ONE-DIMENSIONAL ALGEBRAIC FORMAL GROUPS

Robert F. Coleman

Let K be an algebraically closed field of characteristic zero. We shall call an element of $K\left[\left[x_{1}, \ldots, x_{n}\right]\right]$ algebraic if it is algebraic over $K\left(x_{1}, \ldots, x_{n}\right)$. Thus a one-dimensional algebraic formal group is an element $F \in K\left[\left[x_{1}, x_{2}\right]\right]$ such that F is a formal group and F is algebraic. As is well known, such formal groups arise from one-dimensional algebraic groups. Our intention is to show that this is the only way they arise. All formal groups mentioned in this note shall be one-parameter formal groups.

Definition. Two algebraic formal groups $F, F^{\prime} \in K\left[\left[x_{1}, x_{2}\right]\right]$ are said to be algebraically isomorphic if there exists an algebraic element $f \in x K[[x]]$ such that $f \neq 0$ and

$$
f\left(F\left(x_{1}, x_{2}\right)\right)=F^{\prime}\left(f\left(x_{1}\right), f\left(x_{2}\right)\right)
$$

It is easy to see that there exists a unique element $f^{*} \in x K[[x]]$ such that $f \circ f^{*}=x$. It then follows that

$$
f^{*} F^{\prime}\left(x_{1}, x_{2}\right)=F\left(f^{*}\left(x_{1}\right), f^{*}\left(x_{2}\right)\right)
$$

and that f^{*} is algebraic.
Now suppose $(X, e,[+])$ is a one-dimensional algebraic group over K. Let $z \in K(X)$ be a local parameter at e. Let $\rho_{1}, \rho_{2}: X \times X \rightarrow X$ be the natural projections. Then $\left\{z \circ \rho_{1}, z \circ \rho_{2}\right\}$ is a set of local parameters at $e \times e$ in $X \times X$, and so there exists a unique power series $H(x, y) \in$ $K[[x, y]]$ such that

$$
H\left(z \circ \rho_{1}, z \circ \rho_{2}\right)=z\left(\rho_{1}[+] \rho_{2}\right)
$$

as elements of the complete local ring at $e \times e$ on $X \times X$. It is easy to see that H is an algebraic formal group. We shall call such a formal group a formal algebraic group.

Proposition A. Every algebraic formal group is algebraically isomorphic to a formal algebraic group.

We will prove a stronger statement than Proposition A. We call a differential $\omega \in K[[x]] d x$ algebraic if $\omega / d x$ is an algebraic element of $K[[x]]$. If $H(x, y)$ is a formal group and

$$
g(x)=\left.\frac{d}{d y} H(x, y)\right|_{y=0},
$$

then $g(0)=1$, and

$$
\omega=g d x
$$

is the invariant differential of H. If H is an algebraic, then so is ω. We will prove

Proposition B. Let ω be an algebraic differential. Suppose that there exist nonzero algebraic elements f_{1}, f_{2} of $x K[[x]]$ such that

$$
f_{1}^{*}(\omega)=a f_{2}^{*}(\omega)
$$

where $a \in \mathbf{C}^{*}, a$ is not a root of unity. Then there exist a formal algebraic group with invariant differential ω^{\prime} and an algebraic element u of $K[[x]]$ such that

$$
e u^{*}\left(\omega^{\prime}\right)=\omega
$$

where $e=\operatorname{Res}_{0}(\omega / x)$.

To deduce Proposition A from Proposition B, let F be an algebraic formal group, ω its invariant differential, $f_{2}(x)=x, f_{1}(x)=F(x, x)$. Then

$$
\begin{equation*}
f_{1}^{*}(\omega)=2 \omega=2 f_{2}^{*}(\omega) \tag{0}
\end{equation*}
$$

It follows that there exists a formal algebraic group H with invariant differential ω^{\prime} and an algebraic element $g \in x K[[x]]$ such that

$$
\begin{equation*}
g^{*}\left(\omega^{\prime}\right)=\omega \tag{1}
\end{equation*}
$$

We claim

$$
g(F(x, y))=H(g(x), g(y))
$$

Indeed, if $\lambda, \lambda^{\prime} \in x K[[x]], d \lambda=\omega, d \lambda^{\prime}=\omega^{\prime}$, then (1) implies $\lambda^{\prime} \circ g=\lambda$. On the other hand,

$$
\begin{aligned}
\lambda F(x, y) & =\lambda(x)+\lambda(y) \\
\lambda^{\prime} H(x, y) & =\lambda^{\prime}(x)+\lambda^{\prime}(y)
\end{aligned}
$$

so that

$$
\begin{aligned}
g F(x, y) & =\lambda^{\prime-1} \circ \lambda F(x, y)=\lambda^{\prime-1}(\lambda(x)+\lambda(y)) \\
& =H\left(\lambda^{\prime-1} \circ \lambda(x)+\lambda^{\prime-1} \circ \lambda(y)\right)=H(g(x), g(y))
\end{aligned}
$$

as required.
Proof of Proposition B. Let \mathbf{P}^{1} denote the projective line over K and regard x as the standard parameter on \mathbf{P}^{1}. In doing this we will identify $K[[x]]$ with the formal completion of the ring of functions on \mathbf{P}^{1} regular at $0, \overline{\mathcal{O}_{\mathbf{P}^{1}, 0}}$.

Let $f_{0}=\omega / d x$. Then for $i=0,1,2$ there exist complete pointed curves (X_{i}, e_{i}) over K together with morphisms

$$
x_{i}, \tilde{f}_{i}: Y_{i} \rightarrow \mathbf{P}^{1}
$$

such that x_{i} is a local uniformizing parameter at e_{i} and $x_{i}^{*} f_{i}$ is the formal expansion of \tilde{f}_{i} in x_{i} at e_{i}. In other words, $x_{i}^{*} f_{i}$ is the image of f_{i} in $\mathcal{O}_{Y_{i}, e_{i}}$

Now set $\tilde{\omega}=\tilde{f}_{0} d x_{0} \in \Omega_{Y_{0} / k}^{1}$. Also note that $f_{i}\left(e_{i}\right)=0$ as $f_{i}(0)=0$, $i=1,2$. Let (Z_{i}, e_{i}) denote the fiber product of (Y_{0}, e_{0}) and (Y_{i}, e_{i}) over $\left(\mathbf{P}^{1}, 0\right)$ with respect to the morphisms x_{0} and $\tilde{f}_{i}, i=1,2$. Thus $\left(Z_{i}, e_{i}^{\prime}\right)$ fits into a commutative diagram

$$
\begin{array}{ccc}
\left(Z_{i}, e_{i}^{\prime}\right) & \xrightarrow{y_{i}} & \left(Y_{i}, e\right) \\
\tilde{z}_{i} \downarrow & & \downarrow \tilde{f}_{i} \\
\left(Y_{0}, e_{0}\right) & \xrightarrow{x_{0}} & \left(\mathbf{P}^{1}, 0\right) .
\end{array}
$$

Moreover, $\left(x_{i} \circ y_{i}\right)^{*} f_{i}^{*} \omega$ is the formal expansion of $\tilde{f}_{i}^{*} \tilde{\omega}$ at e_{i}^{\prime} in $x_{i} \circ y_{i}$. Now let (W, e) denote the fiber product of (Z_{1}, e_{1}^{\prime}) and (Z_{2}, e_{2}^{\prime}) with respect to the morphisms $x_{1} \circ y_{1}$ and $x_{2} \circ y_{2}$. Thus we have a commutative diagram

$$
\begin{array}{ccc}
(W, e) & \xrightarrow{z_{2}} & \left(Z_{2}, e_{2}^{\prime}\right) \\
z_{1} \downarrow & & \downarrow x_{2} \circ y_{2} \\
\left(Z_{1}, e_{1}\right) & \xrightarrow{x_{1} \circ y_{1}} & \left(\mathbf{P}^{1}, 0\right) .
\end{array}
$$

Let $\left(W^{c}, e\right)$ denote the connected component of (W, e) passing through e. Let

$$
\bar{f}_{i}:\left(W^{c}, e\right) \rightarrow\left(Y_{0}, e_{0}\right)
$$

denote the restriction of $\tilde{\tilde{f}_{i}} \circ z_{i}$ to W^{c}. Then

$$
\left(x_{i} \circ y_{i} \circ z_{i}\right)^{*} f_{i}^{*} \omega
$$

is the formal expansion of $\bar{f}_{i}^{*} \tilde{\omega}$ at e in $x_{i} \circ y_{i} \circ z_{i}$. Since $x_{1} \circ y_{1} \circ z_{1}=$ $x_{2} \circ y_{2} \circ z_{2}$, it follows from the hypothesis that

$$
\bar{f}_{1}^{*} \tilde{\omega}=a \bar{f}_{2}^{*} \tilde{\omega}
$$

Taking $X_{1}=X_{0}, X_{2}=W^{c}$ and $\omega_{1}=\tilde{\omega}$ we see that Proposition B follows from:

Proposition C. Let X_{1}, X_{2} be two curves. Let ω_{1} be a nonzero differential on X_{1} and f_{1}, f_{2} two nonconstant morphisms from X_{2} to X_{1} such that

$$
\begin{equation*}
f_{1}^{*}\left(\omega_{1}\right)=a f_{2}^{*}\left(\omega_{1}\right) \tag{2}
\end{equation*}
$$

for some $a \in K^{*}$, a not a root of unity. Then there exists a one-dimensional algebraic group G with invariant differential ω, and a morphism $f: X_{1} \rightarrow G$ such that

$$
f^{*}(\omega)=\omega_{1} .
$$

Proof. For a curve C let \bar{C} denote its complete nonsingular model. Let $\omega_{2}=f_{2}^{*}\left(\omega_{1}\right)$. Let S_{i} denote the set of poles of ω_{i} on \bar{X}_{i}. Clearly, $\left|S_{1}\right| \leq\left|S_{2}\right|$, $\left|S_{i}\right|$ denotes the order of S_{i}. We also claim:

$$
g\left(X_{1}\right)<g\left(X_{2}\right) \text { or } g\left(X_{2}\right) \leq 1
$$

where $g\left(X_{i}\right)$ denotes the genus of X_{i}. Indeed, if this is not the case, then by the Hurwitz genus formula we see that $g\left(X_{1}\right)=g\left(X_{2}\right)>1$ and $1=$ $\operatorname{deg}\left(f_{1}\right)=\operatorname{deg}\left(f_{2}\right)$. but then $\bar{f}_{i}: \bar{X}_{2} \rightarrow \bar{X}_{1}$ is biregular (\bar{f}_{i} is the "lifting" of f_{i}), so that $\alpha=\bar{f}_{2}^{-1} \circ \bar{f}_{1}$ is an automorphism of X_{2}. But α is of finite order since $g\left(X_{2}\right)>1$. On the other hand, the hypotheses of the lemma imply

$$
\alpha^{*}\left(\omega_{2}\right)=a \omega_{2}
$$

Since a is not a root of unity, we obtain a contradiction, so we have our claim.

We also claim that there exists a curve X_{0} with a differential ω_{0} and two morphisms $g_{1}, g_{2}: X_{1} \rightarrow X_{0}$ such that $g_{2}^{*}\left(\omega_{0}\right)=\omega_{1}$ and $g_{1}^{*}\left(\omega_{0}\right)=$ $a g_{2}^{*}\left(\omega_{0}\right)$. Thus ($\left.X_{0}, \omega_{0}\right)$ satisfies the same hypotheses as (X_{1}, ω_{1}), so once we establish this claim, we will be able to use induction to suppose that $\left|S_{1}\right|=\left|S_{2}\right|$ and $g\left(X_{2}\right) \leq 1$.

For the results on generalized Jacobians used below, see [S].

Proof of Claim. Without loss of generality X_{i} is nonsingular, ω_{l} has no poles on X_{i}, and $f_{i} X_{2}=X_{1}$, for $i=1,2$.

Let $i=1$ or 2 in the following: Let M_{i} denote the polar divisor of ω_{i}. Let J_{i} denote the generalized Jacobian of X_{i} corresponding to M_{i}. There exists a unique invariant differential ν_{i} on J_{i} and an embedding of X_{i} in J_{i} (as $\omega_{i} \neq 0$) well defined up to translation such that ω_{i} is the pullback of ν_{i} to X_{i}. Henceforth we will view X_{i} as a subvariety of J_{i}. From the functoriality of generalized Jacobians there exists a canonical affine transformation

$$
f_{i}^{\prime}: J_{2} \rightarrow J_{1}
$$

whose restriction to X_{2} is f_{i}. Let T_{i} denote translation on J_{2} by [-] $f_{i}^{\prime}(0)$ where [-] denotes inversion on J_{1}. Set $f_{i}^{\prime \prime}=T_{i} \circ f_{i}^{\prime}$. Then $f_{i}^{\prime \prime}$ is a homomorphism from J_{2} to J_{1}. It follows that

$$
\left(f_{1}^{\prime \prime}\right)^{*} \nu_{1}=a\left(f_{2}^{\prime \prime}\right)^{*} \nu_{1}=a \nu_{2}
$$

There also exists a homomorphism $h: J_{1} \rightarrow J_{2}$ such that

$$
f_{2}^{\prime \prime} \circ h=[d]
$$

where d denotes the degree of f_{2} and $[d]$ denotes multiplication by d on J_{1}. Let

$$
e=\left(f_{1}^{\prime \prime} \circ h \circ f_{2}^{\prime \prime}-[d] \circ f_{1}^{\prime \prime}\right): J_{2} \rightarrow J_{1}
$$

Then e is a homomorphism and

$$
\begin{aligned}
e^{*} \nu_{1} & =\left(f_{2}^{\prime \prime}\right) h^{*}\left(f_{1}^{\prime \prime}\right)^{*} \nu_{1}-g_{1}^{*}[d]^{*} \nu_{1}=a\left(f_{2}^{\prime \prime}\right) * h^{*} \nu_{2}-d g_{1}^{*} \nu_{1} \\
& =a\left(f_{2}^{\prime \prime}\right){ }^{*} h^{*} f_{2}^{*} \nu_{1}-d a \nu_{2}=a\left(f_{2}^{\prime \prime}\right) *[d]^{*} \nu_{1}-d a \nu_{2}=0
\end{aligned}
$$

Let A denote the quotient of J_{1} by $e\left(J_{2}\right)$ and $\rho: J_{1} \rightarrow A$ the quotient morphism. Since $e^{*} \nu_{1}=0$, it follows that there exists an invariant differential ν_{0} on A such that $\rho^{*} \nu_{0}=\nu_{1}$. Let

$$
X_{0}=\left(\rho \circ[d] \circ T_{1}\right)\left(X_{1}\right) \subseteq A
$$

As $\rho \circ e=0$ we have $\rho \circ[d] \circ f_{1}^{\prime \prime}=\rho \circ f_{1}^{\prime \prime} \circ h \circ f_{2}^{\prime \prime}$. Hence as $f_{1}^{\prime}\left(X_{2}\right)=$ $f_{2}^{\prime}\left(X_{2}\right)=X_{1}$,

$$
\begin{aligned}
X_{0} & =\left(\rho \circ[d] \circ T_{1} \circ f_{1}^{\prime}\right)\left(X_{2}\right) \\
& =\left(\rho \circ[d] \circ f_{1}^{\prime \prime}\right)\left(X_{2}\right)=\left(\rho \circ f_{1}^{\prime \prime} \circ h \circ f_{2}^{\prime \prime}\right)\left(X_{2}\right) \\
& =\left(\rho \circ f_{1}^{\prime \prime} \circ h \circ T_{2}\right)\left(X_{1}\right) .
\end{aligned}
$$

Now let $g_{1}, g_{2}: X_{1} \rightarrow X_{0}$ denote the restrictions of

$$
\rho \circ f_{1}^{\prime \prime} \circ h \circ T_{2} \quad \text { and } \quad \rho \circ[d] \circ T_{1}
$$

respectively to X_{1}. Also let ω_{0} denote the restriction of ν_{0} / d to X_{0}. Since $\left(\rho \circ f_{1}^{\prime \prime} \circ h\right)^{*} \nu_{0}=\left(f_{1}^{\prime \prime} \circ h\right)^{*} \nu_{1}=\operatorname{ad} \nu_{1}=a(\rho \circ[d])^{*} \nu_{0}$ it follows that

$$
\begin{equation*}
g_{1}^{*} \omega_{0}=a g_{2}^{*} \omega_{0}=a \omega_{1} \tag{2}
\end{equation*}
$$

and so we have our claim. Thus by induction we may suppose

$$
g\left(X_{1}\right)=g\left(X_{2}\right) \leq 1 \quad \text { and } \quad\left|S_{2}\right|=\left|S_{1}\right| .
$$

We also have $f_{i}^{-1}\left(S_{1}\right)=S_{2}$, so that f_{i} induces a bijection from S_{2} onto S_{1}.
Case 1. $g\left(X_{i}\right)=1$. Then \bar{X}_{i} has a unique group structure with origin at some point P_{i}. It follows that f_{2} and $T_{R} \circ f_{1}$ are affine transformations from X_{2} to X_{1}. Now since $\left.f_{i}\right|_{S_{2}}: S_{2} \rightarrow S_{1}$ is a bijection and $f_{i}^{-1}\left(S_{1}\right)=S_{2}$, it follows that either

$$
S_{2}=S_{1}=\varnothing
$$

or degree $f_{i}=1, i=1,2$, because f_{i} is étale. In the second case, f_{2}^{-1} exists and $\alpha=f_{2}^{-1} \circ f_{1}$ is an automorphism of X_{2} such that $\alpha S_{2}=S_{2}$. But if $S_{2} \neq \varnothing, \alpha$ is of finite order. This contradicts

$$
\alpha^{*} \omega_{2}=a \omega_{2}
$$

Thus $S_{1}=S_{2}=\varnothing$, and ω_{1} is an invariant differential on X_{1} as required.
Case 2. $g\left(X_{i}\right)=0$. Then $\left|S_{i}\right| \geq 1$. Let

$$
A= \begin{cases}\{\infty\} & \text { if }\left|S_{1}\right|=1 \\ \{\infty, 0\} & \text { if }\left|S_{1}\right|=2 \\ \{\infty, 0,1\} & \text { if }\left|S_{1}\right| \geq 3\end{cases}
$$

After composing with linear fractional transformations, we may suppose $A \subseteq S_{2}$ and $A \subseteq S_{1}$.

If $|S|=1$, then $\omega_{1}=b d x$ for some $b \in K^{*}$, and so is an invariant differential on \mathbf{G}_{a}. Now suppose $\left|S_{2}\right| \geq 1$. Let h_{i} be a linear fractional transformation such that

$$
h_{i} \circ f_{i}(p)=p, \quad p \in A
$$

Because $\left(h_{i} \circ f_{i}\right)^{-1}(p)=\{p\}, p \in A$, it follows that $h_{i} \circ f_{l}$ takes the value p with multiplicity n_{i} where n_{i} is the degree of f_{i}. As $\{0, \infty\} \subseteq A$ we must have

$$
h_{i} \circ f_{i}=c_{i} x^{n_{i}}
$$

where $c_{i} \in K^{*}$. If $\left|S_{2}\right|>2$, then $1 \in A$. It follows that $c_{i}=1$, and since $\left(h_{i} \circ f_{i}\right)^{-1}(1)=1$, that $n_{i}=1$. That is, $f_{i}=h_{i}^{-1}$. But then $\alpha=h_{2}^{-1} \circ h_{1}$ takes
S_{2} onto itself, and $\alpha^{*} \omega_{2}=a \omega_{2}$. As the group of linear fractional transformations preserving S_{2} is finite this contradicts the hypothesis that a is not a root of unity. Thus $S_{2}=S_{1}=\{0, \infty\}$,

$$
f_{i}=r_{i} x^{m_{i}} \quad \text { and } \quad \omega_{1}=s d x+t \frac{d x}{x}
$$

for some $r_{i}, t \in K^{*}, m_{i} \in \mathbf{Z}, m_{i} \neq 0$ and $s \in K$. So,

$$
f_{i}^{*}\left(\omega_{1}\right)=s r_{i} m_{i} x^{m_{i}-1} d x+t m_{i} \frac{d x}{x} .
$$

Since $a \neq 1$, the hypothesis $f_{1}^{*}(\omega)=a f_{2}^{*}\left(\omega_{1}\right)$ implies $s=0$. Thus ω_{1} is an invariant differential on \mathbf{G}_{m} as required.

References

[S] J.-P. Serre, Groupes Algébriques et Corps de Classes, Hermann, Paris (1959).
Received December 5, 1983.
University of California
Berkeley, CA 94720

