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ON THE GROWTH OF MEROMORPHIC FUNCTIONS
WITH RADIALLY DISTRIBUTED ZEROS AND POLES

JOSEPH MILES

The lowest possible rate of growth of a meromorphic function / of
genus q with zeros and poles restricted to a given finite set of rays
through the origin is determined in terms of q and the rays carrying the
zeros and poles. For a > 1 the ratio T(ar,f)/T(r,f) is shown to be
bounded as r tends to infinity for all such entire functions, but not for all
such meromorphic functions.

1. Introduction. In this paper we are concerned with the rate of
growth of the Nevanlinna characteristic of meromorphic functions whose
zeros and poles are restricted to lie on a finite number of rays through the
origin. We consider the relationship between the order and lower order of
such functions as well as upper bounds for T(ar, f)/T(r9 /) for a > 1.

We first specify the class of functions that we will consider. Suppose
X = {ΘVΘ2,...ΘM} and {Y = 0M + 1,0M + 2,...ΘL) each consist of distinct
members of [0,2ττ), are not both empty, and have an empty intersection.
For a nonnegative integer q, let Jfq(X9Y) be the collection of all
functions meromorphic in the complex plane with zeros zv and poles wv

satisfying

(1.1) (i) argz^eX,

(ή) arg wv e Y9

and

For X Φ 0 , let £q(X) be the collection of entire functions Jfq(X9 0) .
We note it is immediate from (l.liii) that / e Jίq(X, Y) has order λ > q.

Our principal result (Theorem 1) enables us to determine the mini-
mum of the lower orders μ of f^Jίq(X,Y) by applying a certain
criterion, essentially geometric in character, to the sets

(1.2) Sk= [e-ikθJ:l<j <M) u{-e-ikΘ': M+l<j<L]
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for 0 < k < q. Theorem 1 extends earlier results of Edrei and Fuchs [1, p.

308], GoΓdberg [5] and [6, pp. 338-344], and Steinmetz [11], who obtained

the sharp bounds μ>q for f <Ξ gq(X) if M = l ([1] and [5]) and

μ > max(0, q - 1) for / e Sq{ X)ifM = 2 ([5] and [11]).

THEOREM 1. Let the nonnegative integer p = p(q, X,Y) be associated

with the class Jίq( X, Y) in the following way.

(a) Ifq = 0, p = 0.

(b) Suppose q>\. For each integer m 0 , 0 < m 0 < q, consider the

system ofq — m0+l equations
M L

(1.3) Σ a k J e - i k β j - Σ a k J e - i k t > = 0, m o < k < q ,
7 = 1 y = M + l

subject to the following conditions:

(1.4) ( i ) akJ>0, mo<k<q, l<j<L;
L

(ϋ) Σ "kj = 1» mo<k <q;
7 = 1

and
(iii) /orl <j <L,ifakJ = 0

then ak,j = Qfork<k'<q.

If, for every m0, 0 < ra0 < ^, system (1.3) Λαs solutions satisfying condi-

tions (1.4), /e/ /? = 0. Otherwise let p be the largest m0, 0 < m0 < q, for

which system (1.3) has no solutions satisfying (1.4).

Then for all f e Mq{ X, 7), we have

(1.5) (i) ^ % ^

and

(ϋ) fen M^Z! _ oo ,/, = o.
/•-»oo log r

Furthermore, given ψ(r )-^ oo as r —> oo, ίΛere exists f ^ Jί (X,Y)

such that

(1.6) (i) l i m i n f ^ 0 = O ^ > 0,

(ii) liminf ^ r ; / ) = 0 i//ι = 0.
r->oo ψ(r)logr

Clearly (1.5) asserts that f eΛf (X,Y) has lower growth at least

order /?, maximal type, and (1.6) asserts that this result is best possible. It

is trivial that p = q if Y = 0 and M = 1, giving the result for entire
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functions with zeros on a single ray in [1] and [5]. If Y = 0 and M = 2,
an easy verification gives p > max(0, q — 1), in agreement with the result
in [5] and [11].

A geometric interpretation can be given to the integer p in most cases.
Let us suppose that p > 1 and note that (1.3), (1.4i), and (1.4ϋ) express
the fact that 0 is in the convex hull of Sk (defined in (1.2)) for m0 < k < q.
For p > 1 we thus have in the cases where we may ignore the rather
technical condition (1.4iϋ) that p is the largest integer ra0 < q for which 0
does not lie in the convex hull of SmQ.

It would perhaps be helpful to consider an example in which the
above geometric interpretation of p fails, i.e. an example in which
condition (1.4iii) plays an essential role. Suppose X= (0, ττ/4, T7-/3},
Y = 0, and q = 4. It is elementary that the only solution of (1.3) with
k = 4 subject to (1.4i) and (1.4ii) is

(1.7) a41 = 1/2, a42 = 1/2, and a43 = 0.

Similarly the only solution of (1.3) with k = 3 satisfying (1.4i) and (1.4ii)
is

(1.8) 031 = 1/2, 032 = 0, and α33 = 1/2.

There is no solution of (1.3) with k = 2 subject to (1.4i) and (1.4ii). Thus
from (1.4iii), (1.7), and (1.8), it is clear that p = 3, even though 2 is the
largest integer m0 not exceeding 4 for which 0 is not in the convex hull of

Although Theorem 1 gives complete information concerning possible
lower growth rates of / e Jίq(X, Y) in terms of q, X, and Y, it does not
give information in terms of q and L alone concerning possible lower
growth rates of a function of genus q with zeros and poles restricted to
any L distinct rays. It would be of interest to determine

where X and Y vary over all disjoint sets in [0,2τr) whose union has L
members, and also to consider only entire functions and to determine

where X varies over all sets of M members in [0,2π).

From [1], [5], and [11] we have

(1.9) μe(q9 M) = max(0, q - M + 1)

for M = 1 or M = 2. The possibility of extending (1.9) to other values of
M is considered in [11]. In particular it is shown there that if M is a
positive integer and X c [0,2ττ) consists of M members, then

inf μ(f) = max(0,4 - M 4- l),
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where, for general X, &q(X) is the subclass of Sq(X) consisting of

functions with zeros regularly distributed on each ray, and, for sets X

whose members are themselves regularly distributed in [0,2π), & (X) =

q

Theorem 1 shows that (1.9) does not hold in general. Suppose, for

example, that X = {0,77/180,77/90} and q = 120. Using Theorem 1, we

have
μ,(l20,3) </>(l20, X, 0 ) = 90 < 120 - 3 + 1.

The quantity μe(q, M) has also been studied by E. V. Gleizer. It is my

understanding that Gleizer, in a paper [4] submitted to the Ukrainian

Journal of Mathematics simultaneously to the submission of this paper,

showed

Gleizer also obtained a result for entire functions very close to Theorem 1

applied to Sq{X).

The estimate

appears in [2, p. 25]. (The lower growth of entire functions of infinite

order with radially distributed zeros is also dealt with in [2, p. 25].) An

exact determination of μ(q, L) and μe(q, M) remains open in the general

case, as does the probably easier question of whether or not μ(q,L) =

We also consider the ratio T(ar, f)/T(r9 f) for / e Jtq( X, Y).

THEOREM 2. For a > 1 and f ^ $q{X) of finite order λ, there exists
K= K(λ,a,X)>0 such that

(1.10) T(ar9f)<KT{r,f), r>ro(f).

Theorem 2 generalizes to meromorphic functions in many, but not all,

cases. A discussion of the possibility of such a generalization appears in

§4.
It is elementary that (1.10) implies

(Compare to Corollary 2 of [5].) In [12] it is shown that (1.11) implies that

the Nevanlinna deficiency is independent of the choice of the origin. From

Theorem 2 we thus conclude that any entire function of finite order for
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which the Nevanlinna deficiency is origin dependent cannot have its zeros
restricted to a finite number of rays through any one point. (See for
example [8].)

We conclude the Introduction by collecting certain elementary facts
needed in the proofs of Theorem 1 and Theorem 2. Our arguments
depend heavily on the Fourier series of log|/(re'*)|, where / has the form

(1.12) f(z) = ( ^ / ^ ^

E(z, q) is the Weierstrass factor of genus q,

E{z,q) = (1 - 2)exp(2 + z2/2 + +z«/q),

and

* ( * ) = Σdmzm, | z | < o o .
m = l

Letting

cm(r,f) - ^

we have

(1.13) (i) C o ( r , / )

(ii) cjr,f)=c_m(r,f), m<0;

(iii) cm(r,f)-^r~ + cm{r,g)

1 £ m < q;
and

(iv) c m (r ,/) = -f 1rm + cm(r,g)

m > q + 1.
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A derivation of these formulas, originally due to F. Nevanlinna [10],

can be found in many places, including [9]. Letting mλ{r, /) and m2(r, f)

denote the L1 and L2 norms of log\f(reιθ)\ respectively, we observe

trivially from Nevanlinna5 s first fundamental theorem that for each inter-

ger m

We shall need the following elementary lemma.

LEMMA A. Suppose m1 < m2 < < mk and nλ < n2< < nk

are nonnegatiυe integers. If π is any permutation of ( 1 , 2 , . . . , / : } other than

π(j) = k - j + 1,1 < j < k, then

k k

(1-15) Σ mj"k-j+i < Σ mjn*u)'

Proof. Since π(j) ^ k — j' + 1, there exist 1 ^ ^ <j2<k with 77(7!)

(72)- Certainly

We have

since π(j2) > π(jλ). Since mh > mh, we conclude

proving the permutation it is not a permutation that minimizes the right

side of (1.15).

2. Proof of Theorem 1. We first prove (1.5). Certainly (1.5ii) is

trivial by (l.liii). We thus restrict our attention to the case p > 1. With no

loss in generality we suppose /(0) = 1. We let zvj denote the zeros of / on

argz = ΘJ7 1 <j < M, and let zpj denote the poles of / on argz = θp

M + 1 <j < L. For 1 <j < L we let n^t) be the counting function of

{ zvj) and for p < k < q define

i l) ΛkXr) =k ^ ' ' - 2k

\ vj\
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For 0 < n < q we let

(2.2) (i) C n =(y:l<y<MandΣ-i-<oo},
I v I vj\ I

(ii) Xn= [θj . j^Cn),

(in) Dn= Ij: M + I <j < L and Σ ]—Γ77 < <*>

and
(iv) Y = (0. : / e D ).

Certainly

(2.3) *„ c Xn+1 and 7B c yB + 1, 0 ̂  n < q - I.

We note by (l.liii) that XqU YqgXL) Y.

For 0 < n < q, let

(2.4) pn=p(q,X-Xn,Y-Yn),

where p(q, X, Ϋ) is the function defined in the statement of Theorem 1. It

follows easily from (2.3) and (2.4) that

(2.5) p<pn<Pn + ι <q, 0<n<q-l.

From (2.5) we conclude there exists nθ9 p < n0 < q, such that

PnQ

 = no- We select such an n0 and set pf = pno, C = {1,2,..., M) — CΛQ9

Y' — Y — Y TV — ί M -\- ̂  M A- Ί 1 \ — T) anH Yf — Y — Y

We establish the following lemma.

LEMMA B. The equation

(2.6) Σ aP',e-ip'β> - Σ a,,e-"l = 0

<>.

has no solutions satisfying

(2.7) (i) apΊ>0, ε C ' U l ) ' ,

and

in) Σ βΛ-l

Proof of Lemma B. Since pf > p > 1, the definition of JP7 implies that

// is the largest integer m 0 < q for which the system

(2.8) Σ akJe->»> - Σ akJe-M> = 0, m 0 < k < q,
j<=C
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has no solutions satisfying

(2.9) (i) akJ > 0, E C ' U D\ m0 < k < q;

(ϋ) Σ akj = 1, mo< k < q;

and
(iii) for Έ C ' U D\ if akj = 0

then akΊ = 0 for A: < k' < q.

If p' = 9, the truth of Lemma B is immediate from the definition of p'. If

p' < q, we let

(2.10) {akj:p' + l<k<qJ^C'UD>}

be a solution of (2.8) with ra0 = p' 4- 1 satisfying (2.9). If solutions {α^ :

j ε C U 1)'} of (2.6) exist satisfying (2.7), the combination of {apfj:

7 e C" U Z>'} with {Λ^.} given by (2.10) yields a solution of (2.8) with
m o = P' satisfying conditions (2.9), including (2.9iii). This contradicts the

definition of p' and proves Lemma B.

Returning to the proof of Theorem 1, we conclude from Lemma B

that

lies in a closed halfplane H with boundary line / passing through the

origin and that there exists y0 <Ξ C U Df with e-ip'9>* <£ I. If eιa e / for

some real a we have

(2.11)

and, si

(2.12)

and, since Sp, c //,

We represent / in form (1.12) and note from (1.13iii) and (2.1) that

(2.13) cp,{r,g)= ΣA,,j{r)e-""'- Σ A ^ e ' ^ .

From (2.1), (2.2) with n = n0, and the fact that p' = n0, we conclude

(2.14) (i) ApΊ=0{rr'), jϊC'UD',

and

in) lim PJ\ = oo, e C ' U f l ' .
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From (2.11), (2.12), (2.13), and (2.14) we have

(2.15)
rp r

p'

as r -> oo. From (1.13iii), (1.14), and (2.15) we conclude

T(r,f) . T(r,f) ^ Mr,/) | ^ |cy(r,g)| \dp,\ ̂  ̂
rp

 r

pf 2rpf 2rp' 4

as r -> oo, finishing the proof of (1.5).

We now turn to the proof of (1.6). The case p = q is comparatively
simple and we set it aside for later. We take the case p < q and consider
system (1.3) with m0 = p 4- 1 and with solutions akj satisfying conditions
(1.4). Such solutions exist by the definition of p. Let

I = {(k,j) P + I < k < q,l <j < L,tmd akj> 0}

and define

maxα.
(2.16) Q = —. > 1

where (k9 j) varies throughout /. Let ε > 0 be such that

(2.17) 4Q(q - p)\ει/1 < 1.

We select y, 1 <j<L, such that

(2.18) 0 , + i , ;>O

and define q' = q\j) by

(2.19) ^' Ξ max{£:: p + 1 < k < q and α^. > 0}.

Thus q > qf > p.

We consider the system of q/ — p linear equations in q' — p un-
knowns given in matrix form by

(2.20) AUj = Bj,

where the (/, k) entry of the (q' - p) X (q' — p) matrix A is

(2.21) ε(«-?'+*-i)(*'-<+i)5 \<i <q' - p,\<k<q' - p,

the entry in the ίth row, 1 < i < q' — p, of the column matrix Uy is
denoted by u®,_i+ϊ(j), and the entry in the zth row of the column matrix
Bj is

(2.22) <V-,+ i,J,e-(«-«'+'-1)1/2.
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Our first objective is to show that the (unique) solution Uj of (2.20)

has all positive entries. Since the only entry of Lf is clearly positive if

q' = p 4- 1, we temporarily (through equation (2.35)) suppose q' > p + 1.

Certainly the determinant of A is positive. Lemma A and (2.21) imply

that among the (qf — p)\ terms comprising det^l, the dominant one is the

product of the entries on the principal diagonal and that in fact

(2.23) 0<l-((q'-p)\-l)e

where

We shall use Cramer's Rule to solve for the kth entry u°q__k+ι(j) of

UJ9 1 < k < qf - p. For 1 < k < q' - p, let Ak be A with the kih

column replaced by Bj. Thus, by (2.22),

(2.24) detAk = ΪVl) ' + V l + 1 , j f β-<«- ' + - 1 > V 2 #, A ,
/ = 1

where Hik is the (i9k) minor of A.

Let εhιk be the largest of the moduli of the (qf — p — 1)! terms of Hik.

Lemma A implies that if i > /c, then

(2.25) hιk= Σ{q-q' + n

where of course a given sum is omitted if its lower limit of summation

exceeds its upper limit (for instance the second sum ii i = k or the third

sum if i = q' — p). Elementary algebra leads from (2.25) to

(2.26) hιk = D{q9q'9k,p) + y ~ ^ + i(q - q')

for some function D(q, q\ k, p) independent of /.
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Similarly, for / < k, we have by Lemma A

i - l

(2.27) h i k =

+ Σ {q-q' + n - 2)(q'- n + l)

q -p

Σ

= D(q9q',k9p) + k + l— - y + i(q - q').

Direct calculation from (2.26) and (2.27) shows for / > k that

(2.28) hιk - \{q -q' + i- if = Dλ{q, q\ k, p) + i/2

for some function Dλ(q, q\k, p) independent of / and for i < k that

(2.29) hιk - \{q -qf + i - l)2 = Dλ(qΛ\k,p) + k- i/2.

From (2.28) and (2.29) we conclude for 1 < k < q' - p that

(2.30) \ + hkk - \(q - q' + k - if

= min [hik - \{q - q' + i - if).
l<i<q'-p

iΦk

Certainly for 1 < / < qf — p and 1 < k < qf — p we have

\Hιk\<{q'-p-l)\εh»

and thus by (2.30) for 1 < i < q' - p, i Φ k,

(2.31) ε - ^ - ^ ^ - i ) /2\H.k\<>{q>-p- 1)

From (2.16), (2.17), and (2.31) we conclude for 1 < k < qf - p that

<f-p
(2.32)

ik

,ε
2/2/4
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The reasoning leading to (2.23), applied to Hkk rather than det^ί,
yields

(2.33) \<l-{{q'-p-\)\-\)e

'Hkk<l+{{q'-p-\)\-ϊ)e.
εh/ck

Upon combining (2.24), (2.32), and (2.33), we conclude

(2.34) d e t ^ > <V-*+ wεΛ"~ (*~*'+*~ 1 ) 2 / 2/4 > 0.

Cramer's Rule in conjunction with (2.23) and (2.34) thus yields

(2.35) ulk+ι(j) = ̂ ^ > 0, \<k<q'-p.

Certainly this conclusion also holds in the trivial case q' = p + 1,
when (2.20) is a 1 X 1 system. We remark that an examination of (2.23),
(2.24), (2.32), and (2.33) shows that for small ε > 0 the solution of (2.20)
is approximately the solution of the system (2.20) with A modified so that
its entries off the principal diagonal are 0.

We next modify the linear system (2.20) in such a way that the
solutions are in fact positive integers. For p + 1 < m < q' we consider
the system of equations

(2.36) Fm(bl9b29...,bq,_p, uq,, uq,_x,..., up+1)

q'-p

= V hmu — a p-ίv-™)2/2 = 0

k = \

We do not indicate the dependence of Fm upon j in the notation.
We let P0(j) be the point in 2(q' — p) dimensional Euclidean space

given by

P0(j) =

From (2.20) we have

( ( ) ) = 0, p + 1 < m < q'.

We also have

\

(2.37)
d(bι,b2,...,b ,_ P}



GROWTH OF MEROMORPHIC FUNCTIONS 159

where Δ is the determinant of the (q' — p) X (q' — p) matrix whose (/, k)
entry is b£+i~ι with

Evidently we have

(2.38) Δ=(π\

where V is the van der Monde determinant associated with the distinct
numbers bk,\ <k < qr — p.

In view of (2.37) and (2.38), we may apply the Implicit Function
Theorem to assert the existence of 8 > 0 independent of j \ a cube Ej of
side 8 in q' - p dimensional Euclidean space centered at

( A 4 P )
and positive C1 functions φl9 φ2> •••>%'-/> defined on Ej such that if
p + 1 < m < q\ then

(2.39) Fm{<Pι{uq>, , up+1), φ2(uq>,..., up+ι),...,

( ) ) = 0

For a positive integer v,let Rv> 0 independent of j be such that

(2.40) 8Rζ+ι > 1.

Select β e (0,1) and then let (uq,, ug,_v..., up+ι) e J5y. be such that

(2.41) Λ ^ _ Λ + 1 = Rί+βuj_k+l9 \<k<q' -p,

is a positive integer. This choice is possible by (2.40).
Let

(2.42) ak = φ Λ ( ι ι ^ , w ^ _ 1 ? . . . , up+1)9 \<k<q' - p.

Let gy be the Weierstrass product of genus q' having a zero of multiplic-
ity nqf_k+ι at tke

iθJ9 where

(2.43) tk = Rva-k\ \<k<q' -p.

(We suppress the dependence of gy on v in the notation as well as the
dependence of nq,_k+ι and tk on both j and *>.)
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For p + 1 < m < q\ we calculate the quantity

(2.44) cmJ - "f -

where in the first step we use (2.41) and (2.43) and in the second step we

use (2.36), (2.39), and (2.42).

From (1.13iii) and (2.44) for all r > tk = tk(j)9 1 < k < q' - p, we

have for p + 1 < m < q\

(2.45) c . ( r , ^ )

From (1.13iv), (2.19), and (2.45) we see that in fact

(2.46) c

m(r,gj)

+ O(n(r,0,gj))

for r > tk(j), 1 < k < qf — p, for all m, p + 1 < m < q, and for all j

satisfying (2.18).

For j not satisfying (2.18), we let gy = 1. Thus (2.46) holds for all j9

1 < j < L, all m, p + 1 < m < q, and all large r.

Recalling that gj in general depends on v, we define

L=Y\gj/ Π g,

Letting n(r,fv) = n(r,0,fv) + π(r, ao,fv)9 we then have by (2.46) for all

large r and /? + 1 < m < ^,

ί r
—

2m U

/ M L \

Σ*mje-im9'- Σ amje-*"*λ+θ{n{r,f9)).

From (1.3) we conclude for large r that

(2.47) cm(r,fv) = 0(n(



GROWTH OF MEROMORPHIC FUNCTIONS 161

We now suppose p > 1 and let

(Compare to (2.1).) From (1.13iϋ) we have for 1 < m < p and sufficiently
large r

(2.48) \cm(r,fv)\<Ap(r,fp)

From (1.13iv) we have

( , 4 9 ) K i

for m > q + 1 and sufficiently large r. Certainly

(2.50) N ( r , f v ) < 1 / 2

for large r. From Parseval's formula, (1.14), (2.47), (2.48), (2.49), and
(2.50) we have

(2.51) T(r,fv) <Ξ N(r,f,) + m2(r,f,) < T W}'"
2v

for sufficiently large r.
The proof in the case 0 < p < q is completed by taking

where fp is a function of the sort just constructed and the sequence Rv

tends to infinity very rapidly. (The product converges by (2.41) and
(2.43).) We consider a sequence rv -» oo such that

Rv<rv< Rv+1.

If the i?/s are sufficiently widely spaced, we easily calculate from (1.13iv)
that

(2.52) r(r,, Π fk)zm2(rw, ft

From (2.51) we have (since rv > Rv) that

(2.53) τlrv, Π Λ ) < Σ T(rp,fk) + log, < r/(ψ(rj)1/2.

The combination of (2.52) with (2.53) completes the proof of (1.6i) in the
case p < q.
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In the case 0 = p < q, the discussion following (2.47) applies with

only the trivial modifications that (2.48) is omitted, rp is replaced by log r

in (2.50) and (2.51), and rf is replaced by log>; in (2.53). This proves

(1.6H) in the case p < q.

The construction is much simpler if p = q. We assume without loss of

generality that X Φ 0. In this case / can in fact be taken to be entire with

zeros only on the ray argz = θλ e X. We choose a sequence Rv increasing

rapidly to infinity. We select β e (0,1) and let fv be the [Rq

v

+β] power of

the Weierstrass factor of genus q with zero at Rve
ιθγ. If p > 0, the

discussion from (2.48) through (2.53) applies to yield (1.6i). Note this case

is far simpler than the p < q case since no reference need be made to

(2.47). Finally, if 0 = p = q, we again omit (2.48), replace rp by log r in

(2.50) and (2.51), and replace rξ by logr^ in (2.53). This completes the

proof of Theorem 1.

An examination of the proof of (1.6) shows the function we have

constructed has order q + β where 0 < β < 1. By letting β vary with v, a

function of any order in [q, q + 1] can be produced satisfying (1.6).

3. Proof of Theorem 2. Without loss of generality we may presume

a = 2 and /(0) = 1. It follows from a theorem of Weyl [13, Satz 16] that

there exists p > λ > q such that

(3.1) cospθj > /1/2 , 1 <j < M.

Details of the argument establishing the existence of such a p appear in

[3] or [7]. As before we let {zv} denote the zeros of / and write

n(r) = n(ry 0). We represent / in the form

where the polynomial h is given by

If k > q + 1 and dk Φ 0, it is elementary that

IT 77

implying

(3.2) T(2r,f)<2λ+ιT(r,f), r>ro(f).

Thus we suppose k < q.
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From (1.13iϋ) and (1.13iv) we have

(3.3) (i) c

163

+ _ L ( Σ f( ' ) - _ ( H i
2m . . . . \ 2z_ / \ r

1 < m < q;

(ii)

1 < m < q\

(Hi) U Λ J = ~

m > q + 1;

(iv) c w ( 2 r , / ) = - —

and

m > 0 + 1.

Critical to our argument is the following inequality (3.4), which
bounds the number of zeros near \z\ = r in terms of Γ(r, / ) . We have, by
(1.14), (3.1), and (3.3iϋ),

2p Ulr)-n(rλU±-
\ \2J) 2p

\zv\>r/2

= 2

We conclude that

(3.4) n(2r)-n(r/2)<p22P+4T(r,f).
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Since n(r/2) < 2T(r, / ) , we see that in fact

(3.5) n(2r)<p22?+5T(r,f).

Using (3.3i) we have for 1 < m < q and r > 0

2r_

J_ y ίJL.

(3.6) 4-mi^L{

= Cm h i " .

We conclude from (1.14), (3.3ϋ), (3.5), and (3.6) that for 1 < m < q and

r > 0

(3.7) \cm(2r,f)\<
«(2r)

m

< (22m+2 + p22p+5)T(r,f) < p22P+6T(r,f).

We next consider m > q + 1 and let

We distinguish two cases. First suppose p + 1 < m. From (1.14), (3.1),

and (3.3iii) we conclude

/ Or \ P

(3.8)

2 2 / 7 + 1 Σ [+r < 22p+ 1

Next suppose q + 1 < m < p. We have

. i Σ (2£)\_L Σ (2i)".
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Certainly

(3.9) 4- lΛ j-

<

/ r

Cm\2

2T(r,

•>)

1 y.

hn(/ /2)/2m < 3Γ(r, /)•

By (3.4) we have

(3.10) \B2\ =

Combining (3.9) and (3.10) we conclude for q + 1 < m < p that

(3.11) \B\^^+4T(r,f).

From (3.8) and (3.11) we have for all m > q + 1 that

(3.12) \B\<^-24P+4T(r,f).

From (3.3iv), (3.5), and (3.12) we conclude

(3.13) \cm(2r,f)\

for m > q + 1 and r > 0.

Certainly for r > 0 by (3.5)

(3.14) N(2r) = N(r) + (#(2r) - tf(r))

From (3.7), (3.13), and (3.14) we conclude

(3.15) m2(2r,/)2= f \cm(2r,f)\2

< (p224P+n + 2qp224?+l2 + 4/?228^

Since Γ(2r,/) < m 2 (2r ,/) for the entire function /, (1.10) follows from

(3.2) and (3.15) with

(3.16) # = # ( λ , 2 , X) = max(2 λ + 1 ,/>2 4 ' + 5 (5 + 2 λ ) 1 / 2 ) .

We observe that p depends on λ and X, as in turn does the entire right

side of (3.16). This completes the proof of Theorem 2.

4. Concluding remarks. The conclusion of Theorem 2 holds for the

class Jί q{ X, Y) provided the numbers θl9 Θ29...,ΘL are linearly indepen-

dent over the integers. It follows in this case from Weyl's theorem [13,

Satz 16] that there exists p > λ such that

cos pθj > fi/2, 1 <j < M,
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and

cospθj < - / ϊ / 2 , M + 1 <j < L.

The proof given in §3 may be adapted in this situation to / e Jίq( X, Y)

with only trivial modifications.

If X U Y is linearly dependent over the integers, the conclusion of

Theorem 2 may fail for the class Jίq(X, Y). For example, let X = {θλ}

where θx = 0 and let 7 = {Θ2J3,Θ4,Θ5} where θj = 2τr(j - l)/5, 2 <j

< 5. Trivially there exist akj > 0 for 1 < j < 5 and all positive integers A:

such that

(4.1) akιe~^ - Σ akJe-M* = 0.
7 = 2

Suppose q and /„ are arbitrary integers subject only to the condition

1 < q < Jn. By a construction based on our proof of (1.6), we may

produce Rn -» oo, βn -> oo, and

(4.2, /.W-Π

having the following properties:

(4.3) (i) a r g z r e * ,

(ii) aτgw,,e y,

(ϋi) i?π<|2,, |<)8ni?n,

(iv) Rn<\wv\<βnRn,

(v) cm(i?n )/J = 0,

and

(vi) \cm(RnJn)\<n{2R^f»\ m>Jn,

where n(r9f) = «(r,0,/J + «(r, oo,/J.

Only minor adaptations of the construction of the //s used in the

proof of (1.6) are needed to produce fn's satisfying (4.3). In the present

context, Jn plays the role of q in the proof of (1.6) and q + 1 plays the

role of p 4- 1. The careful placement (using (4.1) for q + 1 < k < Jn) of

the z/s and w/s as in the proof of (1.6) yields (4.3v); rough estimates on

the resulting function n(t, fn) combined with (1.13iv) yield (4.3vi).

From (1.13iϋ), (4.3ϋi), and (4.3iv) it is immediate that

(4.4) A / J = 0, 0<m<q.

From (4.3) and (4.4) we have

(4.5) T(RnJn) < m2(RnJn) <
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Trivially we have

(4.6) n(2RnJn)<4T(4Rn,fn).

Finally we produce / e Jίq{ X, Y) by setting

where the /π's are associated with a widely spaced sequence Rn and /„
tends to infinity. Using (4.5) and (4.6) we are able to conclude

r T(2r9f)
hmsup— — - τ - = oo.

r-*oo •* V •>] )

We omit the rather lengthy details of this argument.
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