal.)

As a corollary from Theorem 6.1, we can state:

COROLLARY 6.3. The function f(x, y) e (C, A)a implies that for x + y
< 3/4 and e = βeτ + ye2 where γ 2 4- β2 = 1 we have

(xyΓ

Proof. The result follows easily from the identity

Δ^ fix v) = Δ̂ >, fix v — yh) -f Δ2, fix -4- βh v)

7. The difficulty in extending the Berens-Lorentz result. Berens and
Lorentz proved for Bernstein polynomials on C[0,1] and for 0 < a < 2
that

if and only if |Δ2

Λ/(x)| < Mλh
a for (JC - h, x + h) c [0,1]. It would be

nice to find a condition on Bn(f,x,y) — f(x, y) that will be necessary
and sufficient for the class of functions satisfying \Δ?hef(υ)\ < Mxh

a for
v — he, v + he e S. However, a condition of the type

a/2

will fail (no matter what ψ(jc, y) is). Choosing the function f(x, y) = xa

for which

\Bn{f,χ,y) -f(χ,y)\ =\Bn(f,x)-x"\ ~ κ(^
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near x = 0 will imply that ψ(jc, y) < Kx near x = 0 regardless of y.
However, for f(x, y) = ya the behaviour near y = 1/4 regardless of x is

Therefore in the neighbourhood of (0,1/4) we encounter a contradiction.
(This contradiction can appear at any point of the boundary except at the
vertices.)

The situation will not change if we treat the Bernstein polynomials on
the square [0,1] X [0,1] given by

n iti 1 1 1

(7.i) B m(f,χ,y)- Σ Σ PnAχ)PmAy)f[^Λ
k = 0 1=0 ^

when 0 < Kλ < m/n < K2 < oc in spite of the fact that at first glance
(7.1) looks like a cartesian product of the one-dimensional Bernstein
polynomial. The same functions as above would show a condition

(or

\BUf>*>y) -f(χ>y)\ *

will fail.

8. The multidimensional Bernstein polynomials on a simplex. In this
section we will generalize the results achieved in §§2-6 to the m-dimen-
sional Bernstein polynomials on a simplex. As this is a more cumbersome
situation, it would appear to be a very long task. However, the proofs are
essentially the same as those for the two-dimensional Bernstein polynomi-
als, which were treated first.

The m-dimensional Bernstein polynomial is given by (1.2) and (1.3)
can be rewritten by

(8.i) * , ( / , * ) = Σ *Σ • • • " Σ '

(where Pn v(x) is given by (1.3)). Recall that because of the symmetry in
(8.1), and (1.2), we can consider any two variables to be either xλ and x2

or xm and xm_v depending on what is advantageous at the time.
As in the two-dimensional case, we need a transformation that will

carry the behaviour near (0,..., 0) to that near et.
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This will be given in the following lemma that can be derived by
simple computation.

LEMMA 8.1. For the u = Ttx given by Uj = Xj for j Φ i, ut = 1 — xλ —
xm, and f^x) = f(TiX) we have Bn(f, x) = Bn(U u).

The subspace A of C(S) is given by:

DEFINITION 8.1. f(xl9...9xm) e C(S) belongs to class A if the
semi-norm Φ(/) = max(Φ0(/), Φx(f),..., Φw(/)) is finite, where

and fi(x) = f{Ttx) where Tt is given in Lemma 8.1.

The domain Σxt < 1 — l/2m is chosen so that the domain satisfying
Σx, < 1 — η w , i]w > l/2m and its transformations by 7] still cover S.

The inverse theorem for m-dimensional Bernstein polynomials is
given in the following two theorems.

THEOREM 8.2. fe(C(S),A)a if and only if \\Bn(f,x) - f(x)\\ =
O(n~a/2).

THEOREM 8.3. Forf e C(S), f e (C(S), A)a if and only if
(a) for Σx z < 1 - (l/2m) | Δ 2

Λ ^ / | < MA2«, x, > h\

> \h\ Xj > W

and xι > 0 for I Φ i, j ;

and for any i we have condition (a) onf(x) = f{Tλx).

Outline of proof of Theorem 8.2 and 8.3. We will just indicate some of
the needed modifications to the proofs in two dimensions. For the direct
result we essentially have to prove the inequality

(8.2) \\Bn(f)-f\\<LΦ(f) for/<ΞΛ.

Here we have to use for the definition of a corresponding Φ*(/) the
domain Σx, < 1 - l/(m + 1) and its transformations by Tt. We also
observe that (2.9) and (2.10) are valid with Φι(xv..., xm) = xz for i < m
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and Φ m + i (*i , . . . , xm) = 1 — Σ^ix(. For the converse result we need the
inequalities

(8-3) Φ(Bn(f)) < Ln\\f\\
and
(8.4) Φ(Bn(f)) < LΦ(F) torfeA.

The proof follows the proof in earlier sections. For (8.3) we need to
replace (2.2), (2.3) and (2.4) by

(O.JI -Γ—&ΛJ, X\ ' ' ' Xm) — 2s

(8.6) | J

= Σ / ί ^

s

m

-2v\n - Y v \x 1 - Y

I m

» - Σ » . | | . - i - Σ

and

X U,-"y(l - Σ x,\ -("iXj+ VjxMn ~ Σ ",) | l - Σ)

-

T h e construction of g r in Theorem 8.3 follows §6 with Fhf tm(xly ...9xm)
replacing Ft t(x1x2) (using 2m iterated integral).
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9. Multidimensional Bernstein polynomials on [0,1] X X [0,1]. In

this section we will generalize the result to Bernstein polynomials on the
box B, B = [0,1] X X [0,1] given by (1.4) for which the inverse result
is the following theorem for #*(/, x) = #*,..., M/n(/, *i> > xm)-

THEOREM 9.1. Forf e C(B), £*(/, x) given by (1.4), n = (nv..., nm)
andrti/Πj < Kfor all i and] the following are equivalent for 0 < a < 1:

(a) l | 5* 5 . . . , n m (/ ,x 1 , . . . ,xJ-/(x 1 , . . . ? xJ | | C ( β ) =O(«7«) {for any

0.
(b) / e (C(2*),Λ)β πΛe/sΛ ^ {/;*,(! - ^)(a2/3x?)/e C(5) and

(d/dxjfis locally the integral of (d2/dxf)f).
(c) For alii |(xz (l - xf.))βΔ^e./(jc)| < MΛ2α I/JC ± **,. e 5.

< M,h2a ifx ± Λ,/x,(l-*,)*, e A

The proof of the above theorem, while not trivial, is made redundant
by the fact that at every step it is simpler than the earlier proofs in this
paper and therefore will be omitted.
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