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MINIMAL NON-PERMUTATIVE PSEUDOVARIETIES
OF SEMIGROUPS. II

JORGE ALMEIDA

This paper is the continuation of a previous paper in which all
minimal non-^-permutative pseudovarieties of # were determined where
^-permutativity was one of several conditions implying permutativity and
<€ was the class of either (finite) groups, monoids or semigroups. In this
work, the most general case of this type is treated, namely when
^-permutativity is permutativity and # is the class of all finite semi-
groups.

The notations and conventions adopted in this paper were introduced
in [1].

1. Introduction. This paper is the continuation of [1] and uses the
notation and conventions introduced there. In [1] we determined all
minimal non-^-permutative pseudovarieties of Ή where ^-permutativity
was one of several conditions implying permutativity and # was the class
of either (finite) groups, monoids or semigroups. Here, we treat the most
general case of this type, namely when ^-permutativity is permutativity
and # is the class of all finite semigroups.

2. Some non-permutative semigroups. In this section, we introduce
some semigroups which will play an important role in the sequel. We also
indicate a finite basis of identities for each of them.

Recall that any completely simple semigroup is isomorphic to a Rees
/ X Λ matrix semigroup Jt(G\ /, Λ; P) over a group G with sandwich
matrix P = (pλi) (see Clifford and Preston [3]). For a prime number p,
we let

Rasin [5] has given a complete description of the lattice of varieties of
completely simple semigroups over abelian groups. The appropriate uni-
versal algebraic type to deal with arbitrary completely simple semigroups
involves not only one binary operation (product), but also one unary
operation (inversion within the group containing a given element). How-
ever, in the context of finite semigroups, the need for the unary operation
disappears, since the (group) inverse of an element is then one of its
(positive) powers.
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A regular semigroup S is said to be orthodox if the set E(S) of its
idempotents is a subsemigroup of S. S is said to be an orthogroup if it is
an orthodox union of groups (cf. Clifford [2]).

From the results of Rasin [5], one easily deduces that if S is a finite
non-orthodox completely simple semigroup over an abelian group, then
Kp ^ V(S) for some prime p. Moreover, the V(Kp) (p prime) are
minimal non-permutative pseudovarieties of semigroups; they are defined
by the following identities:

V(Kp) = lxp+1 = x> (xyx)p = xp, xyxzx = xzxyxj

and Kp is a generator of minimum size of this pseudovariety.
Let

Y = (e,s9f; e2 = e,f2=f,es = s = sf9 ef = fe = 0).

Then Y = { e, s, /, 0} and, from Edmunds [4], we obtain

γ{γ) = [X2 = X 3 ? χyχ = χiyi ssy2χ2y9

we also observe that Y is a generator of minimum size of V(Y).
The last special semigroup we need to consider is the following:

Q = (e,s,t; e2 = e, es = s9 t = te, se = et = ts = 0).

We note that Q = {e, 5, ty st, 0}.
A characterization of the identities which fail in Q will be crucial later

on. To describe it, we require some further terminology. We let X =
{ xl9 x2,..., yl9 y2,..., x, y, z, t,...} be a countable set of variables; let
X+ be the free semigroup on x and let X* = X+U{1), where 1 denotes
the empty word. For a word w Ξ X+, C(W) denotes the set of all variables
which occur in w, and \w\x denotes the number of occurrences of the
variable x in w. Two identities are said to be equivalent if they hold in
exactly the same semigroups. S \= u = υ means that the identity u = υ
holds in the semigroup S. Σ I- u = υ means that u = υ is a consequence
of the set Σ of identities.

LEMMA 2.1. An identity u = υ fails in Q if and only if it satisfies (up to
equivalence) one of the following conditions:

(i) c(u) Φ c(v);
(ii) there exists x G Xsuch that \u\x = 1 and \v\x > 1;

(in) there exist y, z e Xsuch that u = uxyzu2 with \u\y = \u\z = 1 α/?J
some uv u2 ^ ^ * while, either v = vλzv2yv3 for some υl9 υ2, v3 G X*, or
i; = vιyv'2zv3 for some vv v3 G X* and some v2 e X+;
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(iv) there exists y e X such that \u\γ = 1 and every variable which

occurs to the right {left) of y in u occurs only once in w, while in v there is

some variable which occurs repeatedly and at least once to the right (left)

ofy

Proof. If (i) holds, then no nontrivial semilattice satisfies u = v; since

the subsemigroup {e, 0} of Q is a semilattice, we obtain Q ψ u = v.

If (ii) holds, substitute st for JC, e for every other variable in u = v.

This yields the value st and u but 0 for v. Hence, Q # u = v.

If case (in) holds, we substitute s for y, t for z and e for every other

variable in u = v to obtain the value st for u and 0 for ϋ. Hence,

Q ¥ u = v.

Suppose condition (iv) holds, say with the "right" option. Let y be

the rightmost variable satisfying (iv). By the above, we may assume that

(i)-(iii) fail. Then, u = u'y for some u' e X+. We substitute s for y and e

for every other variable in u = υ to obtain the values s = es for u and

.se = 0 for v. Hence Q & u = y.

The above establishes half of the lemma. For the converse, let -,

denote negation and assume that, up to equivalence, u = v satisfies the

conjunction (C) of conditions -i(i)—,(iv). We show that then Q 1= u = v.

Let

Σ = {x2 = JC3, jcy2jc = x 2 ^ 2 = <y2jc2, JC2J>Z2 = z2jα;2,jcyjc = x 2 y jc 2 ,

xyxzx =

Simple direct calculations show that Q \= Σ. Thus, it suffices to show

Σ I- u = v.

We note that, since each element of Σ satisfies (C), if the identities

u = v and u' = v' are equivalent in the presence of Σ, then uf = vf

satisfies (C) if and only if u = v does. Moreover, using Σ, any word w

can be reduced to one of the form

XlιWn

where «, m > 0, xt (i = 1,. . . , m) are not necessarily distinct variables,

c(wi)Πc(wj)= 0 for iΦj, XjGciWj) (/ = l , . . . , m ; y = 0 , . . . , n ) ,

K l ^ < 1 for every x e Jf, w,. e ΛΓ+ (/ = 1,. . . , /i - 1), and w0, wn e Jf*;

up to the relative order of the xf9 the relative order of the wx (i = 1, . . . ,

n — 1), and the positive number of their occurrences, this form is unique.

Let u\ vt be words in the previous canonical form obtained respec-

tively from w, v using Σ, say

2 2 2
X ' * ' ^ ^
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a n d
υ' = v o y b Ί y & i - y l - i V k l

By a previous remark, w' = υ' satisfies (C). By -,(i) and -.(ii), we may

assume that m = I and xέ = y( (/ = 1,. . . , ra). By -,(ii) and -.(iii), the

variables in c(uouλ un) = c ί ^ i # *# vk) appear in the same order in

u' as in v\ and appear in adjacent positions on one side of uf = υ' if and

only if they do so on the other side. Finally, by -i(iv), u0 = 1 if and only if

v0 = 1, and ww = 1 if and only if υk = 1. Hence A: = n and w, = υi9

(i = 0,1,. . . ,«), up to a rearrangement of the uι (i = 1,. . . , n — 1). Thus,

the words u' and ί/ coincide. Therefore Σ I- w = υ, as claimed.

As a corollary to the proof of Lemma 2.1, we have the following.

PROPOSITION 2.2.

= y2χ2,χ2yz2 =

xyxzx =

REMARK 2.3. Examining the Ust of non-permutative varieties gener-

ated by semigroups of order four given by Edmunds [4], and noting that a

semigroup of order less than four is either permutative or idempotent, one

can show that Q is a generator of minimum size of V(Q).

3. Regular case. Recall from [1] the semigroups Gp, Hpq,, Nι,

B{19 2)1 and J5(2,1)1. For a semigroup 5, p(S) denotes the set of regular

elements of S.

THEOREM 3.1. Let Vbe a pseudoυariety of semigroups such that

(1) Gp, Hpq <£ V (p,q distinct primes)

(2) N\ B(l,2)\ B(29lγe V

(3) KptV (p prime)

(4) Γίf

and let S G F , Then p(S) is apermutatiυe orthogroup.

We prove Theorem 3.1 in a number of steps. Henceforth, V and S are

as in Theorem 3.1. First of all, because of (1) and (2), it follows from

Theorem 5.3 [1] that all monoids in V are commutative.

LEMMA 3.2. E = E(S) is a subsemigroup of S.
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Proof. Let e, f ^ E and suppose that ef ί E. We let S' denote the
subsemigroup of S generated by { e, f}.

Suppose ef, fe are not ./-equivalent in S'. If fe e E, then fe = fefe
<j?ef. So, we may assume ef ^ j?fe. Let / = {w e £": ef £j?u], an
ideal of 5'. Then 5"// consists of the four elements e, /, ef and 0 = fe
(i.e., S"// is isomorphic to the semigroup D of example 3.11 [1]).
However, it is easy to check that S'/I X S'/I has a subsemigroup
isomorphic to Y, whence 7 G F , contradicting (4).

Hence, we have ef^fe in S'. Since ef0tfe implies ef = /<?/ and so
ef e i?, we deduce that ef, fe are not ^-equivalent. Hence, in the .©-class
of ef in S", StΦtf. Let e / ^ φ but efjtfefu. Since e, / are idempotents,
it follows that ef = (e/)* for some A: > 1. Hence, G = i/e/ is a subgroup
of 5". Moreover, from ef = (ef)k we obtain fefe = (fe)k+ι, and so Hfe is
also a subgroup of S'. In fact, /? = Jef is a completely simple subsemi-
group of S'. Since {ef)k-\fe)k~ι = (efe)2k~3 £ E, R is not orthodox.
By the results of Rasin quoted in §2, it follows that Kp e F(iί) c V for
some prime /?, contradicting (3). This completes the proof of the lemma.

Let BA2 denote the Brandt semigroup Λf°({l}; 2,2; Δ) (cf. Clifford
and Preston [3]). One can easily check that Y is isomorphic to a subsemi-
group of BA 2 X J?^12, and that if a semigroup t/ has a regular .©-class
which is not a subsemigroup of U9 then iL42 G V(U).

LEMMA 3.3. ρ(S) is a subsemigroup of S and a union of abelian groups.

Proof. By the remarks preceding the lemma, every regular .©-class of S
is a completely simple subsemigroup of S. Hence, p(S) is a union of
abelian groups.

Let a9 bep(S). Let e e E Π Ha9 f <Ξ E Π Hb. By Lemma 3.2,
ef e 2?. Further, if α'α = e and 66' = /, then a\ab)bf = ef and ab = ας/&.
Hence, ab^ef and so tfZ> e pί^S), as desired.

LEMMA 3.4. (Yamada [6], /?. 375.) ̂ 4 iα«^/ is normal if and only if it
satisfies the identity xyxzx = xzxyx, i.e., if and only if all its submonoids
are commutative.

COROLLARY 3.5. E is a normal band.

LEMMA 3.6. If e, f e E ands e p(S), then esef = esf.
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Proof. Let g e E n # „ . Then

&re/= es gge/ - esgeg/" by normality of

= esggf since

LEMMA 3.7. Ife^E ands9 t e p(S), then este = esete.

Proof. Let g*ΞEnHes, htΞEn Hte. Then

este = esgeghte since eg = g

= esggehte by normality

= esete.

To complete the proof of Theorem 3.1, we only need to quote Theorem
3.9(iv) [1].

REMARK 3.8. The reader should consult Yamada [6] for further results
on regular permutative semigroups.

4. Main result We are now ready to establish our main theorem.

THEOREM 4.1. A pseudovariety of semigroups is permutative if and only
if it does not contain any of the following semigroups:

(5) Gp> Hp%q9 N\ B(l,2)\ B(2,l)\ Kp9 Y, Q

(p,q distinct primes).

Moreover, the pseudovarieties generated by each of these semigroups are

minimal non-permutative and admit the corresponding semigroup in (5) as a

generator of minimum size.

To prove Theorem 4.1, all we really need to show is that if V is a

pseudovariety which does not contain any of the semigroups in (5), then V

is permutative. We establish this in several steps. By Theorem 5.3 [1], all

monoids in V are commutative. Henceforth, S denotes a given element of

V and we may assume that V(S) = V. We suppose S is not permutative.

Also, let E = E(S).

LEMMA 4.2. // S ψ xωyzxω = xωyxωzxω, then S 1= xωyxω =
(xωyxω)k+1 for some k > 0.

Proof. Since Q <£ V, there exists an identity u = v such that S t= u = v
while Q \φ u = v. Hence, u - v satisfies one of the conditions (i)-(iv) of
Lemma 2.1.
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If (i) holds, then V does not contain any non-trivial semilattices. Since
p(S) is a union of groups subsemigroup of S and S is finite, it follows
that S is a nilpotent extension of a completely simple orthodox union of
abelian groups. In particular, S is permutative, contradicting our initial
assumption.

If (ii) holds, say the variable y satisfies (ii), then substitute xω for
every variable in u = υ other than y and pre- and post-multiply by xω to
obtain a pseudo-identity of the form xωyxω = xωykιxωyk2 xωykrxω

with Σr

ι = 1kι > 1 which holds in S. Then, substituting xωyxω for y, we
obtain

S t= xωyxω = (jcω.yjcω)*+1 for some A; > 0.

Suppose that (iii) holds. Substitute xω for every variable in u = v
other than y, z to obtain a pseudo-identity xωyzxω = xωzyxω or JC^ZJC"

= xωyxωzxω which holds in S, contradicting the hypothesis of the lemma.
Finally, suppose that (iv) holds, say y is the rightmost variable in u

satisfying the "right" option of (iv) and suppose that (i), (ii) and (iii) fail.
Upon substitution of xω for every variable in u other than y9 we obtain
S 1= xωy = xωyxω, again in contradiction with the assumption of the
lemma.

LEMMA 4.3. Ife^E ands, t e 5, then este = esete.

Proof. Suppose that este Φ esete. Then, by Lemma 4.2, we have

(6) S \= xωyxω = (xωyxω)k+ι for some k > 2.

We claim that this leads to a contradiction. We may assume that { e, s, t}
generates S and that s = es and t = te.

By (6), every element of S which lies in a submonoid of S also lies in
a subgroup of S. In particular, se = (se)k+ι = sk+1e, and so seSis2.
Similarly, t2&et.

S i n c e st = (st)k+ι = stst ••• st, w e h a v e st β (ts)2 a n d so

tst£?st0lsts. From Theorem 3.1, we deduce that sts2t(fst, whence
s2t^/st^/stse, and so stβstse tst, so that st <j?set.

On the other hand,

set = (set) by (6)

= setkesket since eSe is commutative

= sesktket by Theorem 3.1, since se9 sk, tk, et e

= sttk~1sket = setksk~ιst since eSe is commutative.
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Hence, setJίfst, so that, by (6), (st)k = (set)k. Thus,

este = st = st(st) = st(set)

= este(se) ~ (et) ~ esete = e(se) ~ st(et) set = esktksete

since eSe is commutative

= esksettke by Theorem 3.1, since $*, ί*, set e p(s)

= βϊ*+1tf *+1e = (ese)k+\ete)k+1 = esete by (6).

This contradicts the initial assumption in this proof, and thus the lemma
is established.

LEMMA 4.4. Ife,feE ands e S, then esf = esef.

Proof. Suppose that esf Φ esef. We will then reach a contradiction.
Here, we may assume that S is generated by {e, /, s} and that s = es.

Using Lemma 4.3, we have sef = esefef = esfef = s/e/. Since se/ Φ sf,
we get j / Φ sfef so that we may replace s by 5/ and still have e(sf)f Φ
e(sf)ef. Hence, we may assume that s = sf. By Theorem 3.1, we may also
assume that s is not regular, and so s < ̂  e,f.

Let / = {x e S: x < yx}. Note that / is an ideal of S.
Suppose s <j?ef. Then, there exist u, υ e S such that s = esf =

euefvf. lί u £ jS, then

5 = &s/ = efesf

= e/ese/ by Lemma 4.3

= esefef since eSe is commutative

= esef, a contradiction.

Hence u <^s. It follows by Lemma 4.3 that s <^sef and so s^sef.
Therefore, sέϋsef, so that there exists w e S such that s = se/W/. If
H> <^s, then s is regular, contradicting a previous assumption. Else,
s = se/e/ = se/, again a contradiction. Hence, e/ e /, whence se/ e / and
we may assume / = {0}.

If s < ̂ fe, then there exist w, υ e 5 such that 5 = &s = eti/ei; =
euefeυ, the last step because of Lemma 4.3. Since ef = 0, we conclude that
5 = 0, contradicting the definition of /. Hence, fe = 0.

Finally, se = sfe = 0 = fes = fs. Hence, S — Y and Y G F, a con-
tradiction. This completes the proof of Lemma 4.4.
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To finish the proof of Theorem 4.1, we just need to notice that, by
Theorem 5.3 [1] and Lemmas 4.3 and 4.4, the conditions of Theorem
3.9(iv) [1] are satisfied for any S ^ V. Hence, V is permutative.
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