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NEAR ISOMETRIES OF BOCHNER
L1 AND L°° SPACES

MICHAEL CAMBERN

Let (Ω,, Σι9 μt) be σ-finite measure spaces, / = 1, 2, and let E be a
Hubert space. If the Bochner spaces Lp(Ωl9 Σl9 μl9 E) and
Lp(ίl2> Σ 2 , μ2, E) a r e nearly isometric, for either p = 1 or p = oo, then
^(Ωx, Σ1 ? μ l 5 £ ) is isometric to L1(Ω2, Σ 2 , μ2, E) and hence
L^ίΩ^Σ^μ! ,^ ) is isometric to L°°(Ω2,Σ2,μ2, E).

Throughout this paper the letter E will denote a Banach space which

will often be taken to be Hubert space. Interaction between elements of a

Banach space and those of its dual will be denoted by ( , •). We will

write Eλ = E2 to indicate that the Banach spaces Eλ and E2 are isometric.

Following Banach, [2, p. 242], we will call the Banach spaces Eλ and

E2 nearly isometric if 1 = inf{||Γ|| HΓ"1!!}, where T runs through all

isomorphisms of Ex onto E2. It is of course equivalent to suppose that

1 = inf{||Γ||}, where HΓ"1!! = 1, and hence T is a norm-increasing iso-

morphism of Eλ onto E2. For if T is any continuous isomorphism of one

Banach space onto another, we obtain an isomorphism T having the

desired properties by defining t to be equal to HΓ^HΓ.

If (Ω, Σ,μ) is a positive measure space and E a Banach space, the

Bochner spaces LP(Ω> Σ, μ, E) will be denoted by Lp(μ, E) when there is

no danger of confusing the underlying measurable spaces involved, and by

Lp(μ) when E is the scalar field. For the definitions and properties of

these spaces we refer to [8],

It has been noted by Benyamini [4] that, as a consequence of known

properties of spaces of continuous functions, if two spaces Lp(μι) and

Lp(μ2) are nearly isometric, for either p = 1 or p = oo, then they are

isometric. What we wish to show is that the same conclusion can be drawn

for near isometries of certain Bochner spaces. We will prove the following:

THEOREM. Let (Ω,, Σ / 5 μt) be σ-finite measure spaces, i = 1, 2, and E

a Hilbert space. If there exists an isomorphism T9 with ||7"~XH = 1 and

\\T\\ < 3/(2)/2), mapping Lp(ΏlyΣvμvE) onto L^(Ω2, Σ 2 , μ2, E) for

either p = 1 or p = oo, then L1(Ω1, Σ 1 ? μv E) = L1(Ω2, Σ 2 , μ2, E) and

L°°(Q19 Σl9 μl9 E) = L°°(Ω2, Σ 2 , μ2, E).
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In the scalar case, Banyamini's theorem follows from an analogous
result for spaces of continuous functions obtained independently by D.
Amir [1] and the author [5], [6]. And we note that if E is finite-dimen-
sional with orthnormal basis [en: /i = 1,..., JV}, and Xt denotes the
maximal ideal space of L 0 0 ^ ) , / = 1, 2, then it can be shown that
L°°(μ,,is) is isometrically isomorphic to C(Xi9 E)y the space of continu-
ous functions on Xt to £, under the map Σ%=ιfnen -> Σ%=ιfnen, where
/ -> / is the Gelfand representation of L00(μ/). In this case the theorem of
this article can be obtained from what is known about isomorphisms of
continuous vector-valued functions [7], the result for vectorial L°° follow-
ing directly from [7] and that for L1 then following by arguments
analogous to those given here in the proof of Lemma 8. However when E
is infinite dimensional, the continuity on Xi of the coordinate functions fn

no longer implies continuity for Σn fnen, even in the presence of separabil-
ity, and thus the problem requires different methods of approach.

Consequently, in what follows, E will represent an infinite-dimen-
sional Hubert space. Although the proofs presented here require only that
the dimension of E be greater than two, for all finite-dimensional Hubert
spaces E not only does our theorem follow from [7], but it follows with
the bound 3/(2^2) replaced by the better bound y/ϊ.

Our approach here will be to replace the measure spaces (Ω, , Σi9 μz)
by measure spaces in which we have a topology, and on which measurable
vector-valued functions are very close to being continuous. For this we
will require the notion of a perfect measure. Thus, following [3], if X is an
extremally disconnected compact Hausdorff space we will call a nonnega-
tive, extended real-valued measure μ defined on the Borel sets 38( X) of X
perfect if

(i) every nonempty clopen set has positive measure,
(ii) every nowhere dense Borel set has measure zero, and

(iii) every nonempty clopen set contains another nonempty clopen set
with finite measure.

The proof of our theorem is now completed by means of a sequence of
lemmas.

LEMMA 1. Let (Ω, Σ, μ) be a o-finite measure space, and let X be the
Stonean space of the measure algebra Σ/μ. (Equiυalently, X is the maximal
ideal space of L°°(μ).) For A Ξ Σ let A denote the clopen subset of X which
represents the equivalence class of A. Then the measure μ defined on the
algebra sέ of clopen subsets of X by μ(A) = μ(A), A e Σ, can be extended
to a perfect measure, also denoted by μ, on 3${X) such that //(Ω, Σ, μ, E)
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Proof. The set function μ defined above is, indeed, countably additive
on s/, [8, p. 11]. Thus, by the Caratheodory extension theorem, μ has a
unique extension to the σ-algebra generated by si. This σ-algebra clearly
contains the Baire sets of X.

First suppose that μ is finite. Then, [9, p. 351], μ can be further
extended to a regular measure on £8{X), which is clearly perfect. (The
proof that every nowhere dense Borel set has measure zero is contained in
[10, p. 18, Lemma 9.4].)

If μ is σ-finite but not finite, let Ω be the disjoint union Ω = U^=1^4W,
where An e Σ and 0 < μ(An) < oo for all n. Then define the finite
measure μ0 on Σ by μo(A) = Σ™=ιμ(A Π An)/(2n μ{An)). Since the
μo-null and μ-null sets of Σ coincide, the measure algebras Σ/μ and
Σ/μ 0 have the same Stonean space X. The measure μ0 defined as above
on si extends to a perfect regular Borel measure on X. And since for sets
v ί e Σ w e have

μ(A) = Σμ(ΛCλ AH) = Σ 2" μ(An)μ0(A Π An)9

n n

it follows that for A e si,

n An) = Σ^n- A(Λ)A0(^ π i j .

Thus if we define, for B e ^(X), μ(5) = ΣΠ2W μ(An)μ0(B Π i n ) , the
set function so defined is an extension of μ to a perfect measure on 38(X).

Finally, the map Σf]==ιβJχA -> Σ"= 1^7Xi carries the dense subspace
of L\ίl, Σ,μ,£) consisting of simple functions isometrically into the
corresponding subspace of Lι{X,3S(X),μ,E). Since every B e &(X)
differs from a clopen set by a set of μ-measure zero [3, p. 1], the map is
actually onto the subspace of simple functions in Lι(X, 3$(X), μ,E) and
thus extends to an isometry of LX(Ω, Σ, μ, E) onto L\ X, SS{ X\ μ, E).

LEMMA 2. Let X and μ be as in Lemma 1. Then given a measurable

E-υalued function F on X there exists an open dense subset UF of X such that

F\ υ is continuous, and μ( X — UF) = 0.

Proof. First assume that μ is finite. Here we follow the argument
given by Peter Greim in [11, p. 124]. Take a sequence {Fn} of simple
functions converging a.e. to F. Again using the fact that each set in 3S( X)
differs from a clopen set by a set of measure zero, we may suppose that
each Fn is continuous. Then Egoroff s theorem shows that F is the almost
uniform limit of continuous functions. Hence for each ε > 0 there is a
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measurable set Uε such that the restriction of F to Uε is continuous and
μ(X — Ue) < ε. Using the facts that μ is regular and that an open set and
its closure have the same measure, we may assume that Uε is clopen. If
then UF is the union of all the UJs it has the required properties, for its
complement is closed and has measure zero, and thus can contain no
non-void open set.

If μ is σ-finite but not finite let μ0 be the finite measure that appears
in the proof of Lemma 1. The argument of the preceding paragraph with μ
replaced by μ0 then shows that F is continuous on a dense open set UF

with μo(X — UF) = 0. Since μ and μ0 have the same null sets, the proof
is complete.

As a consequence of Lemma 1 it suffices to prove our theorem for
two σ-finite perfect Borel measures defined on extremally disconnected
compact Hausdorff spaces. Accordingly, we shall henceforth assume that
X and Y are extremally disconnected compact Hausdorff spaces and that
μ (resp. v) is a σ-finite perfect measure on @t(X) (resp. &8{Y)). Until
further notice, T will denote a norm-increasing isomorphism of
L°°{X,SS(X),μ,E) onto L°°(Y, ^ ( 7 ) , v, E) with ||Γ|| < 3/(2i/2) and
\\τ-ι\\ = l.

LEMMA 3. // F e L°°(ju, E) and \\F(x)\\ = 1 for almost all J C G I ,

then, for almost ally e 7, (63/64)1/2 < \\T(F)(y)\\.

Proof. Suppose, to the contrary, that there exists a set A G 3S(Y)
with v{A) > 0 such that \\T(F)(y)\\ < (63/64)1/2 for y ^ A. Again using
[3, p. 1], A = BAC with B clopen and C of first category. We may
assume that T(F) = 0 on the p-null set B Π C and hence that \\T(F)(y)\\
< (63/64)1/2on the clopen set B with v(B) = v(A) > 0. Let UT(F) be an
open dense subset of Y on which T(F) is continuous, and whose
complement has ^-measure zero. Then v(B Π UT(F)) = v(B) > 0, B Π
UT{F) is open and T(F) is continuous on this set.

Let k = 117X )̂11̂ . Choose y0 G B Π UT{F) and take e G E with
||e|| = 1 perpendicular to T(F)(yQ). Then for all scalars a with \a\ = 1,

\\T(F)(y) + a{k2 - 63/64)1/2 e(

< \\T(F)(y) f + 2(£ 2 - 63/64)1/2 | (,, Γ(F)( j)> |

+ k2 -(63/64).

For j = 70 Λe expression on the right is less than /c2, and since it is
continuous on B Π UT(F), there exists a clopen set D containing y0 such
that for all y ^ D we have | |Γ(F)(^) + a(k2 - 63/64)1/2 e||2 < k2.
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Thus if we define G e L°°(P, E)byG = (k2 - 63/64)1/2 e χD, then G
is a nonzero element of L 0 0^, 2?) such that for all scalars a with \a\ = 1

We can suppose that ||-F(JC)|| = 1 for all x e X. We must have

\T-\G) |U > (l/||Γ||)(*2 - 63/64)1/2 > ( ( 2 ^ )/3)(*2 - 63/64)1/2.

And since the complement of UF Π Uτ-i(G) has ju-measure zero, we can
choose x0 ^ C/F Π Uτ-i(G) with

llΓ-HGOω I > ((2v^)/3)(/c2 - 63/64)1/2.

Next note that if a is a scalar with |α| = 1 such that Reα(Γ"1(G)(x0),
F(x0)) > 0, then

\2\\F(x0) + aT-ι(G)(x0)\\ > 1 +(8/9)(fc2 - 63/64).

Since \\F(x) + aT~ι(G)(x)\\ is continuous on UF Π UT-\{G), there is a
clopen set W containing x0 such that

| |F(JC) + aT'ι{G)(x)f > 1 + (8/9)(A:2 - 63/64) on W.

Thus

||JF+ aT~ι(G)\\Q0 > 1 + (8/9)(fc2 - 63/64),

and we will have obtained a contradiction to the fact that T~ι is
norm-decreasing if the quantity on the right is greater than λ;2-equiva-
lently if 63/64 < (9 - k2)/8. But since k2 < \\T\\2 < 9/8, we indeed
have 63/64 < (9 — k2)/S and this contradiction completes the proof of
the lemma.

LEMMA 4. Let FtΞL°°(μ,E) with (63/64)1/2 < | |F(JC)| | < ||Γ|| a.e.
For A e 38(X) define φ(A) e &{Y) by φ(A) = { J G Y: \\T(χAF)(y)\\
> 31/32}.

(i) If A and B are disjoint measurable subsets of X then φ(A) Π φ(B)
is a v-null set and, modulo a v-null set, φ(A') = [φ(^4)]' (where for any set
A, A' denotes its complement).

(ii) If we furthermore assume that \\F\\n < 1 then \\T(χAF)(y)\\ < .44
a.e. on φ(A').

Proof, (i). If φ(A) Π φ(B) had positive measure then, proceeding as
in the proof of the previous lemma we could find a nonempty clopen set
C c Yon which \\T(χAF)(y)\\ > 15/16 and \\T(χBF)(y)\\ > 15/16, and
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on which both T{χAF) and T(χBF) are continuous. By choosing first a
point y0 e C and then a scalar a such that

Rea(T(χBF)(y0),T(χAF)(y0))>0,

it would then follow that \\T(χAF) + α Γ ^ F ) ! ^ > (15^/2)/16 > 1.3.
But since for all scalars a with |α| = 1 we have \\χAF 4- αx^-FH^ < ||Γ||,
\\T(χAF) + aTiXβF)^ must be less than | |Γ| | 2 < 1.2, and thus φ(A)
and φ(l?) must be a.e. disjoint.

We wish next to show that the union of φ(A) and φ(A') is almost all
of Y. Suppose, to the contrary, that on some Borel set D c Y with
v(D) > 0 we had \\T(χAF)(y)\\ < 31/32 and \\T(χA.FXy)\\ < 31/32.
We may suppose that D is clopen and that both T(χAF) and T(χA,F)
are continuous on D. Let kλ = \\T{χAF)\\^ k2 = WTix^F)^ and fc =
max{ kvk2}. Then arguing as in the second paragraph of the proof of
Lemma 3, we could find a G e L°°(*>, £) with \\G\\,, = (fc2 - (31/32)2)1/2

and such that | |Γ(χ^F) + α G ^ < A: and | | r ( x ^ F ) + αGI^ < A: for all
scalars a with |α| = 1.

Then HΓ-HG)!^ > ((2i/5")/3)(fc2 - (31/32)2)1/2 so that by an argu-
ment analogous to that given in the third paragraph of the proof of
Lemma 3, we can find a scalar a with \a\ = 1 such that

\\F+ aT~\G)\t > 63/64 +(8/9)(/c2 -(31/32)2).

This latter quantity will be greater than k2 iff (9 63 - 64 k2)/% 64 >
(31/32)2 an inequality which in fact holds since here H i ^ < ||Γ|| gives
k < \\T\\2 and hence k2 < \\T\\4 < 81/64. Thus \\F + aT'^G)^ > k.

But since \\T{χAF) + αGI^ < k and | | Γ ( χ ^ ) + αGIL < k and
71"1 is norm-decreasing, we must have \\χAF + αΓ"1(G)| |0 0 < /c and
llχ^F + αΓ-HG)!^ < fc. Since, for any x G l , F(JC) + aT~\G){x) is
equal either to χA{x)F{x) + aT~\G)(x) or to χA,(x)F(x) + αΓ'^GXx)
we have a contradiction and thus, modulo a null set, φ(^4') = [Φ(A)]f.

(ii): We know that \\T(χA,F)(x)\\ > 31/32 on φ(A') and thus on this
set we must have | |Γ(χ^)( jc) | | 2 < 9/8 - (31/32)2 < .19 so that
||Γ(χ/4i

7)(.x:)|| < .44 a.e. on φ(A'). Otherwise an argument analogous to
that of the first paragraph of this proof would provide a contradiction.
This concludes the proof of the lemma.

Now fix an F e L°°(μ, E) with \\F(x)\\ = 1 a.e. [μ]. Then by Lemma
4(i) we obtain a map φ, defined modulo null sets, from 3$(X) to SS(Y)
determined, for A (Ξ # ( * ) , by φ(A) = {y e 7: H^χ^i^Xj)!! > 31/32}
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and satisfying φ(A') = [φ(A)]\ Next note that R = HΓyΓ'1 is a norm-in-

creasing isomorphism of L°°(v,E) onto L°°{μ,E) satisfying ||i?|| <

3/(2\/2) and \\R-ι\\ = 1, and that by Lemma 3,

(63/64)ι/2 <\\T(F)(y)\\<\\T\\ = \\R\\ a . e . [ p ] .

Thus, interchanging the roles of T and R, of F and T(F), and those of

and ^ ( 7 ) , by Lemma 4(i) we obtain a map ψ from ^?(Y) to

satisfying ψ(£') = [ψ(5)]', modulo null sets, for B e SS(Y) and

determined by ψ(5) = { J C G I : | |i?(χB T(F))(x)\\ > 31/32}.

LEMMA 5. \\T-\χB. Γ(F))(x)|| < .44 β.β. o

. For B e Λ(7) we have ||i?(χB Γ(F))(x)|| > 31/32 on ψ( j?)

and thus

If we let

P = esssup\\T-ι{χB, T(F))(x)

then since F = T'\χB - T(F)) 4- T'\χB. - T(F)) we must have (.9)2 +

P 2 < 1 = Halloo a n d h e n c e P < 4 4 a s claimed.

LEMMA 6. If B ^ 36(Y) then, modulo a v-null set, φ(ψ(B)) = B.

Hence φ is a mapping, defined modulo null sets, of £%(X) onto 3S(Ύ).

Proof. Recall that φ(ψ(B)) is the set on which \\T(χφ(B) F)(y)\\ >

31/32. We have

Xψ(s) F = χHB) Γ - ^ X B T(F)) + χψ(Z?) Γ-Hxy ' ^ F ) ) .

Thus for x e ψ(Λ), χ ψ ( 5 ) (x) F(x) differs from Γ^ίχ^ T(F))(x) by

X^(B)(X) * ̂ "Hx^' ' T(F))(x) which, by Lemma 5, has norm < .44 for

almost all x. And for x e ψ(2Γ), χψ ( 5 )(jc) F(x) = 0 and so can differ

from T~ι(χB - T(F))(x) by this latter function itself which, again by

Lemma 5, has norm a.e. < .44 on ψ(2?') Hence

and thus

(•) \\τ(Xφ(B) F)-χB- T(F) \\χ ϊ . 4 4 | | Γ | | < .47.

If we suppose that φ(ψ(B)) — B has positive ^-measure, we have, for

x e φ(ψ(*)) - B, ||Γ(χψ(Z?) F\x)\\ > 31/32 and χB(x)T(F)(x) = 0,

which contradicts (*) above. And if we suppose that B — φ(\p(B)) has
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positive ^-measure then, by Lemma 3, χB(x) T(F)(x) has norm >
(63/64)1/2 > .99 a.e. on this set, while by Lemma 4(ii) T(χφ(B) F)(x)
has norm < .44 a.e. on ΰ - φ ( ψ ( 5 ) ) c φ ( ψ ( 5 r ) ) . This again contradicts
(*) and so completes the proof of the lemma.

Recall that a mapping φ, defined modulo null sets, of 08 {X) onto
08{Y) is called a regular set isomorphism if it satisfies the properties

= [φ(A)Y

oo

φ UΛhU

and

v[φ(A)] = 0 if, and only if, μ(4) = 0,

for all sets A, An in &(X), [12].

LEMMA 7. φ w α regular set isomorphism of 08(X) onto 08(Y).

Proof. We have seen that φ is a mapping, defined modulo null sets, of
08(X) onto 08{Y) satisfying

φ{A')= [φ(A)]'9

Note that for A e # ( JT), /ι(Λ) Φ 0 iΐϊ χA - F Φ 0 in L°°(μ, E) which is
true iff T(χA - F) Φ 0 in L°°(J>, E) which holds (since T is norm-increas-
ing) iff v[φ(A)] = v{{y^ Y: \\T(χA F)(y)\\ > 31/32}) > 0. Thus

v[ψ{A)} = 0 i fμ(^) = 0.

Now suppose that A and B are disjoint set in 88(X). Then by
Lemma 4(i) φ(A) and φ(B) are a.e. disjoint. Thus if B is a measurable
subset of the measurable set A, then B and A' are disjoint so that φ(B)
and φ(^0 are disjoint. Hence B ςi A implies that φ(B) c φ(^4). The
sentence before last also implies that A and B are disjoint iff φ(A) and
φ(5) are disjoint.

Next assume that {AVA29...} is a sequence of measurable subsets of
X and let A = \J™=ιAn. Then since AnQA for all n we have φ(An) c
φ(Λ) for all n so that U^= 1Φ(^ J c φ(^). Set 5 = φ(^) - U^=1 Φ(^Λ).
We would like to show that v(B) = 0.

By Lemma 6 there exists C E ^ ( I ) with φ(C) = B. By what we
established in the paragraph before last, we must have C c A in this
instance. Thus if we suppose that B, hence C, has positive measure then,



NEAR ISOMETRIES OF BOCHNER L 1 AND L°° SPACES 9

for some n, C meets An in a set of positive measure. But φ(An) and φ(C)

are disjoint, and this contradiction shows that we must have v(B) = 0.

Thus

Φ
\n=l I n=\

completing the proof of the lemma.

The proof of our Theorem is now completed by the following:

LEMMA 8. If there exists an isomorphism T of Lp(μ, E) onto Lp(v, E)

with \\T~ι\\ = 1 and \\T\\ < 3/(2i/2) for p = 1 or p = oo then L\μ, E) =

L\v, E) andL°°(μ, E) s L°°(v, E).

Proof. First suppose that T is such a mapping of L°°(μ9 E) onto

L°°(v, E). We have seen that there then exists a regular set isomorphism φ

of # ( * ) onto Λ(y). Then for 5 G J ( F ) define λ(5) = μ[φ'\B)]. If

ί̂ G &(X) we have μ(̂ 4) = λ[φ(A)] = fφ{A) dλ so that the map

Σ/1

j=1ejχA -> Σ"= 1e yχφ ( / 4) carries the dense subspace of simple functions

in Lι(X,&(X),μ,E) isometrically onto the corresponding subspace of

I}(Y, &(Y), λ, E) and can thus be extended to an isometry of

I}(X9a(X),μ,E) onto L\Y,di{Y\\9E). Then multiplication by the
scalar function dλ/dv carries this latter space isometrically onto

L\Y9 SS{Y), v, E). Hence L\μ, E) = L\v, E) and consequently
L M ( ( I , £ ) S L « ( F , £ ) .

If we start with a map T of Lι(μ,E) onto Lι{v,E) satisfying the

conditions of the lemma, then Γ* is an isomorphism of U°{v,E) onto

L°°(μ,E) with ||3Γ*-χ|| = 1 and ||Γ*|| < 3/(2i/2), and the proof then

follows as above.
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