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ON CLASS NUMBERS OF CYCLIC QUARTIC FIELDS

TSUYOSHI UEHARA

Let n be a given natural number and F a quadratic field contained
in a cyclic quartic field. In this paper we shall construct infinitely many
imaginary cyclic quartic fields containing F whose relative class numbers
are divisible by n.

1. Introduction. Let K be an imaginary abelian number field, K+

its maximal real subfield, and let h and h+ be the respective class

numbers. It is known that h+ divides h. The quotient /Γ= h/h+ is called

the relative class number of K. The purpose of this paper is to give a

complement of a result in our previous paper [3]. Namely we shall prove

the following

THEOREM. Let F be a quadratic field contained in a cyclic quartic field.

Then there exist infinitely many imaginary cyclic quartic fields containing F

each with relative class number divisible by a given integer.

It is seen from Lemma 2 in the next section that for a square free

rational integer m the quadratic field generated by mι/2 is contained in a

cyclic quartic field if and only if m = s2 + t2 for some rational integers

s,t.

2. Lemmas. By Z, Q we denote the ring of rational integers, the

field of rational numbers respectively. For any number field L let C(L)

be the ideal class group of L.

LEMMA 1 (for instance, cf. [2], Ch. 3, Theorem 4.3). Let K be an

imaginary abelian number field, and K+ its maximal real subfield. Let φ be

the norm mapping from C(K) to C(K+) and put C~(K) = Kerφ. Then φ

is surjective, and the relative class number of K is equal to the order of

C(K).

LEMMA 2 (cf. [1]). Let m Φ 1 be a square free rational integer and a, b

rational numbers. Put η = a + bm1^2. Then Q(ηl//2) is a cyclic quartic field

if and only if a2 — b2m = c2m for some c in Q.
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We now take rational integers s, t for which m = s2 + t2 is square

free and put

η=f(m + tmι/2)9 0 = η 1 / 2 ,

f being a square free rational integer. By Lemma 2, K = Q(θ) is a cyclic

quartic field. Let σ be a generator of the Galois group Ga\( K/Q).

Then ( 0 σ ) 2 = / ( m - tm1/2). We put ω = m 1 / 2 if m is even and ω =

(1 + m 1 / 2 ) / 2 if m is odd. Note that θ°2 = -0 and ω°2 = ω.

LEMMA 3. Let the notation be as above. If p is an odd prime dividing /,

then for any integer a in K and any k > 0 in Z there is an integer β in

Q(mι/2) such that

apk = β (mod/?*).
i

Ifm = 0 (mod 2) or f= t (mod 2), the above assertion is also valid for

/? = 2.

Proof. First we remark that if ap = β (mod/?) is true for some /? in

Z[ω] then the assertion is easily shown by induction on k.

Let /? be an odd prime dividing /. We can find integers a, b, c, d in Z

such that

a = (a + bω + cθ + dθσ)/pe (mod/?), e > 0.

Since a + <x°2 = 2(α -I- bω)/pe (mod/?) we have α = 6 = 0 (mod/?*).

Hence TΓ = (cθ + dθσ)/pe is an integer and a - π = βλ (mod/?) holds

for some j8x in Z[ω]. Observing CTΓ — J7rσ = (c2 + d2)θ/pe we get

c 2 + J 2 = 0 (mod/?e) We compute

If e = 0 then π 2 = 0 (mod/?). When e > 0 we may assume (c,/?) =

(d,p) = 1. We derive cί ± ds = 0 (mod/?*). This implies that s = ±lc

(modpe), t = -Id (mod Pe) for some / in Z. Hence m = / 2 ( c 2 + d2) = 0

(mod/?e) and so e = l . Notice that /? > 5 and ττ4 = 0 (mod/?) in this

case. Thus πp = 0 (mod/?) and ap = β( (mod/?) in all cases.

To verify the assertion in the case p = 2 we put £ = (θ + 0 σ )/2,

£' = (0 — 0 σ )/2 and suppose that for some u,v,x,y in Z, f =

(w + vω + JC| 4- yξ')/2 is an integer. We shall show that u, v, x and y are

all even. We write Aζζ°2 = M + Nω with M, N in Z. Clearly M = N =

0 (mod 4). In the case that m is even, one sees

f M = u2 + v2rn -(x2 + y2)fm/2,

\N = 2uv-{xyt±(x2 - y2)s/2}f.
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Since s and t are both odd and / ^ 0 (mod 4), we get x = y (mod 2). This
implies u = 0 (mod 2) and hence N =• -xyt = 0 (mod 2). The last con-
gruence shows x = y = 0 (mod 2). Thus υ is also even. Next let m be odd.
Then

(M= u2 + v2(m~ l)/4 - {(x2 + y2)m ±(x2 - y2)s - 2xyt}f/2,

\ N = (2w + v)v + { ±(x 2 - y2)s - 2xyt}f.

If / and t are both even, we have v = 0 (mod 2) and x = y (mod 2)
because (2w + ϋ)*; ± (x 2 - y2)fs = 0 (mod4) and s is odd. Hence it
follows from M = 0 (mod 4) that I / Ξ X = J ; = 0 (mod 2). If / and ί are
both odd, since s is even, we first see υ = 0 (mod 2). Observing 2M =
(x2 + y2)fm Ξ 0 (mod2) we have x = y (mod2). From N = -2xyft
= 0 (mod 4) one can derive x = y = 0 (mod 2). Thus u is also even. The
above argument shows that under the assumption a = βx + cξ + dξ'
(mod 2) holds with βλ in Z[ω] and c, */ in Z. Here ξλ = cξ + dξ' is an in-
teger and ξ2 is in Z[ω]. This yields that a2 = β (mod2) with /? in Z[ω].
Hence the proof is complete.

3. Proof of the theorem. In the following, for any prime p and any
rational integer g, ord^g means the exponent of the exact power of p
dividing g. Let m = s 2 + / 2 b e a square free rational integer with s, t > 0
in Z. For a given natural number n we put

if n is even and mt is odd,
if n and mt are both even,
if n is odd.

PROPOSITION. Let the notation be as above. Take rational integers a,
b > 0 satisfying

( ϋ ) ( α 2 - b2t2rn,2ms) = 1,
(iii) ord^ 6 = 1 for every prime p dividing n,
(iv) A - J5m > 0,

+ £ίm 1 / 2 = {a + btmι/2)n' with A, B in Z. Moreover put

η =

Then K = <2(η1/2) ώ an imaginary cyclic quartic field, and the relative class
number of K is divisible by n unless K is the fifth cyclotomic field.

Proof. Computing η = 4B(Bm — A)(m + tmι/2) we obtain the first
assertion from Lemma 2 and (iv). We put

a = a + him1'2, β = 2Bm -A+ Btmι/2, θ = τj1/2.
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Then (β + θ)(β - θ) = aln\ Suppose that there is a prime ideal P of K

dividing both the integers β ± θ. Let p be the prime lying below P. Then

p divides a2 — b2t2m because a is in P. By (ii) we have (p,2ms) = 1.

The congruence a = -btmι/1 (mod P) implies Btm1/2 = -2n'~xan'

(modP). Hence from (i) we can derive (p, B) = 1. On the other hand

2an' + 2β = 4B(m + tmι/1) is contained in P and hence p must divide

2Bms. This gives a contradiction. Thus (β + θ,β - θ) = l and (β + θ)

= I2n' holds for some ideal / of K. The ideal class represented by /

belongs to C~(K), which was defined in Lemma 1, because IΓ = (α),

where r is the generator of the Galois group G&l(K/Q(mι/2)).

Let p be any prime dividing n. From (iii) it is easy to see oτάp(")bι

> 1 + ord^ nr for any odd integer /, 3 < / < n\ By (i) we get (a, p) = 1.

Hence it follows that (A,p) = 1 and ord^i? = 1 + oτdpn'. We write

4B(Bm — A) = r2f, where r9f are in Z and / is square free. Let

/ = ordp n. Then we obtan

{ / + 3 if p = 2 and mt is odd,

/ + 2 if p = 2 and mt is even,

/ ifp>2.

Moreover / is divisible by every odd prime dividing n, and f = t (mod 2)

is valid if n is even and m is odd.

We now assume o r d ^ C " ^ ) < /. We put k = oτάp2n' and consider

the ideal J = I2n'/p\ Then J**~ι = (ξ) for some integer ζ in K. Hence

β + θ = εζpk l+ι holds, ε being a unit of K. We know that εx = ε/ετ is a

root of unity. Since Q(ελ) c K, it is seen from Lemma 2 that εx = ± 1 if

K is not equal to the fifth cyclotomic field. By means of Lemma 3 we have

Ξ ξ

for some ξ in Z[ω]. Thus β + θ = ±(β - θ) {moάpk~ι+ι). Since β =

-A m 0 (mod />), it holds that

2 0 = ± 2 r ( / V ) 1 / 2 ^ 0 ( m o d ^ ^ / + 1 )

with η' = m + /m1/2. On the other hand ord ;72r < k — I + 1. Therefore

/i}' must be divisible by /?2. But this is impossible. Hence the order of

C~(K) is a multiple of j9z. This proves the second assertion.

Proof of Theorem. Let Kι (i = 1,..., g) be a finite number of quartic

fields each generated by {fιrf)1/1 with /, in Z and ηf = m + /m1/2. To

prove the theorem it suffices to find an imaginary cyclic quartic field

different from any Kt such that h~= 0 (mod«). Take a prime q not

dividing 10^ fgmn and choose a positive rational integer b satisfying
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the condition (in) and ord̂ Z? = 1. The condition (iv) is equivalent to the
inequality

(m1 '2 + t)(a - him1'2)"' > (nV2 - t){a + btmι/2)n\

By simple computation we see that iί t> s and a > 3bn'tmι/2 then (iv) is
valid. Hence we can find an integer a > 0 in Z satisfying (i), (ϋ) and (iv).
Let K be the field generated by (/'η) 1 / 2 over Q with / ' = 4B(Bm - A),
where A9 B are defined as in Proposition. It is clear that oτάqf = 1 and
K is not equal to the fifth cyclotomic field. Further K Φ Kt for any i,
1 < i < g. Indeed, if K = Ki for some i, then {f'/fi)ι/1 is contained in
the quadratic field Q(mι/2). This contradicts the choice of q. Hence K is
a desired field, and the proof is complete.
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