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ON CLASS NUMBERS OF CYCLIC QUARTIC FIELDS

TsuyosHl UEHARA

Let n be a given natural number and F a quadratic field contained
in a cyclic quartic field. In this paper we shall construct infinitely many
imaginary cyclic quartic fields containing F whose relative class numbers
are divisible by »n.

1. Introduction. Let K be an imaginary abelian number field, K*
its maximal real subfield, and let # and A™ be the respective class
numbers. It is known that 2™ divides h. The quotient h™= h/h™ is called
the relative class number of K. The purpose of this paper is to give a
complement of a result in our previous paper [3]. Namely we shall prove
the following

THEOREM. Let F be a quadratic field contained in a cyclic quartic field.
Then there exist infinitely many imaginary cyclic quartic fields containing F
each with relative class number divisible by a given integer.

It is seen from Lemma 2 in the next section that for a square free
rational integer m the quadratic field generated by m'/? is contained in a
cyclic quartic field if and only if m = s + ¢ for some rational integers
s, L.

2. Lemmas. By Z,Q we denote the ring of rational integers, the
field of rational numbers respectively. For any number field L let C(L)
be the ideal class group of L.

LEMMA 1 ( for instance, cf. [2], Ch. 3, Theorem 4.3). Let K be an
imaginary abelian number field, and K™ its maximal real subfield. Let ¢ be
the norm mapping from C(K) to C(K") and put C*(K) = Ker¢. Then ¢
is surjective, and the relative class number of K is equal to the order of
C(K).

LEMMA 2 (cf. [1]). Let m # 1 be a square free rational integer and a, b
rational numbers. Put n = a + bm'/%. Then Q(n'/?) is a cyclic quartic field
if and only if a*> — b*m = c¢*m for some c in Q.
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We now take rational integers s, ¢ for which m = s? + ¢? is square
free and put

n=flm+mi?), 6=y~

f being a square free rational integer. By Lemma 2, K = Q(#) is a cyclic
quartic field. Let o be a generator of the Galois group Gal(K/Q).
Then (0°)% = f(m — tm*?). We put & = m'/? if m is even and o =
(1 + m'/?) /2 if m is odd. Note that 8" = -0 and «° = w.

LEMMA 3. Let the notation be as above. If p is an odd prime dividing f,
then for any integer o in K and any k > 0 in Z there is an integer B in
Q(m'/?) such that

o =B (mod p*).

If m=0 (mod?2) or f=t (mod?2), the above assertion is also valid for
p=2.

Proof. First we remark that if a? = 8 (mod p) is true for some 8 in
Z|w] then the assertion is easily shown by induction on k.

Let p be an odd prime dividing f. We can find integers a, b,c,d in Z
such that

a=(a+bw+cld+do°)/p¢(modp), e=0.

Since a + a° = 2(a + bw)/p¢ (mod p) we have a =b =0 (mod p®).
Hence 7 = (¢ + d6°)/p° is an integer and o — 7= = B, (mod p) holds
for some B, in Z[w]. Observing cm — dw° = (c¢* + d*)0/p°¢ we get
c? + d* = 0 (mod p¢). We compute

p¥a?=(c*+d?)fm +{(c* — d*)t + 2cds } fm'/*.

If e=0 then 72 =0 (mod p). When e > 0 we may assume (c, p) =
(d, p) = 1. We derive ct + ds = 0 (mod p°). This implies that s = +/c
(mod p°), t = —Id (mod P¢) for some / in Z. Hence m = [*(¢* + d*) =0
(mod p®) and so e = 1. Notice that p > 5 and 7* = 0 (mod p) in this
case. Thus 77 = 0 (mod p) and a? = B (mod p) in all cases.

To verify the assertion in the case p =2 we put £ = (0 + 6°)/2,
£ =(0 —0°/2 and suppose that for some wu,v,x,y in Z, { =
(u + vw + x¢ + y¢’)/2 is an integer. We shall show that u, v, x and y are
all even. We write 4¢ > = M + Nw with M,N in Z. Clearly M = N =
0 (mod 4). In the case that m is even, one sees

M =u?+ v*m — (x> + y?)fm/2,
N =2uw — {xyt £(x> — y?)s/2}f.
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Since s and ¢ are both odd and f # 0 (mod 4), we get x = y (mod 2). This
implies ¥ = 0 (mod2) and hence N = —xyt = 0 (mod2). The last con-
gruence shows x = y = 0 (mod 2). Thus v is also even. Next let m be odd.
Then

M=u?+0v*(m—1)/4 —{(x* +y?)m £(x? — y?)s — 2xpt } f/2,
N=Qu+v)o+{+(x?—y?)s - 2xpt}f.

If f and ¢ are both even, we have v =0 (mod2) and x =y (mod?2)
because 2u + v)v + (x* — y?)fs = 0 (mod4) and s is odd. Hence it
follows from M = 0 (mod4) that u = x =y = 0 (mod 2). If f and ¢ are
both odd, since s is even, we first see v = 0 (mod 2). Observing 2M =
(x2+ y?)fm =0 (mod2) we have x =y (mod2). From N = -2xyft
= 0 (mod 4) one can derive x = y = 0 (mod 2). Thus u is also even. The
above argument shows that under the assumption a = B, + c¢§ + d§’
(mod 2) holds with B, in Z[w] and ¢,d in Z. Here &, = c§ + d§’ is an in-
teger and £7 is in Z[w). This yields that a*> = B (mod 2) with 8 in Z[w].
Hence the proof is complete.

3. Proof of the theorem. In the following, for any prime p and any
rational integer g, ord,g means the exponent of the exact power of p
dividing g. Let m = s + t* be a square free rational integer with s, t > 0
in Z. For a given natural number n we put

23n?  if n is even and mt is odd,
n’ =1(22p? if n and mt are both even,
n? if n is odd.

PROPOSITION. Let the notation be as above. Take rational integers a,
b > 0 satisfying
(@) (a, br) = 1,
(i) (a? — b%*t*m,2ms) = 1,
(iii) ord , b = 1 for every prime p dividing n,
(iv) A — Bm > 0,
where A + Btm'/? = (a + btm'/*)" with A, B in Z. Moreover put

n = (2Bm — 4 + Bm'?)" = (A + Bim'/*)"

Then K = Q(n*/?) is an imaginary cyclic quartic field, and the relative class
number of K is divisible by n unless K is the fifth cyclotomic field.

Proof. Computing n = 4B(Bm — A)(m + tm'/?) we obtain the first
assertion from Lemma 2 and (iv). We put

a=a+bm/?, B=2Bm— A+ Btm/?, §=nq"2
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Then (B + 6)(B — 8) = a*”". Suppose that there is a prime ideal P of K
dividing both the integers 8 + 6. Let p be the prime lying below P. Then
p divides a? — b*t*m because a is in P. By (ii) we have ( p,2ms) = 1.
The congruence a = —-btm'/? (mod P) implies Btm'/? = 27" 1"
(mod P). Hence from (i) we can derive ( p, B) = 1. On the other hand
2a" + 28 = 4B(m + tm'/?) is contained in P and hence p must divide
2 Bms. This gives a contradiction. Thus (8 + 6,8 —6) =1 and (B + 6)
= I*" holds for some ideal I of K. The ideal class represented by I
belongs to C7(K), which was defined in Lemma 1, because /™ = (a),
where 7 is the generator of the Galois group Gal( K /Q(m'/?)).

Let p be any prime dividing n. From (iii) it is easy to see ord ,( )b
> 1+ ord, n’ for any odd integer i, 3 < i < n’. By (i) we get (a, p) = 1.
Hence it follows that (4,p) =1 and ord,B =1+ ord,n’. We write
4B(Bm — A) = r*f, where r,f are in Z and f is square free. Let
[ = ord ,n. Then we obtan

I+3 if p=2and mtisodd,
ord,r = {1+ 2 if p=2and mr iseven,
/ if p> 2.

Moreover f is divisible by every odd prime dividing #, and f = ¢ (mod 2)
is valid if » is even and m is odd.

We now assume ord ,C°(K) < /. We put k = ord ,2n" and consider
the ideal J = I?"/7". Then J# ' = ({) for some integer { in K. Hence
B+ 0= e?”"" holds, ¢ being a unit of K. We know that & = ¢/¢" is a
root of unity. Since Q(¢;) C K, it is seen from Lemma 2 that ¢ = +1 if
K is not equal to the fifth cyclotomic field. By means of Lemma 3 we have

g‘P""“ = ({r)ﬁk‘”l =¢ (mod pk—l+1)
for some ¢ in Z[w]. Thus B+ 6 = +(B — 0) (mod p*~'*!). Since B =
—A # 0 (mod p), it holds that

20 = +2r(f)"* =0 (mod p*~'*1)

with 7" = m + tm'/?. On the other hand ord ,2r < k — [ + 1. Therefore
fm' must be divisible by p2. But this is impossible. Hence the order of
C~(K) is a multiple of p’. This proves the second assertion.

Proof of Theorem. Let K, (i = 1,..., g) be a finite number of quartic
fields each generated by (f,n)"/? with f, in Z and ' = m + tm'/%. To
prove the theorem it suffices to find an imaginary cyclic quartic field
different from any K, such that A= 0 (modn). Take a prime g not
dividing 10f, - -- f,mn and choose a positive rational integer b satisfying
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the condition (iii) and ord b = 1. The condition (iv) is equivalent to the
inequality

(m2 + 1)(a — brm?)" > (m"? — t)(a + bim/?)".

By simple computation we see that if # > s and a > 3bn’tm'/? then (iv) is
valid. Hence we can find an integer a > 0 in Z satisfying (i), (ii) and (iv).
Let K be the field generated by ( f'7)/? over Q with f' = 4B(Bm — A),
where A, B are defined as in Proposition. It is clear that ord , f* = 1 and
K is not equal to the fifth cyclotomic field. Further K # K, for any i,
1 <i < g. Indeed, if K = K, for some i, then (f’/f,)*/? is contained in
the quadratic field Q(m!/?). This contradicts the choice of ¢g. Hence K is
a desired field, and the proof is complete.
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