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ONE-DIMENSIONAL ALGEBRAIC FORMAL GROUPS

ROBERT F. COLEMAN

Let K be an algebraically closed field of characteristic zero. We
shall call an element of K[[x,,...,x,]] algebraic if it is algebraic over
K(x,,...,x,). Thus a one-dimensional algebraic formal group is an
element F € K[[xq, x,]] such that F is a formal group and F is algebraic.
As is well known, such formal groups arise from one-dimensional alge-
braic groups. Our intention is to show that this is the only way they arise.
All formal groups mentioned in this note shall be one-parameter formal

groups.

DErINITION. Two algebraic formal groups F, F’ € K[[x,, x,]] are
said to be algebraically isomorphic if there exists an algebraic element
f € xK[[x]] such that f # 0 and

f(F(xl’ xz)) = F,(f(xl)’ f(xz))

It is easy to see that there exists a unique element f* € xK[[x]] such
that f o f* = x. It then follows that

f¥F'(x,, x,) = F(f*(xl)’ f*(xz))

and that f* is algebraic.

Now suppose ( X, e,[+]) is a one-dimensional algebraic group over K.
Let z € K(X) be a local parameter at e. Let p;, p,: X X X = X be the
natural projections. Then {z°p,,z°p,} is a set of local parameters at
e X e in X X X, and so there exists a unique power series H(x, y) €
K[[x, y]] such that

H(zepy, zop,) = z(py[+]0p,)

as elements of the complete local ring at e X e on X X X. It is easy to see
that H is an algebraic formal group. We shall call such a formal group a
formal algebraic group.

PROPOSITION A. Every algebraic formal group is algebraically isomor-
phic to a formal algebraic group.
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We will prove a stronger statement than Proposition A. We call a
differential w € K[[x]] dx algebraic if w/dx is an algebraic element of
K|[[x]]. If H(x, y) is a formal group and

g(x) = LH(x,y)|
dy y=0
then g(0) = 1, and
w=gdx

is the invariant differential of H. If H is an algebraic, then so is w. We will
prove

PROPOSITION B. Let w be an algebraic differential. Suppose that there
exist nonzero algebraic elements f,, f, of xK[[x]] such that

fi*(w) = af*(w)

where a € C*, a is not a root of unity. Then there exist a formal algebraic
group with invariant differential «’ and an algebraic element u of K[[x]]
such that

eu*(w') = @
where e = Resy(w/x).
To deduce Proposition A from Proposition B, let F be an algebraic

formal group, w its invariant differential, f,(x) = x, fi(x) = F(x, x).
Then

(0) fif(w) =20 = 2f*(w).

It follows that there exists a formal algebraic group H with invariant
differential w’ and an algebraic element g € xK[[x]] such that

(1) g* (') = .
We claim
g(F(x, y)) = H(g(x), g(»)).

Indeed, if A, A’ € xK[[x]], dA = w, dN\" = «’, then (1) implies A’e g = A.
On the other hand,

AF(x,y) =X(x)+A(p)
NH(x, y) = N(x) + N(»),
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so that
gF(x, y) =N"eAF(x, y) =N (A(x) +A(y))

= H(N""oA(x) + M o A(y)) = H(g(x), g(»))
as required.

Proof of Proposition B. Let P! denote the projective line over K and
regard x as the standard parameter on P'. In doing this we will identify
K[[x]] with the formal completion of the ring of functions on P! regular
at 0, 0])1 ,O'

Let f, = w/dx. Then for i =0,1,2 there exist complete pointed
curves ( X, e;) over K together with morphisms

x;, f: Y, > P!
such that x, is a local uniformizing parameter at e, and x}*f; is the formal
expansion of f;in x, at e,. In other words, x*f, is the image of f, in Oy e

Now set & = f, dx, € Qlyo/k. Also note that f,(e;) = 0 as f,(0) =0,
i=1,2. Let (Z, e;) denote the fiber product of (Y, e,) and (Y,, e;) over
(P!, 0) with respect to the morphisms x, and f,, i = 1,2. Thus (Z,, /) fits
into a commutative diagram

(Zoe)) = (Te)
il \/
(Yooeo) = (PL0).

Moreover, (x;° y;)*f;*w is the formal expansion of f:*&; at e/ in x;° y,.
Now let (W, e) denote the fiber product of (Z;, e;) and (Z,, e}) with
respect to the morphisms x, © y; and x, o y,. Thus we have a commutative
diagram

22

(W’e) - (Z2’e£)

le er2°Y2
X1°n

(Zlael) - (PI,O)
Let (W<, e) denote the connected component of (W, e) passing through e.
Let
fir (W, e) = (Yo, e)
denote the restriction of f, o z, to W*. Then

(x;0 ;0 Zi)*fi*“-’
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is the formal expansion of f,*® at e in x,° y, oz, Since x;0 y 0z, =
X, © y, © Z,, it follows from the hypothesis that

fro = af;*e
Taking X; = X,,, X, = W° and w; = @ we see that Proposition B follows
from:

ProposITION C. Let X;, X, be two curves. Let w, be a nonzero
differential on X, and f,, f, two nonconstant morphisms from X, to X, such
that

(2) f1*("’1) = afz*(“’1)

for some a € K*, a not a root of unity. Then there exists a one-dimensional
algebraic group G with invariant differential w, and a morphism f: X, > G
such that

f*w) = wi-

Proof. For a curve C let C denote its complete nonsingular model. Let
w, = f,*(w;). Let S, denote the set of poles of w, on X;. Clearly, |S,| < |S,|,
|S;] denotes the order of S;. We also claim:

g(X;) <g(X,) or g(X;)<1

where g( X;) denotes the genus of X;. Indeed, if this is not the case, then
by the Hurwitz genus formula we see that g(X;) = g(X;)>1and 1 =
deg(f,) = deg(f,). but then fi: X, > X, is biregular (f, is the “lifting” of
£)), so that @ = f; %o f, is an automorphism of X,. But a is of finite order
since g( X,) > 1. On the other hand, the hypotheses of the lemma imply

a*(w,) = aw,.

Since a is not a root of unity, we obtain a contradiction, so we have our
claim.

We also claim that there exists a curve X, with a differential w, and
two morphisms g, g,: X; = X, such that g¥(w,) = w; and g¥(wy) =
ag¥(w,). Thus (X, w,) satisfies the same hypotheses as ( X}, w,), so once
we establish this claim, we will be able to use induction to suppose that
[S1] = |S,] and g(X;) < 1.

For the results on generalized Jacobians used below, see [S].

Proof of Claim. Without loss of generality X is nonsingular, w, has no
poles on X;, and f, X, = X;, fori =1,2.
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Let i = 1 or 2 in the following: Let M, denote the polar divisor of w,.
Let J; denote the generalized Jacobian of X; corresponding to M,. There
exists a unique invariant differential », on J; and an embedding of X; in J,
(as w; # 0) well defined up to translation such that w, is the pullback of »,

to X,. Henceforth we will view X; as a subvariety of J,.. From the

functoriality of generalized Jacobians there exists a canonical affine
transformation

=0

whose restriction to X, is f;. Let T, denote translation on J, by [-]f(0)
where [-] denotes inversion on J;. Set f” = T,o f/. Then f,” is a homo-
morphism from J, to J;. It follows that

( 1")*1/1 = a( 2")*1)1 = av,.
There also exists a homomorphism 4: J; — J, such that
fy'oh=1ld]

where d denotes the degree of f, and [d] denotes multiplication by d on J,.
Let

e=(fl'chofy —[dlefl):J, > J,.
Then e is a homomorphism and
e*y, = (fzﬂ)*h*( 1")*”1 - gf[d]*’ﬁ = a( 2")*}’*”2 — dgi'v,
= a(fz")*h"‘fz"‘v1 — dav, = a( 2")*[611]*1/1 — dav, = 0.

Let A denote the quotient of J; by e(J,) and p: J;, = A the quotient
morphism. Since e*», = 0, it follows that there exists an invariant dif-
ferential v, on A4 such that p*», = »,. Let

Xo=(po[d]-T})(X,) c 4.

As poe=0 we have peo[d]of/" =pof/ ohef). Hence as f/(X,) =
[(X) =X,

Xo = (P°[d] °T1°f1,)(X2)
= (peldle f')(X;) = (o £ o ho £7)(X,)
=(peofl’oheT,)(X,).
Now let g,, g,: X; — X, denote the restrictions of

pof//choT, and po[d]-T,
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respectively to X,. Also let w, denote the restriction of v,/d to X,. Since
(pe fi"°oh)*vy = (f{"°h)*»v; = ad v, = a(p °[d])*, it follows that
() 8w, = agiw, = aw,
and so we have our claim. Thus by induction we may suppose
g(X) =g(X;) <1 and [S|=|S,|.

We also have f,7}(S;) = S,, so that f, induces a bijection from S, onto S;.

Case 1. g(X,) = 1. Then X, has a unique group structure with origin
at some point P,. It follows that f, and T} o f; are affine transformations
from X, to X;. Now since f}|: S, = S, is a bijection and £,7'(S,) = S,, it
follows that either

S,=8 =2
or degree f; = 1, i = 1,2, because f; is étale. In the second case, f,* exists
and « = f,'o f, is an automorphism of X, such that aS, = S,. But if
S, # @, a is of finite order. This contradicts

* =
a*w, = aw,.

Thus S; = S, = &, and w, is an invariant differential on X, as required.

Case 2. g(X;) = 0. Then |S;| > 1. Let
{00} if Sy =1,
A={{0,0} if|§]=2,
{0,0,1} if|S,| = 3.

After composing with linear fractional transformations, we may suppose
Ac S,and4 C §,.

If |S| = 1, then w, = bdx for some b € K*, and so is an invariant
differential on G,. Now suppose |S,| = 1. Let h; be a linear fractional
transformation such that

h;o fi(p) =p, pEA.
Because (4;° f) '(p) = {p}, p € 4, it follows that &, o f, takes the value
p with multiplicity n; where n; is the degree of f,. As {0, 0} C 4 we must
have
hyof,=c;x™

where ¢; € K*. If |S,| > 2, then 1 € A4. It follows that ¢, = 1, and since
(h,°f,)™*(1) = 1, that n, = 1. That is, f; = h;*. But then a = k3" h, takes
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S, onto itself, and a*w, = aw,. As the group of linear fractional trans-
formations preserving S, is finite this contradicts the hypothesis that a is
not a root of unity. Thus S, = S, = {0, 0},

dx
fi=rx™ and w, =sdx + =
forsomer,t € K* m, € Z, m, # Oand s € K. So,
1 1 1

d
f*(w,) = srmx™ tdx + tmi——xi.

Since a # 1, the hypothesis f;*(w) = af,*(w;) implies s = 0. Thus w, is an
invariant differential on G,, as required.
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