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NON-ASSOCIATIVE Lp - SPACES

BRUNO IOCHUM

/-''-spaces associated to Jordan algebras with traces are defined.
They have the usual properties of their equivalents on a measure space,
but the product is non-associative.

1. Introduction. The Banach lattices Lp(Z,v) where (Z, v) is a
measure space can be extended in a non commutative algebraic context
then it remains a commutative notion under the form of a trace on a von
Neumann algebra ([12], [34], [29]). Here we show that it is possible to use
the same approach in the non associative case of Jordan-Banach algebras
with predual (J.B.W. algebras). The Jordan algebras appeared in the
thirties as a formalism of quantum mechanics and are useful in this
context (see for instance the references in [19]). There are many connec-
tions between operator-algebras and Jordan Banach algebras and this
explains why we use ideas from von Neumann algebra theory, especially
those in Dixmier's paper [12]. Actually it is possible to prove part of the
results of this paper using the paper [2] by Ajupov and a structure
theorem on J.B.W. algebras (see [35], [16]) which reduces the problem to
the study of all possible cases. However we prefer a global and direct
approach since in our opinion the close relations between the non associa-
tive but commutative product of Jordan algebras and the associative but
not commutative product of operator algebras are not sufficiently well
understood.

The paper is organized as follows: In section 2 we recall the necessary
details about Jordan Banach algebras and semifinite traces. In section 3
the L^-spaces are defined and we prove that (Lp)* is isomorphic to Lq

for p > 1, where \/p + \/q = 1. It follows from Clarkson's inequalities
that these spaces are uniformly convex and uniformly smooth for p > 1.
The case 0 < p < 1 is also investigated. Section 4 contains related results.

2. Notations and basic properties. A Jordan-Banach (J.B.) algebra
M is a real Banach space and a real Jordan algebra such that

J 2 | | χ,yinM

417



418 BRUNO IOCHUM

(see [4]). Let Lx be the multiplication operator by x: Lxy = xy and
Ux = 2(LX)

2 - LX2 the triple product. For instance, if M is the self adjoint
part of a C*-algebra, and Lxy = 2~1(x - y + y x) where is the opera-
tor product, then Ux y = x - y x. If M is the dual of a (necessarily
unique) Banach space M* then M is called a J.B.W. algebra ([35], [16]).

Note that if M + = {a2\a e M} then M + is a closed convex cone
such that M = M + - AT. In particular |x| = (x 2 ) 1 / 2 e M+. If 5 is the
set of symmetries (i.e. s2 = 1) and M is a J.B.W. algebra then each x in
M has the decomposition x = s\x\ where s e S. A trace φ on a J.B.
algebra M is an application from M+ to [0, oo] satisfying the following:

φ(x +y) = ψ(x) + φ(y)9

φ(λx) = λφ(x),

( ) x, y e M, λ e R+.

Define Mx

+= {x e M+\φ(x) < oo} and < the order in M given by M+.
φ is said to be faithful if φ(x) = 0 yields x = 0, semifinite if

φ(x) = sup{φ(j) | j G M^, y < x}, normal if <p(*a)T<p(*) for every
increasing net xa t x xα, x in M + (M is a J.B.W. algebra).

Recall some basic facts on traces ([19] V.1.2, V.1.4, [20], [31] and [3])
where M now as in the following denotes a J.B.W. algebra and φ a
semifinite faithful normal trace.

LEMMA 1.

(i) Mx = Mi — Mγ is a J. B. ideal in M and φ can be extended by
linearity to Mv

(ii) φ(x(yz)) = φ((xy)z) = φ(y(xz))9 x9 y e M, z e Mv

(iii) φ(Usx) = φ ( x ) , S G S , J C G M + .

(iv) φ(C4z + Uyz) = φ ( [ / ( χ 2 + 7 2 ) 1 / 2 z ) , x, ^ G M, z e M x .

(v) <p(Uxy) = φ(x2y), xeλf, yeMx.
In particular φ(xy) > 0 if x G M+, 7 e M£.

(vi) φ(eί[L"LΛ) = φ(z) / E R , X J G M , Z E MX.

(v i i ) φ ( x ( ί / ^ ) ) = φ ( y ( U l X ) ) 9 x.z^M^ye Mv

(viii) φdjςyD < ||x| |φ(|j|), x e M9 y e Mv

(ix) ΓΛe σ(M, M#) closure of Mγ is M.

DEFINITION 2. For x e M and 0 < p < 00 define

H*lk-φ(l*l
We adopt the convention HxH^ = ||x|
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Note that H * ^ < oo for all p e [1, oo] if x e Mx.

LEMMA 3.

(i) Holder inequality: If p,q e [1, oo] .swcλ ίftα* 1//? 4- l / # = 1, then

(ii) | |x||p = sup{|φ(jcy)||j e M, | | j | | ^ < 1} and the supremum is at-

tained.

(in) \\xy\\p < \\x\\\\y\\r x e M, ^ e Mv

(iv) || || is a norm in Mv

Proof, (i) We first prove the inequality φ(a(xy)) < \\x\\p\\y\\q\\a\l

where a e M, for x(λ) and >>(μ) of the form Σ ^ λ , ^ . (resp. Σj^μjfj)

where λ = (λ,.),- (resp. μ = (μy)y is a set of reals and {e i} i (resp. {fj)j) is

an orthogonal family of non zero idempotents in Mv

Let a e M such that ||α|| < 1 and let ^4fl be the bilinear form defined

by

The Riesz's theorem (cf. [32], p. 472) asserts the convexity of

log(Mβ(/>', q')) ΐoτ(p\ q') in the triangle 0 < p' < 1, 0 < qf < 1, / + 4'

> 1 where Ma(p\ qf) = sup|^4α(λ, μ)| for λ and μ such that

and

(take supf |λf.| < 1 if p' = 0 and sup l̂μ l̂ < 1 if ^ ' = 0). Thus, if p' = 1

and # r = 0, the condition \φ(a(xy))\ < 1 for \\x\\λ < 1, Hjμjl̂  < 1 (Lemma

1) yields logMα(l,0) < 0. For the same reason logMα(0,1) < 0, thus for

p' = 1/p, qf = 1/?, logM α (l/p, 1/^) < 0, so that the conditions \\x\\p <

1 and ll^ll^ < 1 yield ψ(a(xy)) < 1 as claimed.

Let now x9 y be arbitrary in Mv By spectral theory, there exists

{ χ

n} n e N s u c h ^ a t Xn is in the J.B.W. algebra generated by x, 0 < xrt < 1,

xΛ tends to 1 in the s(M, Mjc)-topology and xxn has the previous form.

Let {yn}n be analogous sequence for y. The application: z e M ->

(«(>^m)))z) is σ(M, M*) continuous, hence by Lemma 1,

φ(x{a(yym))) = lim φ((x(

I l i m I
n
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Since

I I * * , I I , =
we obtain the result by taking the limit in m and afterwards choose a = s

where s is the symmetry given by s(xy) = \xy\.

(ii) For x e M, |JC| = sx, where s e S, thus for p = 1,

For /> > 1, take z = \\x\\-p

p^s\x\p~ι. Clearly | | j ; | | , = 1 and φ(xz) = IMI,.

(iii) Follows from (ii) and Lemma 1.

(iv) || 11̂  is a seminorm as sup-limit of seminorms and a norm by the

faithfulness of φ. D

3. L ^-spaces.

DEFINITION 4. For p e [1, oo[, Lp = M1

IIII/' is a Banach space. For

p = oo we adopt the convention L°° = M.
I I I I

Note that it is also possible to define Lp = Mι/p \ where Mι/p =

{ χ e M | | | j c | | / ? < o o } , but this definition is of interest only if it is known

that Mι/p is an ideal of M such that (M1/p)
1/p' = Mι/pp, and Mι/pMι/p,

= Ml/p+l/p'

REMARK. Suppose that M is the space CR( X) of real valued continu-

ous functions on a compact hyperstonean space X. Then M is a J.B.W.

algebra [35] with the usual product of functions. Let { μ α } α G Γ be a

maximal family of positive normal measures on X with disjoint supports

Sa. If Ω = UaSa, μ = Σaμa then Ω is a locally compact dense set in X, μ

is a positive Radon measure on Ω and M is isomorphic to the space

L°°(Ω,μ) of real valued essentially bounded /x-measurable functions over

Ω. The L^-spaces defined above are exactly Lp(Ώ,μ). This justifies the

above convention. In this case, the following theorem is well known.

THEOREM 5. The application: x e Mλ -> φ(x ) e M* can be ex-

tended to an isometrically isomorphism from L1 onto M* (i.e.: (L 1 )* = M).

In the same way, for p e ]1, oo[ the Banach space Lp is isometrically

isomorphic to (Lg)* with q = p/p — 1.

In the general case, several preliminaries are necessary.

LEMMA 6. Hansen inequality. Let A be aJ.B. algebra and x e A+. For

every x in A, \\x\\ < 1 and all operator monotone functions f (i.e. x < y,
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UJ(x)<f(Uax).

In particular Uax
p < (Uax)p ifp e]0,1] ([30], 1.3.8).

Proof. This results from [17] and [39] pp. 2.1. D

Note that a non spatial proof of the Hansen inequality can be carried
out with [5] using Lόwner's theory (see [14], Th. 5).

Now we follow [38].

LEMMA 7. Let x, y e Mx

+

(i) ifx < y then ψ(xp) < ψ(yp) forp e ]0, oo[
(ii) ψ(xnp) < φ([UM* + y)p~lV) forp e ]1, oo[, n e N \ {0}.

Proof. First we prove

(1)

Recall that (Uab)2 = UJJha
2 and Uai = UaUa. The J.B.W. algebra gener-

ated by x, y is special (Shirshov-Cohn's theorem [16]) so we easily check
that

Thus by Lemma 1

(i) We first prove the result by induction for p = 2", n e N. If n = 1,

φ ( y 2 - x2) = φ((χ + ̂ )(χ - jμ)) = ψ{U{x+yγ/2(y - x)) > 0

(Lemma 1). Assume now the result for p = 2n. Then

i/2jc) ) by hypothesis because C î/27 > Uyi/ix

x^yf) (1)

> φ ((Uxi/2 x)2 ) by hypothesis
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For an arbitrary /?, it is possible to choose n such that q = p2~n < 1.
Since xq < yq (cf. [30], 1.3.8),

(ii) By induction: If p e ]1, 2], JC^"1 < (x + .yK"1 and

x ' = ^ ( J C * - 1 ) < ί4i/2((x + y)p~ι).

Using part (i),

φ(xnp) < φ([uxι,i(x +y)P~T)> ° Φ n G N

Suppose now that (ii) is satisfied for p e] l , m] where 2 < m G N. If
q = m + p' where /?' e]0, 1], we have

Using (i)

") since q/2 e ] l , m]

where in the second step we used (Uab)2 = UaUba
2. D

Parts of the following propositions were proved in [8] for the L ̂ -spaces
on a measure space and in [6], [11], [12], [13], [15], [18], [22], [25], [26], [27],
[28], [33], [34], [36], [37], [38], [40], [43] in the associative context of
operator algebras.

PROPOSITION 8. // p e]0, 1] then
(i) | |x + y\\> < \\X\\P + \\y\\P, x, y e M+

Proof. We can suppose p < 1. We first prove the inequality (i) for
x, y e M+. For integers n, m define xm = x + \/m, ym = y + \/m and
zn = x + y + 1/n. Let {ea}aeΓ be an increasing net in Mf such that
ea 11 with respect to Γ (see [19], Appendix 5 and Lemma 1).

ylίiU2^zn)
p ea)

(Lemma 6 and Lemma l(v)).
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Note that Uxγia tends in norm || Ĥ  to Ux\/ia for all a in M. (In
fact,

\\UxV2d - Uχl/2a\\ <2\\xY2{xY2a) -

and

\\xY2{xY'a) - x^2(x^2 - a)\\

<\\{xY2 - x1/2){xY2 - a)\\ +\\x^2({xY2 - x1/2)a

Then, taking the limit in m in the previous inequality and using Lemma
l(v) and (vii)

Using ψ(a2ea) = φ(Uaea) for a e M and the normality of φ, we obtain in
the α-limit

φ(x') + φ(y') > φ(Uzγ-w{Ux^ + Uyl/ήl) = <p{zζ-\x + y))

because zn and (x + y) operator commute (cf. [4]) and zξ~1(x + y) is
positive

^ ψ(uff-Hx+y)]eΛ) = φ&zζ-^x + y))ea).

Hence

φ(x') + φ(y") > lim <p{{zΓ\x + y))ea) = <p((x + y)Pea)
n

As before, the limit in a gives

(2) \\x+yt<\\x\\Pp + \\y\\P

P ΐor x,yeM+.

(ii) [24] Suppose 0 < y < x. Since y" < XP ([30] 1.3.8.)

\\χ-y\\P

P-\\χp-yp\\i = φ((χ-y)p)-φ{((χ-y)+

> 0 by part (i).
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Let now x, y be arbitrary. If x — y = (x — y) + — (x - y)_ is the
Jordan decomposition of x — y in M,

\\χp-yp\U<\\χp-(y+(χ-y) + ) p \ \ ι + \ \ ( y + ( χ - y ) + ) p - y p \ \ 1

^ IK* ~~ y)- ll/> + IK* ~~ j ) + ll/> using the previous result

= ll*-jlί •

PROPOSITION 9. Clarkson inequalities.
(i) L<?//> e [1, oof.

(ii) Leί^ e [1, oof. Then

\χ1/p -y1/pt <\\χ -y\\i

(iii) Letp e [2, oof.

(iv) Lei p e] l , 2]

-y\\l * 2(\\xfP + \\y\\P

p)
q/P,

Proof, (i) follows from the convexity of s e R —» 5^ and the Minkow-
ski inequality ||x + 7 ^ < Hxl̂  + H^l^.

(ii) The previous lemma yields for p > 1

= *(*')

< φ((x + y)(x + yY'1) (Lemma l(v))

-fc + yfp-
Second estimate: Suppose first that x > y e Afί1". Then using xι/p

yι/p and the previous inequality extended to L1,

\\χ-yh-\W/p-//pl = Φ(X) - φ(y+(χι/p-y1/p)p)

= φ((« + υ)p) - φ(up + vp) > 0
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where u = xι/p — yι/p e M + and v = yι/p G +. For general JC, j> in M{*",
let (x — y)+ — (x — y)_ be the Jordan decomposition of x — y
and e the support of (x1/p — yι/p)+. Since x < y -f (JC — y)+9

xι/p < (y + (x - y)+)ι/p hence

Thus

(Lemmas 1 and 3)

^ \\(χ ~ y) + Hi by the first half of the proof.

Switching x and y, we get Jj(JCX//> — y1/p)-\\p

p < \\{x — y)-\\i a n ( i w e a r e

done by adding the last two estimates.

REMARK 10. Notice that for p = 2, this reduces to the Powers-Stormer
inequality.

Case p = 1 is trivial,
(iii)

y)2\C

+ yf +{x- yf P^/2
by part (ii)

by part (i)

(iv) We use now an idea from [22], also exploited by H. Kosaki.
The inequality follows from

valid

* 1

x3

χ4

for Xj

= x,

= | | J C

= || JC

- 2 =

+ >llΓ

-jiir

In

y
P ι

" ' ' I

fact, if

\x+yf

x -y\

- 1

- 1

where s G

where ^ e :

S and x + j

S and x — y

= s\x+j

= t\x-y
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then it is easy to check that

- x ) x ) = \ \ x - v\\" = I I J C \f
1 Λ ' 2 / Λ ' 4 / II •* / \\P \\ λ/4\\q'

It is routine using spectral theory to verify that each x in Mf is a
|| H^-limit of elements of the form Σ ^ x λ ^ where λ ( e R and {ei}i is a
finite set of orthogonal idempotents in M£. It is sufficient to prove (3) for

n(k)

*k= Σ λkfiek9i9 * e {1,2,3,4}.

Denote also by φ the complex linear extension of φ on the complex
Jordan extension Mf = Mγ 4- iMv (Actually Mc = M 4- iM is a JB*-al-
gebra for the natural involution but we do not use this fact.) We also use
the notation ||JC||2 = φ(x*x)ι/2 for x e Mf. Define

n(k)

= J^ sgn(λki)\λki\ eki for k = 1,2
i - l

i - l

If g(z) = φ((^(z) +72(z))73(z) + (yx(z) -y2(z))y4(z)) then g is an
analytic function bounded in the strip \ < Rez < 1. For Rez = 1

For Re 2 = \,

Cauchy-Schwarz inequality for φ

) « 2

2 + ι ι Λ ( z ) - Λ ( z ) i Q ^ i i i o «

ll2

2)
1/2

Since
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we obtain the desired inequality by the case of the Phragmen-Lindelof s
principle known as the three lines theorem [44] p. 93,

i ) < sup{|g(z)||Re(z) =

REMARK 11. It is possible to prove the two last inequalities of
Proposition 9 appealing again to Riesz's convexity theorem and the
reduction to simple elements used in Lemma 3. For instance, as in [8]
Theorem 1, we obtain the following generalization

(4) (||* + y\ί +11* -y\ ί ) 1 / r < ϊ-^(\\x\\s

P +\\y\\s

Pf
/S

where x, y e Mv r > p > s > 1 and s > r/(r — 1). In fact, the inequal-
ity asserts the truth of Proposition 9—(iϋ) for r = s = p and of (iv) for
r — q and s = p.

COROLLARY 12. Lp is uniformly convex for p e] l , oo[.

Proof. Recall that a Banach space X is uniformly convex if its
m o d u l u s of convexity 8x(e) = inf{ l - 2~ι\\x +y\\\x,ye X, \\x\\ = \\y\\
= 1 and |[JC — y\\ = ε) is strictly positive for 0 < ε < 2 [21]. In fact, the
inequalities (iii) and (iv) in Proposition 9 yield

8LP{e)>\-{l-2-PEP)ι/p ίorp>2

> 1 - ( 1 - 2"V0 1 A for/7 > 1.

Proof of Theorem 5. Suppose p > 1.

The map: x ^ Lp -> φ(x - ) e (Z/)* is a linear isometry extending
the application with x e Mx endowed with the norm || Ĥ . By a Milman's
theorem, Lq is reflexive being uniformly convex. If the previous applica-
tion is not surjective, there exists y e Lq with y Φ 0 such that φ(xy) = 0
for all x e Lp, in contradiction with \\y\\q = sup{|φ(xy)||Λ: e Ml9 \\x\\p

< 1 } .
Suppose p = 1.
The map: x e Mλ -> ψ(x - ) e M* is again a linear isometry for the

norm || ||x on Mx and can be extended to Zλ We now show that the image
of Mλ is dense in M*: Let C be the || || ̂ -closure of the image, so that C
is a closed convex cone. Thus by Hahn-Banach theorem for every non
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zero co e M* \ C, there exists a non zero y e M such that φ(jα ) = 0 for

all x e Mx and ω( j ) < 0. Using [19] Appendix 5 and Lemma 1, there

exists an increasing net {*α}α€Ξr in Mx

+ σ(M, M^-convergent to 1 which

respect to Γ. Let s ^ S be defined by sy = \y\. We have

ψ{\y\) =

j) = 0.

The fidelity of φ yields a contradiction. D

Using [21] §26.10 (6) and (9) we obtain immediately

COROLLARY 13. The Lp-spaces are uniformly smooth and the norms

\\'\\p are uniformly strongly differentiable (Frechet differentiable) except at

0 for p e ] l , oo[.

As an application of this corollary we obtain as in [23] some related

results without analytic proof (see [38]) in our real context.

We define ( L ^ ) + as the || ||-closure of Mf.

LEMMA 14. // the map /: / G R ->/(/) e (Lp)+, p e ] l , oo[ is

differentiable for the norm \\\\p at t0 such thatf(t0) Φ 0 then t -> ψ(f(t)p)

is differentiable at t0 and

Proof. The strong derivative of || Ĥ  at f(t0) is the linear form

because the supporting hyperplane through f(t0) of the ball of radius

Lp

and thus one can apply [21], (12) p. 349 and (4) p. 364. By the chain rule

property the strong derivative of || \\p

p at f(t0) is v = pφ(f(to)
v~ι ). By

assumption for small ε e R+, χε = f(t0 + ε) — f(t0) ^ Lp and

- i γ ^ r p
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Consequently,

e-l[φ(f(t0 + β)') - φ(f(tQY)] « pψ{f(to)e-ιxε) + e~%

where 8£ = | | /(* 0 + xe)\\p

P - WfihWp ~ *(*e)and \\xβ\\^\δB\ tends to 0 as
\\xe\\p tends to 0 as we have seen. D

We are now in position to look at the case of equality in Proposi-
tion 9.

LEMMA 15.

®\\x\\p

P + \\y\\p

P~\\x + yfp forx,y e M+, p e ]1, oo[ iffxy = 0
(n)2ι-'\\x+yζ = \\x\\'p + \\y\\'p for x, y e Mf9 p^ K>,oo[\{l}

iff* ^y
(iii) \x+y% + \\x~y\P

p = 2{\\x\Yp + II^IIP / ^ ^ 7 e M1? ^
{2}// 0

. We can assume that M is a J.W. algebra ([39] Prop. 2.1) by
restricting to the algebra generated by x and y.

(i) If 0 = xy = 2-1(x 7 + ^ x) where - is the usual operator prod-
uct, x2 y = -x - y x = j .x 2 . Since [x2, >>] = 0, [x, >>] = 0 because x =
( x 2 ) 1 / 2 = lim^ pn{x) where /?„ is a polynomial of order n and x 7 = 0.
The equality (x -f y)p = xp + yp follows as ||x 4- y\\p = ||x||^ 4- ||j;||£.

Conversely suppose φ((x + y)p) = ψ(xp) + <p(j^). For every
α , ί > G M , / G R w e have by Proposition 9(ii)

(5) /(/) = Ψ((x 4- e'^-Uy)

The fact that et[La'Lh] is an automorphism of M leaving the trace invariant
(Lemma 1) implies f(t) > ψ(xp) + ψ(yp) = /(0). Thanks to the previous
lemma,

0 =f'(0)=pφ(z{[La,Lh}y)) where z = (x + ^ ) ^ x

and

that is

Since (L 1)* = M (Theorem 5), z(by) = (zb)y \fb e M. In particular for
and ί/ z = y2z.
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Theorem 5 of [42] asserts the associativity of the J.B. algebra gener-

ated by z and y hence by x and y, thus this algebra is isometrically

isomorphic to C(X) ([4] Proposition 2.3). If μ is the positive measure on

X associated to φ, the equality

/ (χ(i) + y{ξ))pdμ(ξ) - f {χ(ζ)p + y(ξ)') Mi)
Jx Jx

yields *(£)>;(£) = 0 a.e.

Thus xy = 0.

(ii) Suppose 2 1 ~ X ( J C + y)p) = ψ(xp) + ψ(yp) for p > 1. The func-

tion 2ι~pf in (5) attains its maximum at t = 0 (Proposition 9(i)). The

same method as before yields x = y.

For /? < 1 the concavity of: x G Λf -> x^ G M ([30]) implies that

JC^ 4- yp < 2ι~p(x + y)p thus the function 2ι~pf in (5) attains its mini-

mum at / = 0 and we have still x = y.

(iii) Suppose ||x + y\\p + \\x - y\\p = 2(\\x\\p + \\y\\').

Then for q = p/2 Φ 1

and by Proposition 9(i) and (ii) this is greater than

and for q < 1, this is less than

21~*||(x + yf + (JC ~ y)2\\l (concavity z -> z^forz e M+)

< 2 H | X 2 | | ^ + || y2\\q) (Propositionδ).

Thus

( J C + J > ) 2 | | + | (* ~ jO 2 | | = 2||jc2 + y2\\q for q e ] 0 , oo[\{ l } .

The application of (ii) gives (x + y)2 = (x — y)2 and xy = 0.

Conversely, suppose xy = 0. The first part of the proof of (i) gives us

2φ((x2)q +(y2)q) = 2φ((x2 + y2)q) = φ((χ + y) q +(χ — y) q)

that is 2(\\x\\p 4- H^lip = \\x + j | | ; + ||x - j | | | . D

The uniform convexity of Lp has a useful application. For instance,

the following is standard ([36] Theorem 1.24).

LEMMA 16. Let {xn}n(=κbeasequence in Ml9 x G Mλ andp G ]1, oo[.

// Λ:W /enώ to x for the σ(Lp,(Lp)*)-topology and \\xn\\p tends to \\x\\p

then \\x — xn\\p tends to zero.
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REMARK 17. If we replace the σ(L^(L^)*)-topology by the
σ(M, M^-topology, the same result shows (Grϋmms' theorem, cf. [36]
Theorem 2.21).

If p = 1 and xn, x G MI", then the previous lemma holds for the
σ(M, M*) topology (see [9], Appendix).

4. Miscellaneous results. The space L2 has a natural structure of
Hubert space. For more details see [3] if the trace is finite and [19] for the
semifinite case.

It is possible to give a short proof of the weak Holder inequality
|φ(xy)| < | | * | | / J | j ; | | ^ Restricting to simple elements in Lemma 3, we can
see that the map / e φ x Y) -* Σ^jfiλ^μ^φiejj) where X =
spectrum (x), Y= spectrum (y) and CR(Xx Y) is the space of real
valued continuous functions on X X Y, defines a positive Borel measure
reducing the problem to the Holder's inequality on a measure space. With
the same trick it is possible to prove for JC, y e Mf that

^^Vί*')2"*. ^ e]2, oo[, i + i - 1

since these inequalities are true on measure spaces [22].
All inequalities on measure spaces involving integrals of product of

positive elements can be extended by this method to our Lp spaces.
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