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ONE-DIMENSIONAL ALGEBRAIC FORMAL GROUPS

ROBERT F. COLEMAN

Let K be an algebraically closed field of characteristic zero. We
shall call an element of K[[xl9... ,xn]] algebraic if it is algebraic over
K(xl9...9xn). Thus a one-dimensional algebraic formal group is an
element F e K[[xl9 x2]] such that F is a formal group and Fis algebraic.
As is well known, such formal groups arise from one-dimensional alge-
braic groups. Our intention is to show that this is the only way they arise.
All formal groups mentioned in this note shall be one-parameter formal
groups.

DEFINITION. TWO algebraic formal groups F, F' & K[[xv x2]] are

said to be algebraically isomorphic if there exists an algebraic element

/ e xK[[x]] such that/ Φ 0 and

It is easy to see that there exists a unique element/* e xK"[[x]] such
t h a t / o / * = JC. It then follows that

and that/* is algebraic.

Now suppose (X, e, [ + ]) is a one-dimensional algebraic group over K.

Let z E ί ( J ) b e a local parameter at e. Let ρλ, ρ2: I x l - ^ l b e the

natural projections. Then {z ° pvz ° p2} is a set of local parameters at

e X e in X X X, and so there exists a unique power series H(x, y) e

K[[x, y]] such that

H(zopl9zop2) = z(p1[ + ]p2)

as elements of the complete local ring at e X e on X X X. It is easy to see

that H is an algebraic formal group. We shall call such a formal group a

formal algebraic group.

PROPOSITION A. Every algebraic formal group is algebraically isomor-

phic to a formal algebraic group.
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We will prove a stronger statement than Proposition A. We call a
differential ω e K[[x]] dx algebraic if ω/dx is an algebraic element of
AT[[*]]. If H(x, y) is a formal group and

then g(0) = 1, and

ω = gdx

is the invariant differential of H. If H is an algebraic, then so is ω. We will

prove

PROPOSITION B. Let ω be an algebraic differential. Suppose that there
exist nonzero algebraic elements/l9 f2 ofxK[[x]] such that

where a e C*, a is not a root of unity. Then there exist a formal algebraic
group with invariant differential ω' and an algebraic element u of AΊJJC]]

such that

eu*(ω') = ω

where e = Reso(ω/Λ;).

To deduce Proposition A from Proposition B, let F be an algebraic
formal group, ω its invariant differential, f2(x) = x, fι(x) = F(x9 x).
Then

(0) Λ*(ω) = 2ω = 2/2*(ω).

It follows that there exists a formal algebraic group H with invariant
differential ω' and an algebraic element g e .^ [ [JC]] such that

(1) g (ω') = ω.

We claim

,y)) = H(g(x)fg(y)).

Indeed, if λ, λ' e xK[[x]]9 dλ = ω, dλ' = ω\ then (1) implies λ'o g = λ.
On the other hand,

,y) = λ(x)+λ(y)
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so that

gF(x, y) = λ'"1 o \F(x, y) = λ'-\λ(x) + λ(y))

= H(λ'~ι o λ(χ) + λ'"1 o λ(y)) = H(g{x)9 g(y))

as required.

Proof of Proposition B. Let P 1 denote the projective line over K and
regard c as the standard parameter on P1. In doing this we will identify
^[[JC]] with the formal completion of the ring of functions on P 1 regular
at 0, Θ~Γ0.

Let /0 = ω/dx. Then for i = 0,1,2 there exist complete pointed
curves (Xi9 et) over K together with morphisms

such that xt is a local uniformizing parameter at et and xfft is the formal
expansion of/ in x. at et. In other words, xfft is the image of/, in ΘΎe.

Now set ώ =fodxo e ΩVo/Λ. Also note that /(e,) = 0 as /(0) = 0,
i = 1,2. Let (Z,, ef ) denote the fiber product of (Yθ9 e0) and {Yi9 e^ over
(P^O) with respect to the morphisms x0 and/, i = 1,2. Thus (Zi9 e ) fits
into a commutative diagram

(z,,e;) A (Y#,.)

/"I i Λ

(Y0,e0) 3 (P\0).

Moreover, (x j°j' j)*/ j*ω is the formal expansion of f*ώ at e\ in xf ° yt.
Now let (W, e) denote the fiber product of (Z 1 ; e[) and (Z 2, ̂ 2) with
respect to the morphisms xx ° yλ and JC2 ° y2- Thus we have a commutative
diagram

(W,e) ^ (Zi,e'i)

z i 4 \f χ2° yi

(Zl9eλ)
 Xl^yi (PSO).

Let (Wc, e) denote the connected component of (W9 e) passing through e.
Let

fi:(Wc,e)-+(Y09e0)

denote the restriction of/ ° z to Wc. Then
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is the formal expansion of /*ώ at e in xi <> yt ° zt. Since xλ ° yx ° zx =

•*2 ° ^2 ° Z2> ̂  follows from the hypothesis that

Taking Xλ = Xo, ̂ 2 == Wc and ωx = ώ we see that Proposition B follows

from:

PROPOSITION C. Let Xv X2 be two curves. Let ωλ be a nonzero

differential on Xλ and fv f2 two nonconstant morphisms from X2 to Xλ such

that

(2) A*M = affM

for some a e ϋΓ *? a not a root of unity. Then there exists a one-dimensional

algebraic group G with invariant differential ω, and a morphism f:Xx->G

such that

Proof. For a curve C let C denote its complete nonsingular model. Let

ω2 = / 2*(c^). Let St denote the set of poles of ωz on X.. Clearly, \Sλ\ < \S2\,

\St\ denotes the order of Sr We also claim:

g(X1)<g(X2) or g(X2)<l

where g(Xj) denotes the genus of Xt. Indeed, if this is not the case, then

by the Hurwitz genus formula we see that g(Xλ) = g(X2) > 1 and 1 =

degί/i) = deg(/2). but t h e n / : X2 -* Xx is biregular (/ is the "lifting" of

/,), so that a = f2

γ ° fλ is an automoφhism of X2. But a is of finite order

since g( X2) > 1. On the other hand, the hypotheses of the lemma imply

α*(ω 2 ) = flίo2.

Since a is not a root of unity, we obtain a contradiction, so we have our

claim.

We also claim that there exists a curve Xo with a differential ω0 and

two morphisms gl9 g2: Xλ -* Xo such that g*(ω 0) = ωλ and g*(ω 0) =
αSi(ωo)' Thus (XQ, ω0) satisfies the same hypotheses as (Xl9 iox), so once

we establish this claim, we will be able to use induction to suppose that

1̂ 1 = 15,1 and g(X2) < I.
For the results on generalized Jacobians used below, see [S].

Proof of Claim. Without loss of generality Xt is nonsingular, ωt has no

poles on Xi9 and/,Jf2 = Xv for i = 1,2.
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Let / = 1 or 2 in the following: Let M( denote the polar divisor of ωt.
Let Ji denote the generalized Jacobian of Xi corresponding to M . There
exists a unique invariant differential vt on J. and an embedding of Xt in Jt

(as ω( Φ 0) well defined up to translation such that ωi is the puUback of vi

to Xt. Henceforth we will view Xt as a sub variety of //. From the
functoriality of generalized Jacobians there exists a canonical affine
transformation

whose restriction to X2 is fέ. Let Tt denote translation on J2 by [-]//(0)
where [-] denotes inversion on Jv Set f" = Tt ° //. Then f" is a homo-
morphism from J2 to Jv It follows that

There also exists a homomorphism Λ: Jx -> J2 such that

where d denotes the degree of f2 and [d] denotes multiplication by d on Jv

Let

Then e is a homomorphism and

e*Vί = (/2")*A*(/Γ) »Ί " g

= a{K)*h*f2*vx - dav2 = a{f2"Y[d\*Vι - dav2 = 0.

Let A denote the quotient of Jx by e(J2) and p: Jx-* A the quotient
morphism. Since e*vι = 0, it follows that there exists an invariant dif-
ferential P0 on Λ such that ρ*v0 = f1. Let

As p - e = 0 we have p°[d]° f{' = p° f"° h ° f2". Hence as //(X2) =
f2'(X2) = Xv

Now let g l 9 g2: Xx -> Xo denote the restrictions of

pof^ohoT2 and ρ
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respectively to Xv Also let ω0 denote the restriction of vo/d to Xo. Since
(P ° Λ" ° h)*po = (/Γ ° h)*vx = ad vγ = a(p <>[d])*r0 it follows that

and so we have our claim. Thus by induction we may suppose

We also have/r^S^) = S2, so that/ induces a bijection from S2 onto Sv

Case 1. gί-X,-) = 1. Then Xt has a unique group structure with origin
at some point Pt. It follows that f2 and TR <> fx are affine transformations
from X2 to Xv Now since/ l^: S2 -» Sx is a bijection and/ί~

1(51) = S2? it
follows that either

S2 = Sλ = 0

or degree/) = 1, i = 1,2, because/ is etale. In the second case, Z^1 exists
and a = f2

ι ° fx is an automoφhism of X2 such that α ^ = S2. But if
iSr

2 ^ 0 , oc is of finite order. This contradicts

2 2 *

Thus S1 = 5 2 = 0, and ωx is an invariant differential on Xx as required.

Case 2. g(Xt) = 0. Then I5J > 1. Let

'{oo} if 1^1= 1,

{oo,0} if|S'1| = 2,

{oo90,l} iί\Sλ\ϊ> 3.

After composing with linear fractional transformations, we may suppose
A c S2 and A c Sv

If |5Ί = 1, then ωι = b dx for some ό G .SΓ*, and so is an invariant
differential on Ga. Now suppose |S2 | > 1. Let hi be a linear fractional
transformation such that

Because (hi ° fi)~ι{p) = {p},p e A, it follows that hi ° ft takes the value
p with multiplicity ni where πJ. is the degree of ft. As {0, oo} c A we must
have

where c, e ϋΓ*. If |5 2 | > 2, then 1 e ^ . It follows that ct = 1, and since
(Λ, ° /;)~Hl) = 1» that w, = 1. That is,/, = A"1. But then a = hΫ ° h, takes
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S2 onto itself, and α*ω2 = aω2. As the group of linear fractional trans-

formations preserving S2 is finite this contradicts the hypothesis that a is

not a root of unity. Thus S2 = Sx = {0, oo},

/• = ηx™1 and ωx = s dx 4- ί—

for some r , ί e AT*, m. G Z, mz ^ 0 and ̂ G I SO,

Since α # 1, the hypothesis/^(co) = af^{ωλ) implies s = 0. Thus ωx is an

invariant differential on Gm as required.
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