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MINIMAL NON-PERMUTATIVE PSEUDOVARIETIES
OF SEMIGROUPS. I

J O R G E A L M E I D A

A semigroup is permutative if it satisfies an identity of the form
xιxi ' # * χ

n

 = *σi*σ2 ' " Xσ» where σ is a non-identical permutation
of {1,2, . . . , n }. The finite permutative semigroups form a pseudovariety
and permutative pseudovarieties enjoy many properties first obtained for
commutative pseudovarieties. Several types of permutation identities are
considered, and all pseudovarieties minimal with respect to the property
of containing a finite semigroup which fails an identity of a given type
are determined. This includes the cases of the commutativity identity, the
general permutation identities, and the "strong (left) permutation identi-
ties". As a preliminary, all minimal non-commutative pseudovarieties of
groups and monoids are also determined.

1. Introduction. As a natural generalization of commutativity, per-
mutation identities have been considered by several authors and shown to
play an important role in various contexts (see Yamada [19, 20], Perkins
[12], Pollak [14, 15], Higgins [7, 8], Almeida [1]). The non-collapse of this
extended concept is peculiar to the class of semigroups, as a permutative
monoid is necessarily commutative.

The problem of determining the minimal non-commutative pseudo-
varieties of groups was first considered by S. Oates (see Neumann [11], p.
42) although this author did not exhibit all such pseudovarieties, rather
just established that they must contain a non-abelian metabelian group.
As a step towards the solution of a problem in language theory, Margolis
and Pin [10] then extended this result by showing that a non-commutative
pseudovariety of monoids all of whose group members are abelian must
contain one of three monoids which they describe. They also claim that
their methods can be adjusted to yield a list of generators (up to the group
case) of the minimal non-commutative pseudovarieties of semigroups.
However, as we show here, their list is incomplete.

In the first part of this work, we determine explicitly all minimal
non-commutative pseudovarieties of groups and semigroups. We also
consider some special types of permutation identities and produce a
complete list of minimal non-strongly permutative and non-strongly left
permutative pseudovarieties of semigroups. This is based on the solution
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of the monoid case, together with the reduction of the statement that a
semigroup S satisfies a certain kind of permutation identity to a much
simpler statement of pseudo-identical type involving idempotents (cf.
Reiterman [18]). In this way, we eliminate the bothersome presence of
existential quantifiers on natural numbers.

All minimal pseudovarieties with respect to failing one of the above
properties are characterized here both by a generator of minimum size and
by a finite basis of identities.

Part II of this work presents a complete list of minimal non-permuta-
tive pseudovarieties of semigroups (with no restriction on the nature of the
excluded permutation identities).

The author is indebted to Professor Norman Reilly for his encourage-
ment and many helpful discussions during the preparation of this paper.

2. Preliminaries. For general undefined terms and background, we
refer the reader to Clifford and Preston [3] and Lallement [9]. For the
notion of " pseudovariety" and its relationship with varieties in Birkhoff s
sense, see Ash [2]. Finally, the definition of "implicit operation" on a class
of algebras and its connection with pseudovarieties can be found in
Reiterman [18].

Here, we will call pseudo-identity an expression of the form π = p,
where <n and p are implicit operations on the class of all finite semigroups.
For a set Σ of pseudo-identities, |[Σ] denotes the class of all finite
semigroups satisfying Σ. By Theorem 3.1 [18], every pseudovariety is of
the form [[Σ] for some set Σ of pseudo-identities, while by Propositions
1.2 and 2.1 [18], every pseudovariety which is generated by a single
semigroup is of the form [Σ] for some set Σ of identities.

For a finite semigroup S, V(S) denotes the pseudovariety generated
by S. Thus V(S) consists of all homomorphic images of finite subdirect
powers of S. As usual, S1 stands for the smallest monoid containing S,
i.e., S1 = S if S is a monoid, otherwise S1 = S U {1} where 1 acts as an
identity. Next, Sr denotes the set S under the reverse operation a*b = ba,
and E(S) represents the set of all idempotents in S. If A, B c S, we let
AB = {ab: a e A, b e B).

For a set P, we let |P | denote its cardinality.
Our first result is a simple sharpening of Proposition III. 9.2 of

Eilenberg [6] and will be of crucial importance later.

PROPOSITION 2.1. Let S be a finite semigroup and E = E{S). Let

n = \s\9 k = \E\. Then, either Sn~k = SES or E is a band ideal of S with
S/E cyclic (andsoSn'k+1 = E). In particular•, Sn~k+ι = SES.
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Proof, W e first s h o w t h a t Sn~k+1 = SES. L e t sl9 s29...,sn_k+1 e S

and let ti = sxs2 J, . If the elements /z (/ = 1,..., Λ — fc + 1) are all
distinct, then /. = e e £ for some / and so 51>y2 ^n_^+i = JX st,- e

• esi+1 ' sn-k+ι e SJKS. If tt = ίy. with i <y, let ( j i + 1 J i + 2 sj)1 =
e e E, to obtain ίz = tte and so s ^ "' * sn-k+i = 5 i "" * sι<% e " 5/+i * * *
sn_*+ 1 e 5^5. Hence Sn~k+1 c 5^5. Since 5 £ 5 c 5 r for all r > 1, we
conclude that Sn~k+ι = SES.

Next, suppose S Φ E, i.e., k < n, and further suppose that S"*~Λ Φ

SES. Let svs29..., 5rt_Λ e S b e such that sxs2 - 5rt_^ € .Si's. By the
same argument as above, it follows that the elements tt = sxs2 st

(/ = 1,...,« — k) are all distinct and non-idempotent. Thus, S =
{/1? / 2 , . . . , tn_k) U £ and E is an ideal of S. In particular, £ is a band.

With the previous choice of elements sl9s29...9sn_k e 5, if s( Φ sγ

for some /', then, since sέ £ £, we must have s, = ίy for some j e
{2,..., w - A:}. Hence, 51(s2 ^n_^ G Sn~k+1 = SES, a contradiction.
Therefore, sλ = s2 = = sn_k and so sλ generates the Rees quotient
S/E.

A permutation identity is an identity of the form

Xn =

where σ is a permutation of (1,2,...,«} and xl9 x29...9xn are distinct
variables. We say that a semigroup S is permutatiυe if it satisfies some
nontrivial (i.e., a Φ ι) permutation identity. S is strongly left (resp. rigλί)
permutatiυe if it satisfies an identity (1) with σl Φ 1 (resp. on Φ n). S is
strongly permutatiυe if it is both strongly left and right permutative. Note
that a permutative monoid is commutative.

We denote by Perm(A: m 7) the pseudovariety defined by the identities
of the form (1) with n = k + m + / and σi = i for 1 < i < k and for
n — I + 1 < i < n, where &, / > 0 and m > 2. Then, Perm ( 0 2 0 ) = Com is
the class of all finite commutative semigroups, and we let

m>2

™/)' a n d

P e r m = U
A:, />0, m>2

These classes of finite semigroups are all pseudovarieties and are identi-
fied by other means in the next section.
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3. Simplification of permutativity conditions using idempotents. In

this section, we take advantage of the abundance of idempotents in finite

semigroups as expressed in Proposition 2.1 to obtain equivalent conditions

to various types of permutativity.

LEMMA 3.1. Let S be a strongly left permutatiυe semigroup. Then, for

any e G E(S), S G eSe and t G S, we have ts — ste.

Proof. Let S satisfy the identity (1) with σl Φ 1. Let a = σ - 1 ( l) and

let r, s, t be as in the statement of the lemma. Then

ts = tea~2sen'a = se*te* = ste.

LEMMA 3.2. Let S be a finite semigroup with n elements and let

E = E(S). Suppose that allsubmonoids of S are commutative.

(i) //, for any e e E and t e S, te = ete, then S e Perm ( 0 2 n_ιy

(ii) If every idempotent in S is central, then S ^ Perm(0 m 0 ) where

m = max{2, n — 1).

Proof. By Proposition 2.1, we have either S"2"1 = SES, or \E\ = 1

and S is commutative. Thus, we may assume that 5"2"1 = SES.

(i) Since SE = ESE c ES, we deduce S"*"1 = ES. Let sl9 s2,

tx,..., /„_! e S. Then /x/2 tn_1 = e/' for some e e E and /' G S.

Hence, t1t2 ίΛ_x = e^r2 ^ _ 1 ? and so

= es1es2et1 ίπ_x since /^ = e/e

= es2es1etι /„_! since eSe is commutative

This establishes S G Perm ( 0 2 l f_1 ).

(ii) If w — 1 < 2, the claim can be easily verified. So, suppose

m = n — 1 and let sv s2,...9sme S. Since Sn~λ = SES and idempotents

are central, for each permutation σ of {1,2,..., m}, there exists eσ e E

such that 5 σ l 5 σ 2 sσm = eσsσlsσ2 s σ w . Then, for every such σ, we

have

W σ 2 ' Sam = (^σsσl)(eσsσ2) - ( < v σ j since eσ is central

= (easι){easi) ' (^σ^w) s i n c e σ̂*5 = eaSea is commutative
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so that, if ί denotes the identity permutation of (1,2, . . . , m}, then

= < V l ' " *m = e σ ^ 1 ' " Sm = ^ σ * l ••• Sm

= eιSσl ' ' ' Sam = e

t

S l ' ' ' Sm = S l ' ' ' Sm>

as desired.

THEOREM 3.3. The following conditions are equivalent for a finite

semigroup S.

(i) S G Perm ( 0 o o 0 ) .

(ii) S G Perm(0 m 0 ) vv/zere m = max{2, |S | - 1}.

(iii) S is strongly permutatiυe.

(iv) All submonoids of S are commutative and every idempotent of S is

central.

(v) Every element of S which lies in some submonoid of S is central in

S.

Proof, (ii) => (i) => (iii) follow directly from the definitions, while

(v) => (iv) is obvious, (iii) => (v) follows from Lemma 3.1 and its left-right

dual. Finally, (iv) => (ii) is Lemma 3.2(ii).

NOTATION. xω denotes the implicit unary operation on finite semi-

groups which associates with an element s of a finite semigroup S the

unique idempotent in the subsemigroup of S generated by s.

COROLLARY 3.4. Perm(0>OOt0) = lxωyz = zyxω}.

THEOREM 3.5. The following conditions are equivalent for a finite

semigroup S.

(i) S e Perm ( 0 o o o o ).

(ii) S e Perm ( 0 2 ^_ 1 ) where n = \S\.

(iii) S is strongly left permutative.

(iv) All submonoids of S are commutative and, for any e e E(S) and

t <Ξ S, te = ete.

(v) For any e G E(S) ands, t G S, este = tse.

Proof. The proof proceeds along the same lines as the proof of

Theorem 3.3 with the difference that in establishing (iii) => (v), one first

uses Lemma 3.1 to obtain te = ete and then deduces that

este = esete = etese = tse.

COROLLARY 3.6. Perm(0 ̂  o o ) = \xωyzxω = zyxω}.
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LEMMA 3.7. Let S be a permutatiυe semigroup. Then, for any e,

f^E(S) ands, t G S,we have estf = etsf.

Proof. Let S satisfy the identity (1) with k + 1 = min{ i: σi Φ i) and

n — I = max{ j: σj Φ j}. Then

es//= e

k'ιstfn-k-1 = ek~ιsff*tf*fι using (1)

= es///.

Hence,

etf/= es/ί/ = (β es / ) * /

= e - efs - ftf by the above argument

= eftfsf since fSf is commutative

= etsf by the above.

LEMMA 3.8. Let S be a finite semigroup with n elements. Suppose that

for any e, f G E = E(S) and s9 t EL S, we have estf = etsf. Then S

Proof. As in the proof of Lemma 3.2, we may assume that Sn~ι =

. Let w = Λ - 1 and let 5 1 ? . . . , s w , tl9 t2, ul9...9ume S. Then, there

exist e, f G Is and 5r, 5r/, w', w" G 5 such that sλ — - sm = s'es" and
w i "" * um = w / / w / / Hence,

si •" SmhhUi '" um = s'es'Ίfau'fu"

= s'es"t2t1u'fu" since es// = etsf

as desired.

THEOREM 3.9. The following are equivalent for a finite semigroup S.

(i) S G Perm.

(ϋ) S G P e r m ^ - x ^ - i ) where n = \S\.

(iii) S is permutative.

(iv) yl// submonoids of S are commutative and, for any e, / G JE(Sf)

/ G 5*, esf= esef andeste = e5e/ .̂

(v) For any e, f G £ ( 5 ) αm/.s, / G S, esf/ =

Proof. Here, it is now sufficient to check that (iv) <=> (v). (v) => (iv) is

easily verified. Conversely, assume (iv) and let e, / G £ ( 5 ) and 5, / G S.

Then,

estf/ = e5/^/ = esetef — etesef =

as claimed.
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C O R O L L A R Y 3.10.

Perm = lxωyztω = xωzytωί = \xωyzxω = xωzyxω,xωyzω = xωyxωzω}.

EXAMPLE 3.11. Let D be the semigroup with zero with presentation

(e,f;e = e2,f = f 2 , f e = 0).

Then D = {0, e,f, ef} satisfies xyzx = xzyx and so monoids in V(D) are
commutative. However, e ef / = ef Φ 0 = e fe /, and so D is non-
permutative by Theorem 3.9(v).

REMARK 3.12. If an arbitrary semigroup S satisfies an identity ε of the
form (1) with L(ε) = min{/: σi Φ i) and R(ε) = nε — max{y: σj Φy},
then S satisfies all the identities δ of the form (1) with L(8) > L(ε) and
R(8) > R(ε) for which the length n8 is large enough (independently of
S). This follows from the results of Putcha and Yaqub [16] (see also
Pollak [13]).

REMARK 3.13. The bound n — 1 in parts (ii) of Theorems 3.3, 3.5 and
3.9 is sharp. For instance, if S is a two-element left-zero semigroup, then
S ^ P e r m ( 1 2 1 ) \ P e r m ( 0 2 0 V

4. Minimal non-commutative pseudovarieties of groups. Since a
finite semigroup is a group if and only if it satisfies identities of the form
xyn = x = ynx for some n, every pseudovariety of groups can be viewed
as a pseudovariety of semigroups. Moreover, as a pseudovariety which is
generated by a single semigroup is defined by identities, it follows that the
pseudovarieties indicated in the title of this section are essentially the
same whether we work in the algebraic types of groups or semigroups. To
simplify the notation, we will consider groups (rather than semigroups
which are groups), thus referring to the unary operation of inversion.

A group is said to be one-step non-commutative if it is non-abelian but
all its proper subgroups are abelian. We proceed to describe all such finite
groups. In the following, p and q always denote prime numbers.

THEOREM 4.1. (Redei [17].) (i) The finite one-step non-commutative
p-groups are the quaternion group (or order 8), the groups (of order
pm + n + i^ d€fineci ty t^e relations

(2) apm = bp" = 1, cp = 1, ac = ca, be = cb, bab'1 = ac

(m > n > 1)



264 JORGE ALMEIDA

and the group (of order pm+n) defined by the relations

(3) α ^ = l , Z>'m = l , bab-ι = aι+^m~1 ( m > 2 , « > l ) .

(ii) The remaining finite one-step non-commutative groups are obtained

as follows. For two distinct primes p, q and natural number n, let m denote

the multiplicative order of p modulo q and let F = GF(pm). Choose ω e F*

of order q. Take for the group the semidirect product F*Zqn with product

given by

(4) (a,a)(β,b) = (a + ωaβ,a + b) (a,β €Ξ F, a, b e Zqή.

LEMMA 4.2. (i) // G and G' are two p-groups defined by (2) with

parameters m, n and m\n' respectively with m <mf and n < n\ then G is

a homomorphic image of G'.

(ii) If H and Hf are two groups defined by (4) relative to the same pair

of primes\ with parameters n and nf respectively and n < n\ then H is a

homomorphic image of Ή'.

pm'~mb^'~nProof, (i) The subgroup K of Gf generated by {apm~m,b^~n} is

central and G'/K = G.

(ii) The subgroup of H' generated by (0,qn'~n) is central and H'/K

We let [x, y] = x~xy-χxy, [xλ,x2,... ,xH+1] = K - - .,xn],xn+ιl
[x,(y)i\ = [x, yl and [x,(y)n+i] = [[x,(y)nl y] T h e following commu-
tator identities are easily verified (in any group):

xy = yx[χ,y]

[x,yz] = [x,z]z~ι[x,y]z= [x,z][x9y][x,y,z].

We denote the group given by (2) with m = n = 1 by Gp, while Hp q

represents the group given by (4) when n = 1.

LEMMA 4.3. (i) The pseudovariety generated by any group K in (3) is

given by

(5) V(K) = I** 1 = 1, [x,y]p = 1, [x,y,z] = 1]

where s = max{ m, n }.

(ii) The pseudovariety generated by the group Gp is given by

(6) V(Gp) = Up = l, [x,y,z] = 1] in case p> 2,

(7) V(G2) = I x 4 = 1, [x,y]2 = 1, [x,y,z] = 1 ] .
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Proof. It is easily checked that K satisfies the identities in (5). Using

those identities, any word w in the variables xv x29...9xn can be reduced

to one of the form xλ

Ul - x?nc^xc2

2 ct

Vt where the ck are distinct

commutators of the form [xi9Xj] with / <j. Then, one checks that K

satisfies w = 1 if and only if ps\ut (i = 1,. . . , r) and p\Vj (j = 1,. . . , /).

This establishes (i). The proof of (ii) is similar.

PROPOSITION 4.4.

(8) V{HpJ = [ * ' * = 1, [x«, y«] = [x, y ] p = 1,

[ y , x , z ] [ x 9 y , z ] = 1, [ x , y , z , t ] = [ x , y , t , z ] 9

. We first observe that (α, tf)"1 = (-co"αα, - β ) while, for r > 1,

( α , α ) r = ((1 + ωβ + co2 f l+ ••• + ω ( r - 1 ) * ) α , r a ) .

Further, if w = (α, β), y = (β, 6), then

[ιι,ι;l = ((αΓ* - \)ω~aa -(ω~a - l )co"^,0) ;

in particular, [(α,0), ()8, b)] = ((ω~b - l)α,0). Also, note that, in F[X]9

admits the factorization Y\q

a=0{X - ωa + 1). Using these remarks, it is

easy to check that Hpq satisfies the identities in (8).

Now, let w be a word in the variables xl9 xl9...9xn and suppose that

Hpq satisfies w = 1. Note that, as a consequence of the identities in (8),

we have that commutators commute: indeed, those identities imply that

every commutator is a qth power. It follows that, using the identities in

(8), w can be reduced to a word of the form xι

Ulx2

Ul - xr

Urcλ

Vl ct

v<

where the c, are distinct commutators of the form [xi9 xi9..., xέ]. Since

H satisfies w = 1, we immediately deduce that pq\ui (i = 1,. . . , r) and

so Hp q satisfies w' = 1 where w' = c^1 ct

V{. Using the last three

identities in (8), we may assume that for any Cj = [xi9 xi9..., xt ] in w\

the number of occurrences of any variable in Cj is less than q. Substituting

(1,0) for x. and (0, ~bt) for xt (i Φ io)9 the value assumed by W is of the

form (P(ωhι - 1 , . . . , cΛ>-i - 1, ωh<o+i - 1 , . . . , ωbr - 1), 0), where

P(XV . . . , Xi -i> Xio+i> '"9 Xr) ^s a polynomial of degree less than q on

each variable. Since that value is 0 for any choice of bt ^ Zq (i Φ i0), it

follows that P is identically zero in F[ Xv..., Xt _l9 Xt + 1 , . . . , Xr] and
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thus, the exponents of the commutators Cj = [xiι9 xi2,..., xt] in w' for

which i0 = ix or i 0 = ι2, but ι0 # / 3 , . . . , ιr, are multiples of /?. Hence, we

may cancel all these c} for each value of /0, yielding a word w".

At this point, we may assume that we have an identity w" = 1 which

holds in Hpq, where w" is a product of commutators of the form

[xiι9 xi2, xiχ9 xi2, xh,..., xir] with ix < i2. Now, if we substitute (ω~a\ -aλ)

for xλ and (ω~"2λ, -a2) for JC2 we obtain

[xux2] = ((ωα> - 1) - ( ω a - l ) λ , 0 ) = («,0).

Hence, any such substitution together with the assignment of the value

(0, -0,.) for xt (/' > 2) gives the value (aP(ωa' - 1,. . . , ωa' - 1), 0) for w"

where P( Xλ,..., Xr) is a polynomial of degree less than q on each

variable and independent of λ. With two appropriate choices for λ (such

as λ = 1 and λ = ω), and recalling that w" = 1 holds in Hp φ we deduce

that P{ωa> - 1,...,ωa' - 1) = 0 for all choices of al9...9 ar e Zg. Be-

cause of the degree restrictions on P, it follows that P is identically zero

in F[XV..., Xr], Hence, the exponents of the commutators [xl9 x29. -. ] in

w" are all multiples of p, and so we can cancel these commutators using

the identity [x9 y]p = 1. Since this argument can be repeated for any pair

of variables, we conclude that w" = 1 is a consequence of the identities in

(8).

This shows that any identity which holds in Hpq follows from the

identities in (8) and completes the proof of the proposition.

THEOREM 4.5. The minimal non-commutative pseudovarieties of groups

are V(Gp) and V(Hp q) withp, q distinct primes. These pseudovarieties are

all distinct and every non-commutative pseudovariety of groups contains one

of them.

Proof. Suppose W is a non-commutative pseudovariety of groups. Let

G e W be a non-abelian group of minimal order. Then G is one-step

non-commutative and so G is isomorphic to one of the groups listed in

Theorem 4.1. By Lemma 4.2 and 4.3, together with the remark that the

quaternion group generates the pseudovariety in (7), we then have that W

contains one of the pseudovarieties V(Gp) or V(Hpq).

Finally, using (2), (4) and (6)-(8), one can easily check that the

particular pseudovarieties in the statement of the theorem are all distinct.

COROLLARY 4.6. Gp (resp. Hpq) is a generator of V{Gp) (resp.

V(Hpq)) of minimum size.
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5. Minimal non-commutative and minimal non-strongly left permuta-
tive pseudovarieties of semigroups. We start by introducing some semi-

groups which will be useful in the sequel.

DEFINITION 5.1.

N= (a,b; a2 = b2 = ba = 0),

T = (e,a; e = e2, a = ea,ae = 0),

B(m,n) = { l , . . . ,m} X{1, . . . ,«} under (/, j)(k, I) = (/,/).

Also, recall the semigroup D of Example 3.11. Note that D embeds

both T and Tr. Further, the following equalities can be verified directly,

or else encountered in the literature (cf. Edmunds [4, 5]):

V(N) = [xyz = 0 = x2]

V(T) = lx2y = xy9 xy2 = yx2}

V(Nι) = [ x 2 = x\ x2y = xyx = yx2}

Moreover, the indicated semigroups are generators of minimum size of the

pseudovarieties they generate.

The following result summarizes Lemmas 2.2-2.6 of Margolis and Pin

[10].

PROPOSITION 5.2. (i) Let V be a pseudoυariety of monoids such that all

groups in V are abelian and N1, B(l, 2)1, 5(2,1) 1 do not lie in V. Let

M ^ V. Then 34?= # is a congruence on M and, if a, b ^ M and ab Φ ba,

then abJ/frba in the submonoid ofM generated by {a,b}.

(ii) Part (i) remains valid if we replace the word "monoid" by "semi-

group" and the monoids Nι, B(l9 2)1, 5(2,1) 1 by the semigroups N, B(l, 2),

Here, we present an alternate way of concluding the proof of the

characterization of minimal non-commutative pseudovarieties of monoids

given in [10], thus avoiding certain language theoretic arguments.

THEOREM 5.3. The minimal non-commutative pseudovarieties of monoids

are the ones of Theorem 4.5 together with V(Nι), ^ ( ^ ( l ^ ) 1 ) and

V(B(2y I) 1 ) . These pseudovarieties are all distinct and every non-commuta-

tive pseudovariety of monoids contains one of them.
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Proof. In view of Theorem 4.5 and the defining identities for each of
the given pseudovarieties, it suffices to show that, if a pseudovariety W
does not contain any of the pseudovarieties in our list, then W is
commutative.

Suppose M G ] F , a, b e M and ab Φ ba. We may assume that
{a,b} generates M and, by Proposition 5.2(i), that M is ,/-trivial. We
show that then necessarily N1 e W and thus obtain a contradiction.

If ab, ba e E(M), then abab = ab^tabaSeba = baba, and so ab =
aba = ba. Suppose then ab is not an idempotent. If ba is an idempotent,
then ba <^ab. Since ab Φ ba and M is /-trivial, either ab £ jba or
foz ̂  ^tfό. Thus, we may assume that ab ^ ^όα.

Let / = [x e M: βfe ^ ^x}, an ideal of Λf. Let M' = M// and
M" = M' X M' X M'. Let /" be the ideal of M" consisting of all triples
with at least one zero component. Finally, let M'" = M"/I" and let
x = (a, 1, b), j> = (6, ab, 1). Then x 2 = y2 = .yx = 0 but 1, x, 7, xy, and
0 are all distinct in M'". Hence, N1 = {l,x, j>, xy,0} c Λf/r/ and so

The next result corrects Theorem 2.8 [10].

THEOREM 5.4. The minimal non-commutative pseudovarieties of semi-
groups are the ones of Theorem 4.5 together with V(N)9 V(B(1,2)),
V(B(2yl))> F(Γ), and V(Tr). These pseudovarieties are all distinct and
every non-commutative pseudovariety of semigroups contains one of them.

Proof. As in the proof of Theorem 5.3, we only need to consider a
pseudovariety W (of semigroups) which does not contain any of the
pseudovarieties in the given list and show that W must be commutative.

Suppose S e W, a, b e S, and ab Φ ba. Again, we assume that S is
generated by {a, b] and, in view of Proposition 5.2(ii), that S is /'-trivial.
And, just as in the monoid case, we may here assume that ab is not an
idempotent, ab ^^ba, and that the ideal {x e S: ab £j?x} of S is
reduced to zero.

Let e = aω, / = bω (cf. §3). If an = ab, then an+1 = aba = 0, so that
e = 0. Similarly, if bm = ab, then / = 0. If e Φ 0, then ab = xey for some
x, y e S; since ba = 0, it follows that x = eai for some i > 0, and so
eab = ab and ab = eb (as then ab&eb). Similarly, if / Φ 0, then abf = ab
= af.

There are several cases to be considered.
(i) e Φ 0 and / Φ 0. Then, by the above αfe = ef. Thus, {e, /, ef, 0}

= A so that T, Tr e i^.
(ii) e # 0 and / = 0. Then {e, eb, 0} ^ Γ a n d s o Γ e W.

(iii) e = 0 a n d / > 0. Then {/, α/, 0} = Γ' and so Γ' e Wf.
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(iv) e = 0 and / = 0. Consider the subsemigroup S' oΐ S X S X S
generated by the elements a = (a, a, ab) and β = (b, ab, b). Then aβ =
(ab,0,0) Φ 0 = (0,0,0) = βa. Let /' = {x e 5": aβ £ fx), an ideal of
5". Note that a2, β2, βa e /', while α, /?, and αβ are distinct elements of
S' \ Γ. Hence, S'/Γ ~ N and N <Ξ if.

In all cases we reach a contradiction, whence the proof is complete.

LEMMA 5.5. Let W be a pseudovariety of semigroups and S ^ W. Let
e €Ξ E{S) ands <Ξ S.

(i) Ifse^ese, then Tr <E W.
(ϋ) If se^ese, then either se = ese or B(2,1) e JPJf.

Proof, (i) Suppose that se^ese. Then ese < ̂ se. Consider the Rees
quotient S' of the subsemigroup of S generated by {e, s} by its ideal {x:
se £ jrx}. Then {e,se, 0} = Γ r and so Tr e ΪF.

(ii) Suppose that se βese. Then se&ese, say je = /^^ for some
t €Ξ S. Let / = (te)ω. Then 5e = fse and /e = /. Hence, fef = / and so
ef e j?(5) and ef&f. Thus, either e/ Φ f and 5(2,1) = { e/, /} G W, or
ef = f = fe.ln the latter case,

se = /ye = efse = ese.

THEOREM 5.6. A pseudovariety of semigroups is not strongly permutative
if and only if it contains one of the pseudovarieties in Theorem 4.5 or one of
V(Nι), V(B{\,2)\ F(5(2,l)), V(T\ or V{Tr). Moreover, these pseudo-
varieties are distinct minimal non-strongly permutative.

Proof. It remains to show the only if part of the statement. Suppose
W is a pseudovariety of semigroups which does not contain any of the
pseudovarieties listed in the theorem. By Theorems 3.3(iv) and 5.3, it
suffices to show that if S e W, s e S and e e E(S), then es = se. But,
by Lemma 5.5 and its left-right dual, we have es = ese = se, as desired.

THEOREM 5.7. A pseudovariety of semigroups is not strongly left per-
mutative if and only if it contains one of the pseudovarieties in Theorem 4.5
or one of V(Nι), V(B(\,2γ% V(B(2,1)), or V(Tr). Moreover, these
pseudovarieties are distinct minimal non-strongly left permutative.

Proof. The result now follows from Theorems 3.5(iv) and 5.3 along
with Lemma 5.5.

REMARK 5.8. Theorem 5.6 may also be deduced from Theorem 5.7
and its left-right dual.
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