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ASYMPTOTIC EXPANSIONS OF THE

LEBESGUE CONSTANTS

FOR JACOBI SERIES

C. L. FRENZEN AND R. WONG

Explicit expressions are obtained for the implied constants in the
two 0-terms in Lorch's asymptotic expansions of the Lebesgue constants
associated with Jacobi series [Amer. J. Math., 81 (1959), 875-888]. In
particular, a question of Szegό concerning asymptotic monotonicity of
the Lebesgue constants for Laplace series is answered. Our method
differs from that of Lorch, and makes use of some recently obtained
uniform asymptotic expansions for the Jacobi polynomials and their
zeros.

1. Introduction and summary. The nth partial sum of the Fourier
series of an arbitrary function can be written in the form of an integral
involving the Dirichlet kernel. The integral of the absolute value of this
kernel is known as the nth Lebesgue constant, and is usually denoted by

|sin(« + \)t\ .

sin(ί/2) '

see [19, p. 172]. The behavior of the sequence {Ln} is closely connected
with convergence and divergence properties of Fourier series, and the
importance of this sequence has led many mathematicians to be con-
cerned not only with just its asymptotic formula but also with its full
asymptotic expansion. First, Fejer [1] showed that

(1.2) L
π n n

where c0 and cλ are constants and a(n) = 0(1) as n -» oo. An explicit
expression was given for c0 but not for cv Later, infinite asymptotic
expansions were derived by Gronwall [4], Watson [18] and Hardy [7].

In an entirely analogous manner, the nth partial sum of the expansion
of an arbitrary function in terms of Jacobi polynomials can be written as
an integral involving a kernel; see, e.g., [17, p. 39]. The nth Lebesgue
constant in this case has the integral representation
ΛI o\ r ( n\ T(n + a + β + 2)
( 1 3 ) W i

sin -r

391

( a \ 20+1

(cos I ) \Pn^
+1^(cosθ)\dθ.
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This result is due to Rau [12]. In view of the identity [17, p. 60]

11.4) Fn i

Equation (1.3) gives Ln(- \, - \) = Ln, contrary to a statement made in

[8, footnote 7].

Rau [12] was the first to show that for a > -1/2 and β > - 1 ,

(1.5) LΛ(a,β) = Aaβn« + 1'2 + o(n«+1/2), n -> oo,

where

(Λfλ A 2 Γ(α/2 + l/4)Γ(jS/2 + 3/4)
yi.o) Λaβ ^ 3 / 2 Γ ( β + i ) Γ ( ^ + ^ ^ / 2 + ^ .

Later Szego [16] had an alternative proof of (1.5), and furthermore showed

that

(1.7) L B (-i , j8) = 4 l o g « + o(log/i)

for jβ > - 1 , and that for -1 < a < - \ and β > -1

(1.8) IJα,jB) = Γ ( ^ 1 } /o θ'\Ja+i(*)\dθ + o(ΐ),

where Ja+I(θ)is the Bessel function of first kind.

The above results have been sharpened by Lorch [8, 9], particularly in

the cases a = — \ and - \ < a < \. For — \ < a < < \, a - β < 1

and β > - 1 , Lorch's result can be stated as follows:

(1.9) Ln(a,β) = Aaβn«+ι/2 + Ba + O{n-1/2) + O(n^^1)

where

(1.10) Ba = T{l~
a

+1

+ 2Σ
Jk-l

both infinite series being absolutely convergent. (Equation (4) in [9]

contains two misprints; Mk+ι(a) should be replaced by Mk(a) and Mx{a)

should have a minus sign.) In (1.10), j n = ja+ι,n is the nth positive zero of
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Ja+l(X)> n = ! A > JO = 0> a n d

(1.11) Mk(a) - ( - l ) Λ ( Λ + 1 , J V β ( Λ + 1 > J > 0, fc = 1,2,....

For α = — i and β > - 1 , Lorch also obtained the result that as n -> oc,

(1.12) Ln(-i, iδ) = 4
7Γ

where

(1.13) Co = — log! + - [ θ'1 sinθdθ

4ί./>l-(«.«)'^Λ

-if 2

77 ^ \ 77

the last integral being convergent. (There is a typographical error in [9,

(8)]; the factor in front of log 2 should be 8/772 and not 4/772.)

Lorch's investigation [10] was motivated by a question raised by

Szegό concerning asymptotic monotonicity of the sequence {Ln(0,0)}; see

also the editor's comment at the end of [13]. The result in (1.9), however,

fails to answer the question of Szegό. Lorch thus posed to us in 1980 the

problem of replacing the O-terms in (1.9) and (1.12) by explicitly de-

termined expressions plus terms of lower asymptotic order. The following

results provide a solution to his problem, and were announced in [3]. The

detailed proofs of these results are the contents of the present paper. The

fact that (Lw(0,0)} is an asymptotically increasing sequence is an im-

mediate consequence of the result given in (1.18) below.

First, for the restricted range — \ < a < \ and - \ < β < \, we

have

(1.14) Ln(a,β) = Aaβ

where

r - (« + β + 2X<* + V 2 )
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and

(1.16)
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χ β + 1 / 2 d x

Jk-l

In (1.16), j ' n =jβ^n is the nth positive zero of Jβ(x), n = 1,2,..., y0' = 0
and

(1.17) A

_ / -t\k + l( . \l + £ τ I \

- \ ~ ι ) \Jβ,k) Jβ+i\Jβ,ki-

ln the important particular case of Laplace series (i.e., the series in

terms of Legendre polynomials at the end point x = 1), a = β = 0, and

(1.14) becomes

(1.18)

7Γ

~ι -(k -

The principal term in (1.18) was first given by Gronwall [5, 6], and
later by Szegό [14, 15] with simpler proofs.

An improved version of (1.12) is

γ7Γ
(1.19) Ln{~\,β)=

77

valid for - \ < β < \, where Dβ is as given in (1.16) and

(1.20) £
77
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Finally, we turn to the case -1 < a < - \. Under the additional
restrictions a - β > -1 and - \ < β < \, we have the following shar-
pened form of (1.8):

(1.21) Ln(a,β) = Co + C^ f t + 1 / 2 + C2n
a~ι/2 + C3n«-β~ι + O(/T2),

where

(1 2 2 ) Q =r(7TΊ
4

(1.23)
Γ(α

α + 1/2 I 2

+ Γ/2 [(sin^)Q" i / z(cos^)p + i / z - θa~^2\ dθ

(1.24) C2=i(a + β + :

Dβ again being the same constant given in (1.16).
Lorch's method essentially consists of replacing the Jacobi poly-

nomial in (1.3) by its asymptotic formula of "Hub's type" [17, p. 197],
and splitting the interval of integration (0,77) at the points j a + ι,k/N,
k = 1,..., [TV], where N = n 4- \{a + β + 2). Our approach differs from
that of Lorch. We first split the interval (0, π) at the exact zeros of the
Jacobi polynomial and then apply recently obtained uniform asymptotic
expansions for the Jacobi polynomials and their zeros [2]. Our method
may also be extended to give higher order approximations when desired.

2. Sketch of the procedure. For simplicity of presentation, we
restrict our attention to the case — \ < a < \ and - \ < β < \. Let θk

denote the kih zero of P,<α+M)(cos0), put n = [n/2], and write

2)

We shall first be concerned with the constant L^\a9β). The evalua-
tion of L^\a,β) proceeds in a similar manner. For convenience, we set
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θ0 = 0 and define

(2.2) Ik = jf k+ι (sin f ) (cos f ) *„<«•".»(«»*) dθ.

Since cos 0 = 1 and

/ , . Λ \ Tin 4- n, 4- l\

>o,
α + 1\ =

 Γ ( * + <* + 2 )
)\ n

we have

(2.4) L?(«,β)=Σ(-l)%
/c = 0

To evaluate Ik9 we shall use the following results given in [2]; see, in

particular, the main theorem, Corollary 2, and the first paragraph in §5 of

that reference.

LEMMA 1. For a + 1 > - \ and α + j8 + 1 > - 1 , we have

(2.5) (sin|) (cosf

_ Γ(/ι + α + 2) / θ \1/2

n\

m - l

L /=0

(2.6) iV = /i + £(<* + j8 + 2)

(2.7) σm = 6

the O'term being uniform with respect to θ e [0, π — ε], ε > 0. The coeffi-

cients A t(θ) are analytic functions in 0 < θ < π — ε, and are O(θι) in that

interval. In particular , A0(θ) = 1 α«(i

(2.8) Λ x ( 0 ) = (α + 1) - - ^0 4 t a n 2 "

2. Let a + 1 > - \, a + β + 1 > -1 α«ί/ let 0 < θ1 < θ2 <

< θn < IT be the zeros ofP^a+hβ)(cosθ). Then, as n -> oo,

(2.9)

+ t2O(N~3),
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where j a + ι / is the l-th positive zero of the Bessel function Ja + ι{x) and
t = j a + ι ι/N. The O-term is uniformly bounded for all values of I =
1, 2 , . . . , [yn], where γ G (0,1) is a constant.

Taking m = 3 in (2.5) and substituting the resulting expression in
(2.2) gives

(2.10) Ik =
 Γ ( ^ ! t 2 )

where

(2.11)

and

with

/ Λ θ \ ι / 2 i θ \ a ( θ \ β

(2.13) Λ*(^)=(fcotf) (sin I ) (cos | )
Note that the implied constant in the O-symbol in (2.12) is independent of
k. It is easily seen that

(2.14) "Σ(-l)kH4)=θ(N-3).

Using the identity

(2.15) ^(z-*Λ(z)) = -z-Λ + 1 (z),

we have by integration by parts

(2.16) 7 f ) = Γ 1 + Γ2,

where

(2.17) Tγ = γ2[A*{θk)Ja+ι{Nθk) - A*{θk + ι)Ja

(2.18) 2f
JM θk

For fixed v, it is well-known that
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Thus, by Lemma 2, we have

(2-20) Nθk=

where the implied constant in the 0-symbol is independent of k for
k = l,...,w. Note that a combination of (2.6), (2.19) and (2.20) shows
that for large n, we have θn < τr/2. From (2.20), it also follows that

(2.21) Ja + 1(Nθk) = Ja + 1(ja+ι,k) + J:+1U)O{k/N2),

where ξ lies between Nθk and j a + 1 k and hence is O(k). Since

Ja + iUa + i,k) = 0 and J β '+ 1( |) = O(Γ 1 / 2) 'as ξ -» oo, (2.21) yields

(2.22) /β + 1 (Λ0J = θ ( * ι / y t f 2 ) .

Observe that A*(θ) = O(θa+1) and βA = O(k/N). Thus, by coupling
(2.17) and (2.22), we obtain

(2.23) 7\ = 6>(fcα+3/2/Wo + 5 ) .

Furthermore, since [θa + ιAf(θ)]' = O(θ2a + ι), it is easily seen that

(2.24) 1 2 rα + 3 0 y

The integral inside of the curly bracket is clearly a bounded function of TV
if k = 0, in view of (2.20). For k = 1,..., w — 1, we use (2.19) and the
fact Ja + ι(y) = O(y~ι/2) to conclude that this integral is O(ka'i/2). Now
we recall the well-known expansions [11, p. 292]

n — \ α + 1 oo , K Ώ

ί2 25ϊ Y k a - Ϊ ( a ) ~ - y a + l\Ei ίnΦ Λ\

(2.25) £k f(-α) α + 1 L o l , j π . ( « ^ - D ,
where ζ(μ) is the Riemann-Zeta function. A combination of (2.23), (2.24)
and (2.25) gives

«-i

(2.26) Σ (-1)"^2) =

An entirely similar argument leads to

(2.27) *Σ (-1)"

Here we have used the fact that

n
(2.28) 01-

n as n oc.

From (2.4) and (2.10), it now follows that as n -» oo,

(2.29)
Γ(« + α + 2)

«!JV
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In the next section, it will be shown that

(2.30) "t\-i:

2aRn

where

(2-31) Sn=Σg

(2.32) Rr,-Σ(-i)kf

and

(2-33) gα,(^) = ( 2 c o t l ) [ - ^ - j (cos 2)

To proceed further, we need the following two lemmas, whose proofs are
given in §4.

LEMMA 3. 4̂s n —> oo, the sum in (2.31) has the asymptotic approxima-

tion

(2.34) Sn = * « + J ^ Λ Γ « + I / 2 [ Γ / 2

 g

-Γ/2

JJi/

α-1/2

where B™ is a constant given by

(2.35) 2ff> = f fMft(α) - -^
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LEMMA 4. The asymptotic behavior of the sum in (2.32) is given by

(2.36) Rn

where

(2.37)
k = l Jk

The constants 2^X) and B^2) are related to the constant Ba given in
(1.10). The asymptotic approximation of L^\a,β) is obtained by insert-
ing (2.34) and (2.36) in (2.30), and combining the resulting expression with
(2.29). It is anticipated that the terms involving the last two integrals in
(2.34) will combine with similar terms from L^2)(α, β).

Evaluation of L<2)(α, β) proceeds as follows. By definition we have

(2.38) L«(α,j8)
r* ( ft \ 2 Λ + 1 / ft \2/# + l

= jf (sin f) (coβf) \P!;«+^{cosθ)\dθ,

In the above integral, we replace θ by TΓ — θ. The result is

(2.39) L?(a,β)

= ζ '5(sinf) (cos I)

on account of the identity [17, p. 59]

(2.40)

From (2.40), it also follows that there is a one-to-one relationship between
the zeros of P^a-β) and P<β'a). Suppose the zeros of P^a'β)(cosθ) are
arranged in the order:

o < β β β ) < e f e β ) < ... <βfaft<77.

Since θ$β) is the smallest zero of P<a'β\cosθ), it follows that TΓ - θ$β)

is the largest zero of P ^ α)(cos6>). Thus, TΓ - θftβ) = θ$a\ In general,
we have TΓ - θfyβ) = θ^p+1, or equivalently

for p = 1,...,«. Since θn = θ£ + ι>β\ (2.41) gives TΓ - θ-n = θ^nl\. Set
in = n - n + 1 and θm = θ^%a+l). Equation (2.39) now becomes

(2.42) L?(a,β)

\Pϊβ>a+V(cosθ)\dθ.
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Despite the fact that θm > ττ/2 while θn < π/2 for large values of n,

computation of Z^2)(α, β) proceeds in the same manner as L^\a,β). A

brief summary of this calculuation is given in §5. Asymptotic expansion

(1.14) is obtained by adding the results for L(

n

l)(a,β) and Lf>(a,β)

together. This is done in §6. Since the derivations of expansions (1.19) and

(1.21) are similar to that of (1-14), they will not be presented here.

3. Calculation of I(

k

ι\ From (2.11) and (2.13) we have

(3.1)

where

( n Λ\1/2/ n \ a i ύ \ β

§ cot I) (sin I) (cos f) .
As in (2.16), integration by parts gives

(3.3)

for k Φ 0, where

(3-4) Fx = -j

and

(3.5) F 2 = -ίjf^1 [Aζ(θ)θa]'θ-aJa(NΘ)dθ.

In terms of the function gaβ(θ) defined in (2.33) (and also used in [9,

(30)]), (3.4) becomes

(3.6) * ί = :

By (2.20), Taylor's theorem gives

(3.7)

where ξ lies between Nθk and j a + l Λ . Since j a + l Λ ~ irk by (2.19),

ξ = O(k) and hence /„"(£) = O(/t" 1 / 2 ) . From the identity zj (z) +
zJ

a + ι(z) = <*Ja(z), w e have

(3-8) J:(ja+
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Therefore, (3.7) becomes

(3.9) Ja(Nθk) - /.(Λ+i.*

Since (2.19) and (2.20) imply

(3-10) W=

it follows from (3.6) that

(3.11) Fx = ^ ^ [gaβ(θk)Mk(a) + gaβ(θk+1)Mk+ι(a)}

where Mk(a) is as given in (1.11). In deriving (3.11), we have also used the
fact that gaβ(θ) = 1 + O(θ2) for 0 < θ < ir/2.

We now evaluate F2 given in (3.5). From (3.2), we obtain

(3.12) [A*0{θ)θa\ = -^-θ2"-1 + O(θ2a+1).
2a

Inserting (3.12) in (3.5) gives

( 3 1 3 ) F2= r Γ r + l g + J ?-

where

(3.14) Q= [Nθk+1 y«-ιJa{y) dy
JNθk

and

In view of (2.19), (2.20) and the behavior of the Bessel function, it is easily
seen that the integral in (3.15) is equal to

k+1 ya+ιJ*(y)dy

Since xa+ιJa(x) = [xα+1/α+1(jc)]/, the last integral is zero. Thus

(3.16) R = O(ka+

By the same argument, we also have

(3.17) Q =
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Now substitute (3.16) and (3.17) in (3.13), and add the resulting equation
to (3.11). From (3.3) it follows that the sum is

for k Φ 0.
Note that (3.2) gives

(3.19) At

Inserting this in (3.1), we get

(3.20) iP=j;£θVa+ι(NΘ)dθ + θ{£θ*+%+^

Since (2.20) implies θλ = O(N~ι), the second integral in (3.20) is
O(N~a~3). By a similar argument, it can easily be shown that the first
integral is equal to

Thus we have

From (2.25), (3.18) and (3.21), it now follows that

(3.22) Σ W

^ T T Σ [gaβ(θk)Mk(a) +gaβ(θk+1)Mk+1(a)}

where Rn is given in (2.32). The sum on the right-hand side of (3.22) can
be written as

ή - l

(3-23) Σ [gaβ(θk)Mk(a) + gaβ(θk+1)Mk+1(a)]

(i(«) + gM)Mn(a) + 2Sn
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with Sn being given in (2.31). Since gaβ(θ) = 1 + 0(θ2) and θλ =j\/N
+ O(N~3), we obtain

(3.24) gaβiθjMM = Mx(a) + O(N~2).

Inserting (2.19) in the asymptotic expansion of Ja(x) gives

(3.25) Mk(a) = ^ [jZtf - i(a

cf. (1.11). This in particular gives

(3.26)

Since gaβ(θ) is analytic in [0,77) (see (2.33)), we may expand it at
θ = 77/2. Thus,

(3-27) gaβ(θn) = gaβ[\

and consequently

(3.28) ^ f

A combination of (3.22), (3.23), (3.24) and (3.28) yields the desired result
(2.30).

4. Proofs of Lemmas 3 and 4. We first give the proof of Lemma 4,
which is considerably simpler than that of Lemma 3. Using the identity
[xa + 1Ja+ι(x)Y = xa+1Ja(x), we have by integration by parts

[Jk+1 xa-ιJa(x) dx = 2 ίJk+1 x«-2Ja + 1(x) dx (k Φ 0),
Jk Jk

the integrated term vanishing since j k and j k + 1 are zeros of Ja+λ{x). In
view of the asymptotic behavior of Ja(x), the last integral is O(ka~5/1).
Thus

00

z_. (—l) / jcα~\/(jc) dx ==

This establishes Lemma 4.
Now we begin the proof of Lemma 3. By using (2.19) and (3.25), it

can be shown that for k Φ 1,

(4.1) Mk(a) =
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Thus

(4.2) Σ _ [ M * ( α ) ~

a - 1/2

Set

( 4 3) SnΛ= Σ \Mk{a)- —J xa

(4-4)

and

f(4-5) Sn,3 = ^ ^ " Σ

Since gaβ(θk) = 1 4- O(k2/N2), we can now express Sn as

(4.6) Sn = SnΛ + 5n,2 + SΠi3 + O(««-3/2).

Note that the series Snl converges absolutely in view of (4.1), and is a
constant independent of n.

(A) Evaluation of Sn2. Make the change of variable x = ΘN in (4.4),
and write

(4.7) gaβ(θk) = gaβ(θ) + g'aβ{θ){θk - θ) + ±g£(€)(** - 0)2,
where £ is between 0* and θ. Since 0 e [jk-λ/NJk/N\ by (2.20) we
have θk - θ = O(l/TV). Furthermore, since gα)β(0) is analytic in [0, π/2],
£«'/?(£) i s bounded. Thus the remainder term ig^(ί)(0 Λ - 0) 2 is O(n~2),
and contributes to 5̂  2 a term of order

ίJk a ) l^
Inserting (4.7) in (4.4) then leads to

(4.8)
7 7 " ' ~

where

(A q\ c(D — λ/"α+1/2 y /"-̂
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(4.10)

and

(4.11)

Clearly,

(4.12) S $

s,

= Λ

c

3,2 = ~ ^

can be

. L. FRENZEN AND

Λ + l/2 V /} / " ^ / ^

*a+ι/1]*Jh ι/N
written as

R. WONG

g'aβ(θ)θa-^2dθ

g'aβ(θ)θ« + 1/2dθ.

Jn-l/N

gaβ(θ)θ-

which is exactly the second term on the right-hand side of (2.34) (except
for the constant factor \/2 /π3/2).

In (4.11), we let g'aβ(θ)θa~1/2 = f(θ). With an appropriate change of
variable, each integral there can be written as

(4.13) [Jk/N θf(θ)dθ
J

By the mean value theorem the second integral on the right is equal to

(4.14)

for some £θ satisfying

(Λ + ) θ < i < i) + 0-

Since 0 < θ < (jk -jk_χ)/2N in (4.14), we have jk_x/N < ξθ <jk/N
so that, by (2.19), ξθ = O(k/N). From (2.19) it also follows that
(jk -jk_ι)/2N = O(l/N). Note that the implied constants in the
last two O-terms are independent of k. Since f'(θ) = O(θa~1/2\
a combination of the above results shows that the integral in (4.14) is
O(ka-1/2/Na+5/2). By using this estimate and (4.13), the addition of
(4.10) and (4.11) yields

(4.15)
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where we have also made use of (2.25). From (2.19) and (2.20), it now
follows that for k > 1,

(4.16) • . - ά O . U j -

Since gaβ(θ) = 1 4- O(θ2) for 0 < θ < π/2, each integral under the sum-
mation sign in (4.15) is O(ka+ι/2/Na+3/2), where again the implied
constant in the last 0-term is independent of k. Since — \ < a < \, a
combination of (4.15) with (4.16), (2.25) and the last estimate yields

(4.17) S<2> "

The sum in (4.17) may now be written as

(4.18)

-

f
o

/2

The second integral in (4.18) is O(N~a^3/2) and, since jn_χ/N = π/2 +
OiN'1), the third integral is OiN-1). Coupling (4.17) and (4.18) results in

(4.19)
π ΛT-α-1

2 J 0

Finally, using (4.8), the addition of (4.12) and (4.19) gives

(4.20)

+
v2ττ

(B) Evaluation of Sn3. The analysis here parallels that given for Sn2,
and is in fact simpler. We first make the change of variable x = ΘN in
(4.5), and then substitute (4.7) in (4.5). The result is

(4.21) 5n,3 - *r

where

(4.22) S%

and

(4.23) S% = "Σ j A / N g'aβ(θ)(θk
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cf. (4.8). To the integral in (4.22), we apply integration by parts. By using
(3.27) and the fact that gaβ(θ) = 1 + O(θ2) as θ -> 0+, it can be shown
that the integrated term is equal to

The other term can be replaced by

as was done in the case of Sn 2, cf. (4.18). Thus

(4.24) S # = -

Since g'aβ = 0(0) and θk - θ = O(n~l) for jk_x/N < θ <jk/N, the
(k - l)th integral in (4.23) is O(ka-1/2/Na + 3/2). This implies

(4.25) 5β = O(N-i).

The sum of S^l and S^2)

3 gives, using (4.21),

•α-l/2 Λτα-l/2 Γ / 2 "I

(4.26) sn 3 = - ^ + ̂ =-W«-β-w - / g^ ί^r- 1 / 2 ^
]/2TT V2TΓ L ^0 J

thus completing the evaluation of Sn3.
Observing that the sum Snl in (4.3) can be written as

α-l/2

(4.27) SnΛ = Λ

where B^l) is given in (2.35), the result in (2.34) now follows immediately
from (4.6), (4.20) and (4.26). This proves Lemma 3.

5. Evaluation of Lff\a9fi). In what follows we shall use the same
notation as we did in the evaluation of L^\a,β). There should be no
confusion resulting from this, when care is taken to distinguish the zeros
of P<a+1*β\cosθ) and P^'α + 1 )(cos0). Thus we again let θ0 = 0, θk

denote the kth positive zero of P^β'a+1\cosθ), and

Γ ί /?\^β~'~^/ / ? \ ^ 0 ! ~ ^ ^
*+1 s i n ^ cos^ Pϊβ a+1Kcosθ)dθ.
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Since cos 0 = 1 and

we have from (2.42)
m - l

(5.3) L<2W) = Σ(-D%
& = 0

As before, we now use the asymptotic expansion of P^a+l)(cosθ) for
large n. The result corresponding to (2.29) is

(5.4) L?(a,β) - T{n + P + 1 ) \ m t \ \
n\Nβ

where

m — l

(5.5)

2S.

m — l

(5-6) $ , - Σ

Mk(β) being as given in (1.17), and

( Λ Λ \ 1/2/ Λ β\β I f) \ a

I tan f) (fsinf) (cosf) .
Note that Rn, the contribution to L(^\a,β) corresponding to Rn in
(2.32), is absent in (5.5), because

3 , A 7/3, A

An analogue of Lemma 3 is the following approximation:

s.--f^Wr7-f1/N-Γ2

^ + 2βDβ - Mx{β)
77 p

,
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where Dβ is given in (1.16). Note that the sum in Dβ starts with k = 1,
whereas the sum in B£\ the corresponding constant in Sn given in (2.35),
starts with k = 2. Since gaβ(θ) = 1 4- O(θ2), the term involving the
second integral on the right of (5.8) cancels with the third from the last
term in the same equation. Thus

(5.9) Sn = J |

ϊ2«i-*-ιW+ι/2 + 2βDβ -

Now we insert (5.9) in (5.5), and observe that

(5.10) j * Λ xt+%{x) dx = Mλ{β)j
which follows from (1.17) and the identity [xβ+1Jβ+ι(x)Y = xβ+ιJβ(x).
The resulting expression from (5.5) coupled with (5.4) gives

2-ι~β

Γ(« + 1)
n-'-ι+ha + β + 2)(a-β-

•Uβ+1Dβ ]

/2 r / 2

Jjβm

(cos I ) dθj

where use has been made of (5.7) and the asymptotic expansion

/«n\ 2'ι-βT(n + a + β + 2)
(5-12)

Γ(α + l)Γ(n -
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6. The sum of L^\a,β) and H2\a,β). From (2.29), (2.30) and
the fact that

,

we have

Γ(α

2Sn + 2aRn,

+ O(iV«"3/2).

Since gaβ(θ) = 1 + O(fl2), the second integral on the right-hand side of
(2.34) can be written as

(63)

Now write (2.35) as

(6.4) B?>- Σ
Jk-1

7ΐ ' Ό

where we have used the fact that j 0 = 0. Combining (6.1), (2.34), (2.36),
(6.2) and (6.3) gives

(r c\ Γ(« + a "f β -f 2)
(6.5) :— : ί —

^ / Γ(α -f l)T(n 4- β + 1

~ . 1a 2aT(a

/2

a~l/2

h i) d θ

93/2
2(a~β~l)/2na~1/2

dθ

where Ba is given in (1.10) and we have used (2.33) and (2.6).
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We now note that

(6.6) [n«-β-1 + \{a + β + 2)(α - β - l ) ^

where Caβ is given in (1.15). Upon adding (6.5) and (5.11) and using (6.6),
we obtain

(6.7) Ln(a,β) = /,* + 1} + lζ + Ba+ τ ( a \ l}Dβ

where Ba and Dβ are given in (1.10) and (1.16) respectively and where

( 6 - 8 )
 ' -

dθ

0\ 0 + 1/2/

sin — cos 7r I dθ
Θ\β+1/2I θ\
2J ( C O S 2 j

(6.9) I2* = -
Γ(α + 1)

Sin 7Γ COS Γ

+

and

(6.10) I3* = — —

By letting θ = π - φ in the second integral in (6.8), the two integrals
there can be combined into the single integral

2

Using the above result in (6.8) yields

(6.12) /• = Aaβn
a^2 + CaβAaβn«-^ + O(na-^2),

where Aaβ is given in (1.6). Making the change of variable θ = π — φ in
the second integral in (6.9), the two integrals there can also be combined
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into the single integral

(6.13)

Note that by (2.20) and (2.41), we have

From (2.19) and (2.20), it also follows that

4, + i = f + tf^-1), ^-i = f

and

Expanding the integrand in (6.13) about ττ/2 and using the above results,
the integral in (6.13) can be shown to be

—
n

This result coupled with (6.9) gives

(6.14) /* = -

A combination of (6.7), (6.10), (6.12) and (6.14) yields our final result
(1.14).

To conclude this paper, we consider the particular case of Laplace
series given in (1.18). The constant term and the 0{n'1) term in (1.18)
have a somewhat different appearance from those obtained by putting
a = β = 0 in (1.14). The transition to the form in (1.18) is made by
writing the second infinite series in (1.10) as

(6.15) lim U(0) + +Mn(0) - ^- ίh"

= lim {MAQ) + +Mn(0) - ~nι/2\
n-*oo I TT \
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since from (2.19), (jhn)
ι/2 = (nπ)1/2 + O(n~l/2). Now using the fact

that, for a = 0,

(6.16)

the result for the constant term in (1.18) follows. Similarly in (1.16) we
write

(6.17) Do = lim Mx(0) + + Mn(0) - ^ Γ°'" x1/2dx

1

= Km

where we have used (j\n)
3/2 = 7r3 / 2(«3 / 2 - |/?1/2) + O(«~1/2). Grouping

these results together yields the form of Ln(0,0) given in (1.18).
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