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UNIMODULAR APPROXIMATION
IN FUNCTION ALGEBRAS

JOHN N. Me DONALD

Let A be a function algebra on the compact Hausdorff space X.
The main result of this paper gives necessary and sufficient conditions
for the set of quotients of inner functions in A to be dense in the set of
continuous unimodular functions on X. A theorem of Douglas and Rudin
concerning quotients of Blaschke products is derived. The main result is
also applied in the context of the theory of compact abelian groups.

The prototype for the main result of this paper is the following
theorem due to Douglas and Rudin [3].

THEOREM 1. Suppose that u is a measurable function on the unit circle
such that \u(eιt)\ = 1 a.e. Then u can be approximated arbitrarily closely in
the essential-sup norm by quotients of Blaschke products.

We will derive Theorem 1 from a general result concerning function
algebras. Our main result will also be applied to certain algebras of
functions on compact abelian groups.

Preliminaries. Consider a sub-algebra A of the algebra C(X) of
continuous complex-valued functions on the compact Hausdorff space X.
We will assume that A contains the constant functions and is closed with
respect to the sup-norm || ||. We will call a function g G A inner if
\g\ s 1. Let I (A) denote the set of inner functions and let Q(A) denote
the set of quotients of inner functions. Of course the set U(X) = I(C(X))
is simply the collection of continuous unimodular functions on X. U( X)
is a group under pointwise multiplication. U(X) has an important sub-
group, namely the group log U( X) of members of U( X) having continu-
ous logarithms. We will indicate the natural quotient map from U( X) to
U(X)/logU(X)byπx.

In the case where X is the ̂ -dimensional torus Tn and A is the
polydisk algebra A(Tn), i.e., the closed algebra generated by the coordi-
nate projections from Tn onto Γ1, there is an abundance of inner
functions. It is known that a function / e A(Tn) is inner if and only if it
is of the form

f(z) = M(z)Q(z)/Q(z), z = ( z 1 ? z 2 , . . . , z j ,

435



436 JOHN N. MC DONALD

where M is a monomial, Q(z) is a polynomial of degree d(j) in zy for
j = 1,2,..., n which does not vanish anywhere on the closed unit poly-
disk, and Q(z) is the unique polynomial satisfying

for every z G Γn. See [6, p. 112]. Note in particular that every/
is a rational function.

Our reason for discussing inner functions in the polydisk algebra is
that they are related to the general case via the following easily proved:

PROPOSITION 2. Let A be the general function algebra as described

above. LetfγJ2,...,fn e I(A) andFeA(Tn)9 thenF(fl9f2,...Jn)eA.
In particular, i /Fe I(A(Tn))9 then F(fv / 2 , . . . , /„) G I(A).

Main Result.

THEOREM 3. Let A be as described above. Q(A) is dense in U(X) if
and only if the following conditions hold.

(i) τrx(Q(A)) = U(X)/\ogU(X)
(ii) I (A) separates the points of X.

Proof. Suppose that Q(A) is dense in U(X). Let u G U(X). Since
logU(X) is an open subgroup of U(X) containing the constant function
1, it follows that there exists a q G Q(A) such that qu G logί7(X). Thus,
we have TTX{U) = ττx{q). It follows that (i) is satisfied. Next, suppose
a, b e X with a Φ b. It's easy to find a function w0 e ί/(X) such that
wo(β) Φ uo(b). If g(α) were equal to g(b) for every g in /(^4), then it
would follow that q(a) = q(b) for every q e Q(A). But by choosing a
# 0 G β(^4) sufficiently close to w0 we can obtain qQ(a) Φ q${b). This
contradiction shows that we must have go(a) Φ go(b) for some g0 e I(A).

Now we will assume that (i) and (ii) hold. To show that Q(A) is dense
in U(X) we observe first that the uniform closure Q(A) of Q(A) is a
subgroup of t/( JQ. Next we note that, because of (i), it suffices to show
that \ogU(X) is contained in Q(A). A function u in U(X) belongs to
log U( X) if and only if it has the form

u = eir

where r is a continuous real valued function on X. Since

u= (eir/»)n

for n = 1,2,..., it follows that each member of logt/( X) can be written
as an integer power of a function in U( X) which is arbitrarily close to the
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constant function 1. Thus, to show logU(X) c Q(A) it is enough to show
that Q(A) contains all functions of the form

(1) u = v2

where v e U(X) and Re v > 1/2.
Let u and u be as in (1) and let ε e (0, \). By (ii) and the Stone-

Weierstrass theorem we can find inner functions gv g2> •••>£«> hv

h2,-..9hn and constants cv c2,...,cn such that

(2) v ~ Σ cjgj < ε.

Clearly, (2) can be re-written in the form

(3) V ~ g Σ Cjfj

where g = Π^xgy and /1? / 2,.. .,/ r t

that

(4)

Since u = 1/ϋ, it follows again from (3) that

It follows easily from (3)

v-

Thus, we have

(5) u- g2

-1/

n

n

n

%/ Σ
/-I

< 4

< 8ε.

We now define a mapping Ψ: X -> Γ"+ 1 via

Consider the function as defined on Ψ( Jf) by

r(z) = r(z09 zl9..., z J = z0 £ cy.z;..
7 = 1

We observe that, by (4),

(6) Rer(z) > 1/4

whenever z e ^(X). It follows easily from (6) and the Tietze extension
theorem that r has an extension r* to all of Tn+ι which satisfies

Rer*(z)> 1/4
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for all z in Tn+ι. In particular, r* never vanishes on Tn+ι. Thus

r*/r* e U(T" + ι). Using the main result of [5], we can find Fv F2 G

I(A(Tn+ι)) such that

*/r* -(7) \\r*/r ^

where the norm indicated is of course the sup-norm over Tn+ι. Now (5)

can be re-written

(8) || u - r * o ψ / p o ψ | | < 8ε.

Thus, using (7) and (8), we have

\\u -

By Proposition 2 it follows that Fι°Φ and F2 ° Ψ belong to I (A). The

proof of Theorem 3 is now complete.

Applications and examples. (I) Let dμ be a measure on some set and

let H™(dμ) be a sub-algebra of L°°(dμ) which is closed in the essential-sup

norm and contains the functions which are constant a.e. We will call a

function h G Hco(dμ) inner if \h\ = 1 a.e. The Gelfand transform / - > /

is an isometric isomorphism from U°{dμ) onto C(Mμ), where Mμ denotes

the maximal ideal space of U°(dμ). The algebra H°°(dμ) is carried by the

Gelfand transform onto a closed sub-algebra H°°)(dμ). Furthermore, h is

inner in H°°(dμ) iff h e ϊ(H°°(dμ), For our purposes it is important to

note that every u G L°°(dμ), such that |u| = 1 a.e., can be written in the

form u = eι\ where r G L°°(dμ). It follows that ί7(M/i)/logί7(Mμ) is

trivial.

By the remarks above and by Theorem 2 we have the following:

COROLLARY 4. Every member of L°°(dμ) which is unimodular a.e. can

be approximated in the essential sup-norm by quotients of inner functions

from H°°(dμ) iffI(H°°(dμ) separates the points ofMμ.

In [1] Bernard el al show that if H°°(dμ) is strongly logmodular, then

I(H°°(dμ)) separates the points of M . Strong logmodularity holds in the

classical case where μ is arc-length measure σ on Γ1 and H°°(dσ) is the

usual Hardy space. Thus, Corollary 4 and the fact that every inner

function in Hco(dμ) can be approximated by Blaschke products yield

Theorem 1. (See [4, Chapter 10] for details.)

Next consider a plane domain Ω bounded by a finite number of

analytic Jordan curves. Let ί/°°(Ω) denote the algebra of bounded ana-

lytic functions on Ω. by Fatou's theorem H°°(Q) can be identified with
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the algebra H°°(ds) of functions which are non-tangential limits ds— a.e.
of functions in /P°(Ω). Here of course ds denotes arc length measure on
the boundary of Ω. It is shown in [1, Lemma 4.8] that the inner functions
in H°°(ds) separate the points of the maximal ideal space of U°(ds).
Thus, Corollary 4 can be applied to H°°(ds).

(II) Another application of Theorem 3 occurs in the theory of
compact abelian groups. In the discussion which follows G will denote a
compact abelian group and G# will denote its dual group, i.e., the group
of continuous characters on G.

We will need the following.

LEMMA 5. Let S c G # and let (S) denote the subgroup of G*
generated by S. If S separates the points of G, then (S) = G # .

Proof, Suppose that S separates the points of G and that (S) is a
proper sub-group of G # . Since G # is discrete, it follows that there is a
non-constant character q on G# such that q(c) = 1 for all c e (S) (see
[7, pp. 35-36]). By the Pontryagin duality theorem there is a point g0 e G
such that q(b) = b(g0) for all b G G # . In particular, c(g0) = 1 for every
c e S . Since S separates points it follows that g0 must be the identity in
G. But then q cannot be non-constant, since q(b) = b(g0) = 1 for every
HG*.

THEOREM 6. Suppose that G is either totally disconnected or connected.

Let S be a point separating subset of G# and let As denote the closed

sub-algebra ofC(G) generated by S. Then Q(AS) is dense in U(G).

Proof. Suppose G is totally disconnected. Then U(G)/logU(G) is
trivial. Thus, the hypotheses of Theorem 3 are satisfied by As. It follows
that Q(AS) is dense in U(G).

In the case where G is connected we bring in a result due to Taylor [8,
p. 80] which asserts that for each u e U(G) there is a continuous
character c such that cu e logU(G). By Lemma 5 it follows that c e
Q(AS). Thus, condition (i) of Theorem 3 is satisfied by the algebra As.
Since S c As, the condition (ii) is also satisfied. Hence, Q(AS) is dense in
U(G).

(III) It is not hard to give examples where condition (ii) of Theorem 3
fails. If X is a compact subset of the plane and R( X) is the closure of the
rational functions in C(X), then the inner functions in R(X) separate the
points of X iff R(X) = C(X). A more striking example is provided by an
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algebra constructed by Browder and Wermer in [2, Corollary 1]. The
Browder and Wermer algebra is of the form

where Ψ is a homeomorphism of Γ1 onto itself which is singular i.e. Ψ
maps a set of Lebesgue measure 0 onto a set of full Lebesgue measure.
The algebra A(Ψ) is a Dirichlet sub-algebra of A(Tι). If h e I(A(Ψ)),
then both h and h ° Ψ must be finite Blaschke products. It follows easily
that h must be a constant.

Final Remark. Condition (i) of Theorem 2 remains something of a
mystery to us. We have been unable to find an example of an algebra of
functions which satisfies (ii) but not (i).
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