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DISCS IN COMPRESSION BODIES
D. D. LoNnG

It has been shown in a paper by Casson and the author that there is
an algorithm to determine if an automorphism of a closed, orientable
surface ‘compresses’. A motivation for finding such a decision procedure
is to apply it to fibred knots to determine if they are ‘homotopically
ribbon’. This makes it important that the process is as efficient as
possible. One of the aims of this paper will be to exhibit improvements in
this algorithm.

0. Introduction. We shall devote our attentions to the improvements
that can be made in the case that the automorphism is pseudo-Anosov,
that is, it preserves a pair of transverse, measured, singular foliations. Our
results will then apply to hyperbolic knots. In particular, this simplication
cut down drastically the computation of [6], in which the above methods
were applied to show that the knot 14* is not homotopically ribbon.
Moreover, the method sheds some light on the way a pseudo-Anosov
extends over a compression body.

The techniques we use are largely combinatorial, and exploit the
special nature of the disc provided by [3] to perform traditional 3-mani-
fold arguments.

In §1 we introduce our notation and explain the exact nature of the
problem which we seek to circumvent. We may briefly explain the
contents of §2 as follows. Define a closed arc lying in a leaf of a foliation
to be regular if it contains no singularities. Then one of the results of §2 is
that if a pseudo-Anosov compresses, there is an embedded disc in the
compression whose boundary is the union of two arcs, one of which is
regular. Our main result, Theorem 2.4, is a generalization of this, and says
that there is a disc whose boundary is nearly as combinatorially simple as
it could be. The precise meaning of this is explained in §1.

In the course of proving 2.4 we prove the following lemma which is of
interest in its own right.

LeEMMA 2.2. Let ¢: F — F be a pseudo-Anosov map which extends over
a compression body M. Then there is an integer t (which is bounded by some
function depending only on the genus of F) and an embedded disc D C M so
that if m and n are any positive integers, then ¢ (D) N\ D N ¢~"*(D) can
be isotoped rel(0M) so as to contain no triple points.
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This result suggests that when a pseudo-Anosov extends, it does so in
a fairly ‘regular’ way.

In §3 we provide some applications of the methods and results of the
above. We concentrate on the case that the invariant foliations are
‘globally orientable,” that is they are given by singular vector fields. For
example, notice that the universal covering p: M* — M induces a
covering p: F* — F for which F* is planar. Define a lifted leaf to be
homoclinic if it has both ends going to the same end of F*. Then we
show:

THEOREM 3.2. Let ¢: F — F be a pseudo-Anosov with globally orienta-
ble invariant foliations #* and % ~. Suppose that ¢ compresses in M. Let
the induced planar covering be p: F* — F. Then,

(a) Both lifted foliations have a homoclinic leaf .

(b) One of the lifted foliations has at least a countable number of its
leaves homoclinic.

Using 3.2 and the ideas of pleated surfaces, we show that if a
pseudo-Anosov with globally orientable foliations compresses then its
invariant foliations are the boundary of a collection of surfaces embedded
in the compression.

1. Preliminaries. Throughout, the symbol F will be reserved for a
closed, orientable surface of genus at least two. A compression body for F
is any irreducible 3-manifold obtained from F X I by adding a nonempty
set of 2- and 3-handles to F X (1). We identify F X (0) with F. Given an
automorphism ¢: F — F, we say that ¢ compresses (in M) if there is a
compression body M for F, and an automorphism ®: M — M, such that
®|F = ¢. If ¢ is pseudo-Anosov, it leaves invariant a pair of transverse,
measured (singular) foliations (#*, p*) and (&% -, u"). (For this and other
standard facts concerning surface automorphisms we refer the reader to
[1] and [4].) Such a pair is said to have intercept length < K if for all arcs
atc F*, and a~C F, both of measure > K, we have int(a™) N int(a")
# . It is easy to see that an intercept length always exists for the
foliations associated with a pseudo-Anosov map.

The main result of [3] is:

THEOREM A. Suppose that ¢: F — F is a pseudo-Anosov map with
invariant foliations (F*,u%), (¥, 1) of intercept length < K. Further,
suppose that ¢ compresses in M.
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Then there is an embedded disc D> C M with dD* = a*U a C F,
where

(i) a* liesin F*, a” liesin F~.

(i) a™ and a” are both of measure < K.

This result provides an algorithm to determine if an automorphism
compresses, for there are only finitely many simple closed curves on F
which satisfy (i) and (i1). Each one may be checked to see if it is a
candidate for the boundary of an embedded disc in some compression
of ¢.

However, observe that although the arcs a™ and «~ lie in their
respective foliations, they are permitted to cut across the singularities. For
example, in Figure 1, the arc COA is a permissable arc in this context. If
the singularities of the foliations have order greater than 3, this increases
the length of any practical computation enormously. We aim to shed some
light on this situation. First we must introduce some notation.

Recall that a separatix is half leaf with one endpoint at a singularity.
We define a bent arc to be an arc which is contained in the union of two
separatrices which meet at a singularity. (Observe that for the foliations
which we are considering, no leaf runs from singularity to singularity; thus
a bent arc contains exactly one singularity.) We include in this definition
the degenerate case of an arc lying in a separatrix with one endpoint a
singularity.

~o ~C

\\\

S
~
~
~
~
-~
~
~
~
~
~
~
~
~
0 ~
-~
b B ccae= S R
”
’,
Cd
s
L
Cd
-
’/
-
L
-
/’
PR
-
-~ Ft
"

~14

FiGURre 1
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FIGURE 2

An arc is said to be regular if it lies in a leaf and has no singularity on
it. Any regular arc contained in #* maybe slid transversely to %,
without changing its measure, until it lies on a singularity. See Figure 2.
Thus the above theorem implies that there is an embedded disc in M,
whose boundary is the union of two bent arcs, each of measure at most K.
Our immediate aim is to examine the type of bent arcs which can occur.

At this point it is appropriate to note that the word ‘embedded’ is not
strictly accurate here, since the sliding process may introduce points of
self intersection at the singularities, however these are inessential in the
sense that they may be removed by an arbitrarily small perturbation. The
word embedded when applied to curves and discs will always be used in
this sense.

Define a bent arc to be good if it is the limit of regular arcs. (Notice
that the degenerate case described above is always a good bent arc.)
Define the badness of a bent arc to be the smallest number of separatrices
crossed in moving from the sector containing one endpoint of the arc to
the sector containing the other. For example in Figure 2, the arc COA is
1-bad and the arc BOC is 0-bad. Clearly an arc is 0-bad if and only if it is
good.

We claim that in any compression there is a disc of a particularly
good type.



DISCS IN COMPRESSION BODIES 133

THEOREM 2.4. Suppose that ¢: F — F is a pseudo-Anosov map with
invariant foliations (¥#*,p*) and (¥, p") of intercept length < K. Fur-
ther suppose that ¢ compresses in M. Then there is an embedded disc
D? c M with d0D* = a*U a~C F where

(i) a™ and a” are bent arcs.
(ii) a* and a™ are both of measure at most K.
(iii) One of a™, a™ is good, the other is at worst 1-bad.

This cuts down the length of any computation involving foliations
with singularities of order greater than three drastically. Moreover, it is of
some interest to know if condition (iii) is the best possible, that is, whether
it can be improved to the condition that both arcs are good. This has some
theoretical implications which we discuss later. At any rate, the situation
where the 1-bad arc is forced to arise appears highly unusual and places
on the foliations a strange and strong restriction which may be ruled out
by ad hoc considerations in many cases. It appears difficult to construct
an example where this behavior occurs.

2. Main results. Our proof of 2.4 proceeds through several stages of
gradual improvement. We shall be interested in the pattern made when
two embedded discs in the compression body M intersect. We introduce
the following terminology. Suppose that D, and D, are two embedded
discs in the compression body M and arrange that they are in general
position. Then D; N D, is a union of simple closed curves and properly
embedded arcs. By isotopies of the discs rel 9, remove the former. We then
define the dual tree of D, N D, on D, by taking one vertex in each
component of D;,\ D; N D, and joining two vertices if they correspond to
adjacent regions. Notice that the dual tree is not an isotopy invariant of
D, U D,, that is, by isotoping D, rel 3, we may be able to change the dual
tree on D,. However this phenomenon will not concern us here since we
shall be exclusively interested in avoiding the case of linear dual trees. So
if some choice (rel 9) of discs yields a nonlinear dual tree this will suffice.

We now fix our notation for the rest of this section. ¢: F — F will
denote a pseudo-Anosov map with invariant foliations (F#*,p™) and
(& ~,p7). Our convention for the action of the map on these foliations will
be the mnemonic one: positive powers of ¢ will stretch arcs with a
positive superscript. Suppose that ¢ compresses in M. By abuse, we
denote the extension of ¢ to the compression body by the same symbol.

Our first result is that a good arc may be obtained on at least one
side.
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PROPOSITION 2.1. There is an embedded disc D in M, whose boundary
C = atU a~C F satisfies

(1) a™ and a” are bent arcs contained in F* and F ~ respectively.

(i) At least one of a™ or a” is good.

Proof. Theorem A provides a disc which satisfies all the hypotheses of
the theorem, save possibly (ii). By choosing some power if necessary, we
may assume that ¢ fixes the singularities and separatrices of the folia-
tions. It is then easy to understand the action of the map ¢ along the bent
arcs; it stretches the + arcs and shrinks the — arcs. In this way we see that
for positive integers m, n the intersections ¢”(C) N ¢ *(C) lie in the
+ arc of ¢”(C) and the —arc of ¢ "(C), at least after a small general
position push. We now claim that if the dual tree of ¢ (D) N ¢ "(D) on
either ¢™(D) or ¢~"(D) is nonlinear then we may prove the theorem. To
fix our ideas, let us suppose that the dual tree is nonlinear on ¢™(D).
Since ¢™(C) contains only two singularities and all intersections ¢”'(C) N
¢~ "(C) lie in the + arc, this implies that there is an outermost double arc
y of ¢"(D) N ¢ (D) whose endpoints are joined by a regular + arc, B
say, of ¢”(C). The endpoints of y are also joined by a —arc, B~ say, of
¢ "(C) which may or may not be regular. The simple closed curve
BH*U B~ bounds a disc in M, namely the one obtained by splicing the
pieces of ¢™(D) and ¢ "( D) cut off by y. Sliding the arc 8* transverse to
the — foliation proves the result in this case.

So we are done unless for all positive integers m, n the dual tree of
¢ (D) N ¢~ *(D) is linear on both ¢™(D) and ¢ "( D). Moreover, the two
boundary vertices of the tree can always be taken at the singularities of
the bent arcs.

Without loss of generality, (badness 8%) < (badness 87). Let s be the
singularity on 8% and 398" = { p,¢q}. Since ¢ fixes the singularities and
separatrices, ¢™(8™) lies along the arc gsp, although of course it is much
longer. Let b* and b~ be the innermost pair of intersections of ¢~ "(C)
with ¢™(C). Then b* and b~ define a subarc of ¢™(8*) which contains s.
Figure 3 shows the situation in the sector realising the badness of S8™.
Then there is a double arc y of ¢"(D) N ¢~ "(D) with dy = {b*, b7}, or
we are done by the above argument. Thus we may orient ¢ "(C) so that
at b* the orientation points into the short sector, and at b~ it points out.

Let ¢* be the first intersection of ¢™(C) N ¢ "(C) following b* on
¢~ "(C) with this orientation. Similarly, let ¢~ be the first intersection
preceding b~.
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FIGURE 3

Since the dual tree on ¢~ "(D) was supposed to be linear, there is a
double arc ¥ of ¢"(D) N ¢ "(D) with 3y = {c¢*,¢"}. Hence we obtain
the orientation shown on ¢™(C).

Consequently, choosing either arc of ¢~ "(C) — {¢™, c”} together with
either arc of ¢™(C) — {c¢™, ¢~} gives a closed curve bounding a disc in M.
A similar statement holds for {b*,b”}. Hence if we take the arc of
¢™(C) — {c¢*, ¢} which contains b* (and so b~) we may ‘short cut’
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FIGURE 4
across the arc b*sb™ to infer that either arc of ¢”(C) — {c¢™, ¢7}, together
with the arc ¢*b*sb c” bounds a disc in M. (See Figure 4)

Observe that badness(8*) < badness(8~) and the fact that any selt
intersection of ¢ "(C) at s is inessential, combine to imply that neither of
the separatrices of ¢ "(87) lie in the sector around s which we are
considering.
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¢, and §, be the two separatrices of % ~ through s which are closest
to ps and gs in the given sector. The remark of the previous paragraph
shows that ¢="(B~) does not lie along either of these. Let ¢* be the first
intersection of {; on ¢”(C). Similarly, ¢~ is the first intersection of {, on
¢"(C). Notice that ¢* is immediately ahead of ¢* on ¢”(C) by the
innermost choice of b*. Similarly, /-~ immediately precedes ¢~. Now
observe that for m,n large enough, the closed curves spb*c*t*s and
sqgb~c"t"s both bound discs in the surface.

By hypothesis, 0y separates the singularities on ¢”(C) so there is a
bent arc a™C ¢”(C) (lying entirely in F#*) with da*= {¢™,¢”}. Thus
extending (or shortening) a™ to a bent arc a we may arrange that
da = {t*,¢7}. Then the closed curve a U (arct*st”) is simple by choice
of t* and ¢~. It is essential in F, since it is the union of two affine
geodesics. Finally it is nullhomotopic in M since it is homotopic in F to
the closed curve a*U(arcc*b*sb ¢”). This new simple closed curve has
the further property that its badness on the + side is the same as that of
B+, while the badness on the — side is now badness(8*) — 1. By hypothe-
sis this is strictly less than badness(8~). Hence the new curve is strictly
better than the old one and an inductive argument completes the proof.

The above proof shows, somewhat surprisingly, that the difficult case
in not the case of linear dual tree on both discs, but the case of a linear
dual tree on one disc. Consequently in what follows we must assume that
we are presented with asymmetric data, namely an infinitely persistent
dual tree on one disc and the other pattern unknown.

The strategy will be to show that such situations happen very rarely
and afford such control that we may make progress. The following lemma
is a technical one; however it is of interest in its own right. It says that
there is a disc in the compression which has the property that any three
images of this disc under ¢ contain no essential triple points. This
suggests that if a pseudo-Anosov extends, its foliations bound a geometric
object ‘like’ a foliation by surfaces. This will be shown to be the true in
the globally orientable case in §3.

LEMMA 2.2. Let ¢, F and M be as above. Suppose further that ¢ fixes
singularities and separatrices. Let D be an embedded disc in M whose
boundary, C, is the union of two bent arcs. Let m, n be any positive integers
and by a small isotopy arrange that ¢"(C) N C N ¢ "(C) is in general
position. Then after an isotopy, tel F, of either ¢ (D) or ¢ "(D), the set
¢"(D) N D N ¢ "(D) contains no triple points.
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Proof. Write C = a™U a”, two bent arcs. As in the proof of 2.1, we
have that ¢"™(a*) D a™D ¢ "(a™) and ¢™(a”) C a C ¢ "(a"). Therefore,
the intersections of ¢™(C) N C occur in a~ and the intersections of
¢ "(C) N C occur in a™. If we now look in D, we see that there are
‘potentially’ no triple points: that is, no double arc of ¢™(D) N D has
endpoints separating the endpoints of any double arc of ¢~"(D) N D. In
such a situation, it is easy to remove triple points by isotopies rel F.

REMARK. There is a bound on the number and order of the singulari-
ties, depending only on the genus of F. Thus there is a ¢, so that ¢
satisfies the condition on singularities and separatrices.

A corollary of the lemma is that ¢™(D) N o™ (D) N --- N¢ (D)
contains no essential triple points for any m, n. Hence if we look in D at
the double arc pattern of D N ¢™( D), although this may vary as m varies,
no arc of D N ¢™(D) can cross an arc of D N ¢™ (D). We shall exploit
this limited amount of control to show that if a linear dual tree persists on
one side as m,n — oo then the behavior of the discs is of a special nature
which we now describe.

DEfFINITION. Let C, D be two essential, simple closed curves in
general position on the surface F. Orient C and D. Then CN D is a
collection of signed points. An equivalence relation on C N D is said to be
a pairing if the following two conditions are satisfied.

(1) Each equivalence class contains two points, of opposite sign.

(ii) Suppose that x* and x~ are equivalent and «a is any arc of C or D
with da = {x™, x~}. Further suppose that there is a point z* of CN D
lying in int( a). Then the point equivalent to z* also lies in int(a).

It is easy to see that a pair of simple closed curves admits a pairing if
and only if there is a compression body in which C and D bound discs
simultaneously. The ‘only if’ part is the pertinant one here; the pairing
arises naturally from consideration of the double arcs of the discs which C
and D bound. Bearing this in mind we introduce a further definition:

DEFINITION. Suppose that a* and a~ are bent arcs with C = a™U a~
a simple closed curve bounding a disc D in M. As usual we shall assume
that ¢ fixes the singularities and separatrices. Let s be the singularity
ona.
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We say a pairing of D N ¢™(D) is parametrised by arc length along a~
if all intersections x*, x"C C N ¢"(C) which are paired satisfy p*(sx™)
= p*(sx~), where sx* denotes the subarc of a~ with endpoints s, x*.

REMARKS. (i) Notice in particular that this means x* and x~ lie in
different components of a™—(s). In the case of ambiguity, caused by
different choice of discs giving rise to different pairings, we shall say that
D N ¢™(D) fails to be parametrised by arc length if the pairing arising
from some choice of disc causes the property to fail.

(i) The property of being parametrised by arc length would appear to
be extremely unusual. In particular it implies an extremely regular distri-
bution of intersecions along a”. In many cases we can rule this behavior
out by an ad hoc examination of the foliations in question; however we
have been unable to rule it out in general.

LEMMA 2.3. With the notation of the above definitions, suppose that
either,

(a) For some m > 0, D N ¢™(D) fails to be parametrised by arc length
along a~, or

(b) The components of a~\{S} are not of equal length.
Then, for somet > 0, D N ¢'(D) contains a double arc whose endpoints lie
in the same component of a™\{ S }.

Proof. (a) IfD N ¢™(D) fails to be parametrized by arc length along
a”, then there is an arc of double points ¢ whose endpoints a, b lie on a~
and have p*(sa) # p*(sb). If a and b lie in the same component of
a”—{s} then we are finished, so we may suppose that this is not the case.
For definiteness, say that p*(sa) > u*(sb). Since as k — o the class of
¢*(9D) (considered via the operation of ‘elargissement’ to be a measured
foliation) converges to (F™, u*), we have that for sufficiently large z > 0,

(*) |¢'(dD) N sa|>|¢(3D) N sb|.

Consider ¢™(D) N D N ¢/(D). By Lemma 2.2 and the remark following
it, after an isotopy of ¢(D) rel(F), this set contains no triple points. But
Y is a double arc joining a and b, so no double arc of ¢’(D) N D can
cross ¥. Looking in D we see that (*) implies that there is a double arc of
¢'(D) N D with both endpoints in sa. This completes the proof.

(b) This has an analogous proof, taking {a, b} = da".
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We shall now prove the main theorem of this section:

THEOREM 2.4. Let ¢: F — F be a pseudo-Anosov automorphism, with
invariant foliations (F*,p "), (¥, u") of intercept length K. Suppose that
¢ compresses in M.

Then there is an embedded disc D in M whose boundary a™U a™C F
satisfies:
(1) a® and a” liein F* and F~ respectively and are bent arcs.
(i1) One of these bent arcs is good, the other is at worst 1-bad.

(iii) p*(a7), p(a¥) < K.

Proof. Proposition 2.1 guarantees B*U B~= C, which is a simple
closed curve, good on one side and bounding an embedded disc in M.
Without loss of generality, B8~ is the good side. Let s*, s~ be the
singularity on 87, B~ respectively. Our first aim is to find a disc satisfying
(i) and (ii).

We claim that we are done if there is a ¢ > 0 so that ¢'(D) N D
contains a double arc with both endpoints in the same component of
B~—{s~}. For then the endpoints of this arc bound a regular —arcin 8-.
On ¢‘(C), these endpoints either separate the singularities, in which case
they bound a good bent + arc, or they do not separate, in which case they
bound a regular + arc. This proves the claim in either case.

Thus by 2.3, we may assume that for all ¢+ > 0: (a) D N ¢'(D) is
parametrised by arc length along 8-, (b) The tree on D is linear, (c) The
components of 87— { s~} have the same measure.

Application of ¢ now shows that for all positive integers m and n,
¢ (D) N ¢™(D) has similar properties, namely that it is parametrised by
arc length along ¢~ "(8~) and has linear dual tree on ¢~"( D).

Let the endpoints of B~ be b™ and b~. By Lemma 2.3(b), the arcs
s~b~ and s~ b* have the same measure. Thus they are paired in ¢ (D) N
¢™ (D). This means that we may orient ¢ "(C) so that this orientation
points out of the good sector at b* and in at b~. Let a™ be the first
intersection of ¢™(C) N ¢ "(C) following b* on ¢ (C) and a~ be the
first one preceding b~. By linearity a* and a~ are paired. Let {; and {, be
the two separatrices of # - passing through s* which are closest to the
arcs s*h* and s*b", respectively. Let c* be the first intersection of §;
with ¢”(C) and c~the first of {, with ¢”(C). Again, for m, n sufficiently
large, the closed curves s*c*a*bh™ and s*c a"b~ bound discs in the
surface. See Figure 5
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FIGURE 5

Now we apply a shortcircuiting trick analogous to the one used in 2.1
to conclude that the arc c*s*c¢™ together with either component of
¢"(C) — {c*,c”} bounds a disc in M. The arcs B* and B~ do not
intersect the arc ¢*s*c™ by the innermost choice of a*, a~. Thus if we
choose the component which contains s* together with ¢*s* ¢, we obtain
a simple closed geodesic (in the usual extended sense) bounding a disc in
M, which has its — arc of badness 1 and + arc good.



142 D. D. LONG

We have now achieved all the conclusions of the theorem, save (iii).
We obtain this by applying the proof of [3] to the disc we have just
manufactured. This never increases badness and gives the required control
of lengths, completing the proof.

3. Applications. In this section we briefly explore some applications of
the techniques and results of 2.

The motivation for proving 2.4 was computational, however the
methods show more than could have been anticipated a priori. For
example, the possibilities in the event of there being no disc in the
compression whose boundary consists of two good bent arcs are highly
restricted, since the condition of being parametrised by arc length appears
to be unusual and implies in particular that the 1-bad arc of any disc in
the compression has to be bisected by its singularity. This raises the
question of whether 2.4 is the best possible theorem. The following result
suggests that perhaps it is.

THEOREM 3.1. Let ¢: F — F be a pseudo-Anosov whose invariant
foliations are globally orientable. Then a compression of ¢ cannot contain a
disc whose boundary is the union of two good bent arcs.

Proof. Recall that ‘globally orientable’ means that the foliations
define a singular vector field on F. Then the only way that two good bent
arcs can form a simple closed curve, C, is shown in Figure 6. It is then
easy to see that (possibly after iterating ¢ to fix the singularities and
separatrices) that C and ¢*(C) do not have zero algebraic intersection for
large k.
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It seems extremely difficult to construct a pseudo-Anosov with glob-
ally orientable foliations which compresses, but there appears to be no
reason to expect that none exist. The proof of 2.4 shows that such a map
has rather bizarre properties. Moreover there are several other results
which may be obtained in the globally orientable case which do not
obviously hold in the general case. We now derive some such results.

In order to state these, it is necessary to introduce some notation. It is
well known the the universal covering of a compression body p: M* - M
induces a covering p: F* — F for which the surface F* is planar, that is,
it embeds in the 2-sphere. Typically, F* is the 2-sphere with a cantor set
removed. The foliations which we are considering have all their leaves
contractible, so we may lift them to obtain a foliation of F*. We shall say
that a leaf in the lifted foliation is homoclinic if both ends of the leaf go to
the same end of F*. Equivalently, if we replace the cantor set, the leaf
compactifies to become a simple closed curve. Our result may then be
stated:

THEOREM 3.2. Let ¢: F — F be a pseudo-Anosov with globally orienta-
ble invariant foliations #*and % ~. Suppose that ¢ compresses in M, giving
rise to a planar covering p: F* — F. Then,

(a) Both lifted foliations have a homoclinic leaf .

(b) One of the lifted foliations has at least a countable number of its
leaves homoclinic.

Proof. We shall prove (b). This will make it clear how to prove (a).

By Theorem 2.1, there is an embedded disc in M, whose boundary is
the union of two bent arcs, one of which is good. Say that this is on the +
side. The periodic points of a pseudo-Anosov are dense, hence by ‘push-
ing off’ on the good side (see Figure 7) we may find a simple closed curve
C = a U B, bounding a disc in M, and with «a being a regular arc passing
through a periodic point, p say. Then ¢* fixes p and so we may choose a
lift of it which fixes some lift of p. The action of ¢* is to stretch a and it
then describes the track of the lifted leaf through p. The Poincaré-Bendix-
son theorem (which extends to the singular vector fields we consider)
guarantees that the lifted leaves are proper, that is, they do go to the ends.
Since ¢*(C) lifts for all k and ¢*(B) is getting very short as k — oo we
see that the lift of the leaf through p is homoclinic. Thus, every lift of the
leaf through p is homoclinic.
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F1GURE 7

We have just shown that any leaf through a periodic point is homo-
clinic. Since a leaf can run through at most one periodic point, our
argument shows that at least countably many leaves are homoclinic on the
+ side. This completes the proof.

Given this theorem, we may prove the following:

THEOREM 3.3. Let ¢: F — F be a pseudo-Anosov map with globally
orientable foliations #*+ and % ~. Suppose that ¢ compresses in a hand-
lebody M. Then for one of the foliations we may find a collection of surfaces
{S,} embedded in M, such that:

(a) Given any regular leaf « in this collection, the embedded surface S,
has 0S, = a.

(b) If a and B are two regular leaves, then S, is disjoint from Sg.

Proof. Put a hyperbolic structure on int(M). Then this induces a
conformal structure on F. By 3.2, one of the foliations has lifts to
F* = dM* homoclinic. Such lifted leaves, when compactified, look like
simple closed curves in the boundary of hyperbolic space when this is
identified with M *. Thus we may form their ‘convex hull.” The boundary
of this convex hull is (in general) the union of two ‘pleated surfaces’. (See
[7].) Since the foliation is globally orientable, an orientation on F and an
orientation on the foliation give a choice of ‘top’ pleated surface which is
consistent for the action of the group of covering translations.

If a* is a lifted leaf which is homoclinic, and ga* is any translate,
then the compactifications of a* and ga* are either disjoint or meet in
one point, the latter case only occurring when g fixes the end which a*
goes to.
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Now observe that if two Jordan curves are disjoint, the ‘top’ surfaces
of their convex hulls are disjoint. Similarly, if they meet in one point.
Thus, either the top or bottom pleated surface projects into M as an
embedded surface. This proves (a). A similar argument gives (b).

REMARK. We do not know if this theorem continues to hold in the
case that the foliation is only a line field. There are several problems with
extending the above proof; we are unable to appeal to the Poincaré-
Bendixson theorem and there may be no canonical choice of upper surface
in the convex hull which is respected by the covering translations. It seems
that the latter problem may be circumvented using the methods of
minimal surfaces, however the possibility that the lifted leaves are not
proper appears harder to overcome.

We conclude with a brief description of a series of examples of fibred
knots for which these techniques seem particularly suitable. Let us remark
that when applying these methods to knots, it is usual to work with the
surface obtained by closing off the fibre surface with a disc and extending
the monodromy by defining it to be the identity on this disc.

Our examples are the p-string, g-bight Turk’s Head knots,
((p — 1) X g@)* in the notation of Conway. The ideas of Goldsmith [5]
then give convenient representations of the (closed off) fibre surface and
monodromy, by expressing the fibre as a branched covering over a sphere.
In the special case, p = 3, we obtain a covering p: F, - S?, where the
branching is over four points. It turns out that this induces on the fibre
surface the structure of a ‘branched flat’ manifold (See [4] or [6]), and in
this structure the foliations can be visualised. In this situation there is a
g-symmetry and this can be used to show [6]:

THEOREM 3.4. Let ¢: F, - F, be the closed mondromy of the 3-string
g-bight Turk’s Head knot. Suppose that ¢ compresses in M in such a way
that there is no embedded disc in M whose boundary is the union of two good,
bent arcs. Then g = 5 or 7.

We shall not explain here how this is proved, and content ourselves
with the remark that if ¢ = 5, the monodromy extends over a handlebody
and a disc whose boundary is the union of two good bent arcs can be
found. For ¢ = 7, we may use the above representation, together with the
algorithm of [3] to show that there is no compression of the mondromy at
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all. It is at this stage that the full force of 2.4 is necessary—the singulari-
ties in the foliations of this knot have order 7. This shows via a theorem of
Casson and Gordon [2] that the knot 14* is not homotopically ribbon.

A little more maybe said when g is even, for in this case the foliations
are globally orientable and so by 3.1 the hypothesis that there is no disc
whose boundary is the union of two good bent arcs is automatic. We
deduce that none of these maps can compress and so none of these knots
is ribbon. Actually, for Arf invariant reasons, none of these knots is slice,
so this gives nothing new.
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