POSITIVE DEFINITE FUNCTIONS AND L^{p} CONVOLUTION OPERATORS ON AMALGAMS

Massimo A. Picardello

Abstract

Let K_{i} be a countable collection of compact groups, and assume that $H=\bigcap_{i} K_{i}$ is an open subgroup of K_{i} for every i. In this paper we consider positive definite functions and convolution operators on the amalgamated product $G={ }_{H} K_{l}$, and we study their properties in relation with the notion of length of reduced words. In particular, if $\sup _{2} k_{t}$ $<\infty$, we show that there exist unbounded approximate identities in $A(G)$, that the space of bounded convolution operators on $L_{p}(G)$ is the dual space of the algebra $A_{p}(G)$, and, under the additional assumption that H be finite, that there exist unbounded approximate identities in $A(G)$.

1. Introduction. Considerable attention has been devoted, in the recent literature, to positive definite functions on groups acting isometrically on homogeneous trees. The Fourier-Stieltjes algebra of the free group \mathbf{F}_{r} with r generators, which acts isometrically on the homogeneous tree of degree $2 r$, has been studied in detail in $[5,14,9,6,1,13]$. Other free products have been considered in [16, 17, 4]. The class of groups acting simply transitively on a homogeneous tree has been considered in [3]. Every locally compact group G acting isometrically on a homogeneous or semihomogeneous tree T is isomorphic to the amalgamated product $K_{1} *_{H} K_{2}$, where K_{1} and K_{2} are the stability subgroups of two contiguous vertices and $H=K_{1} \cap K_{2}$ is the stability subgroup of the corresponding edge [18]. The subgroup H is open, and its indices in K_{1} and K_{2} are the homogeneity degrees of T. In particular, if the homogeneity degrees are finite, G is the amalgam of two compact groups. Some properties of positive definite functions on amalgams of two factors have been studied in $[2,11]$.

In this paper we consider amalgamated products $G=*_{H} G_{i}$, where $\left\{G_{i}, i \in I\right\}$ is any collection of locally compact groups and H is a common open subgroup. These groups act isometrically on trees with periodical homogeneity degrees (and on "polygonal graphs": see [16]). The homogeneity degrees are finite if and only if the factors G_{i} are compact; they are bounded if and only if the indices k_{i} of H in G_{i} are bounded. For groups of this type, we consider several results originally obtained for free groups in $[\mathbf{1 4 , ~ 8 , ~ 1 3] . ~ S o m e ~ o f ~ o u r ~ a r g u m e n t s ~ a r e ~ a d a p t e d ~}$
from these references: we refer to Chapters 2 and 8 of [13] for a detailed account on free groups.

In $\S 2$, we prove that the amalgamated product of two-sided H-invariant functions f_{i} which are positive definite on the subgroups G_{i} is a positive definite function on G. This result was originally proved in [4] for free products of two factors. As a consequence, the length of G is a continuous negative definite function: this extends a result of [2] (see also [11]). In $\S 3$, we restrict attention to trees with bounded homogeneity degrees, that is, to amalgams $G={ }_{H} K_{i}$, where the indices $k_{i}=\#\left(K_{i} / H\right)$ are bounded. The result of the previous section yields a family of positive definite functions f_{t} on G which are radial, decay exponentially at infinity and converge to 1 uniformly on compact sets as $t \searrow 0$. By means of these functions, if H is finite we construct approximate identities for the Fourier algebra $A(G)$ which are bounded in the multiplier norm (Theorem 3). In the terminology of [14], Theorem 3 asserts that the Fourier algebra $A(G)$ has the metric approximation property; we observe that, by the same argument, the reduced C^{*}-algebra $C_{\lambda}^{*}(G)$ has the metric approximation property (see [14, 11]). Theorem 3 is a consequence of the following result (due to U. Haagerup [13] in the special case of free groups; see also [16]): if f is a function supported on words of length n, then the norm of f as a convolution operators on L^{2} grows as $O(n)$ (Theorem 2: this result holds without the assumption that H is finite). For the special case of amalgams of two finite groups, Theorems 2 and 3 have been obtained independently in [11].

We then consider functions on G which are multiplicative with respect to the length and, for every i, are constant on $K_{i}-H$. Using these functions, we prove a result which indicates that $A(G)$ is "much smaller" than $B(G)$ (Theorem 4; see also [9, 1, 4]). Even though Theorem 4 emphasizes the fact that G is nonamenable, nevertheless, in $\S 4$, we prove a result which restores some similarity with amenable groups. For every commutative group G, the space $C v_{p}$ of bounded convolution operators on $L^{p}(G)$ is known to be isometrically isomorphic with the algebra A_{p} [12]. This result has been extended to all amenable groups in [15]. In the context of nonamenable groups a similar result is known for $\mathrm{SL}_{2}(\mathbf{R})$ and some other semisimple Lie groups [7], and for free groups [8, 13]. We show (Theorem 5) that $A_{p}^{*} \simeq C v_{p}$ for amalgams $G={ }_{H}^{*} K_{i}$ if the indices k_{i} are bounded. We do not know whether this assumption can be dropped.

Unexplained terminology and notations are as in [10, 13]. We are grateful to M. Bozejko, M. Enomoto and Y. Watatani who communicated to us their results of $[4,5,11]$ prior to publication.
2. Amalgamated products and length. Let I be any set of indices and let $\left\{G_{i}, i \in I\right\}$ be a family of locally compact groups containing a common open subgroup $H=\bigcap_{i} G_{i}$. Then the amalgamated product $G=$ ${ }_{H} G_{i}$, endowed with the strongest topology such that the natural embeddings $G_{i} \rightarrow G$ are continuous, is a locally compact group [2, 17]. Choose and fix a set S_{i} of representatives of the right H-cosets in G_{i}. Then every element s of G can be uniquely written as a reduced word $s=s_{i_{1}} \cdots s_{i_{n}} h$ with $h \in H, s_{i_{j}} \in S_{i_{j}}-H$ and $i_{j} \neq i_{j+1}$ for every j. The number n is called the length of s, and is denoted by $|s|$. In this section we prove that the length is a continuous negative definite function on G.

Definition. Let f_{i} be right H-invariant functions on $G_{i}, i \in I$, with $\left.f_{\imath}\right|_{H}=1$.

The function $f={ }_{H} f_{i}$, defined by the rule $f(g)=\prod_{m=1}^{n} f_{i_{m}}\left(s_{i_{m}}\right)$ if $g=s_{i_{1}} \cdots s_{i_{n}} h$, is called the amalgamated product of the f_{l} 's over H.

The result about the length function is a consequence of the following theorem, whose argument is essentially due to M. Bozejko [4, Thm. 1].

Theorem 1. For $i \in I$, let f_{i} be a positive definite bi-H-invariant function on G_{i} with $\left.f_{i}\right|_{H}=1$. Suppose that the amalgamated product $f={ }_{H} f_{i}$ is bi-H-invariant. Then f is positive definite on G.

Proof. First, we claim that the assumption that f is bi- H-invariant is equivalent to the property

$$
\begin{equation*}
f(x y)=f(x) f(y) \quad \text { if }|x y|=|x|+|y| . \tag{1}
\end{equation*}
$$

Indeed, we show that (1) holds if f is bi- H-invariant (the converse, not needed here, is clear; see also the definition and remarks following Thm. 3). Write, as before, $x=s_{i_{1}} \cdots s_{i_{n}} h$, and set $x_{0}=s_{i_{1}} \cdots s_{i_{n}}$. Write also $h y=s_{j_{1}} \cdots s_{j_{n}} h_{0}$, and observe that $s_{j_{1}} \neq s_{i_{n}}^{-1} \bmod H$, since $|x y|=|x|+|y|$. Hence, by the definition of f, it follows $f(x y)=f\left(x_{0}\right) f(h y)$. On the other hand, since f is bi- H-invariant, $f\left(x_{0}\right)=f\left(x_{0} h\right)=f(x)$, and $f(h y)=f(y)$. Thus $f(x y)=f\left(x_{0}\right) f(y)=f(x) f(y)$, and the claim is proved. For $k=$ $1, \ldots, n$, choose c_{k} in C, x_{k} in G. To prove that f is positive definite, we must prove that, for each such choice,

$$
\begin{equation*}
\sum_{m, k} c_{m} \bar{c}_{k} f\left(x_{k}^{-1} x_{m}\right) \geq 0 \tag{2}
\end{equation*}
$$

The left hand side in this inequality is a pre-norm for the function $h=\sum c_{k} \delta_{k}$; we denote it by $\|h\|_{f}$. Observe that $\sum c_{k} f\left(x_{k}\right)=\left\langle h, \delta_{e}\right\rangle_{f}$ and
$\left\|\delta_{e}\right\|_{f}=f(e)=1$. Thus the Cauchy-Schwarz inequality shows that (2) is equivalent to the apparently stronger inequality

$$
\begin{equation*}
\sum_{m, k} c_{m} \bar{c}_{k} f\left(x_{k}^{-1} x_{m}\right) \geq\left|\sum_{k} c_{k} f\left(x_{k}\right)\right|^{2} \tag{3}
\end{equation*}
$$

For $i \in I$, denote by $s_{i,}$ the representatives of the cosets in G_{i} / H, and let $S=\left\{s_{i j}\right\}$. Define a function $i: G \rightarrow S$ by $i(x)=i\left(s_{i_{1} j_{1}} \cdots s_{i_{n} J_{n}} h\right)=s_{i_{1} j_{j}}$, and let $\tilde{x}=s_{i_{2} j_{2}} \cdots s_{i_{n} j_{n}} h$. For some $j \in I$, say $j=1$, the subset A of $U \equiv\left\{x_{1}, \ldots, x_{n}\right\}$ given by $A=U \cap i^{-1}\left(G_{j} / H\right)$ is non-empty. We now let $B=U-A$, and proceed by induction on $n=\# U$. We first show that (2) holds in the case $U=A$. Let $A_{r}=A \cap i^{-1}\left(s_{1 r}\right)$. In order to compute the left hand side of (2), it is enough to assume that $A_{r} \neq A$ for every r : if this is not so for some r, it suffices to replace $U=A$ by $s_{1 r}^{-1} \cdot A$. Now (1) and the definition of f yield

$$
\begin{aligned}
\sum_{m, k} c_{m} \bar{c}_{k} f\left(x_{k}^{-1} x_{m}\right)= & \sum_{r} \sum_{A_{r} \times A_{r}} c_{m} \bar{c}_{k} f\left(\tilde{x}_{k}^{-1} \tilde{x}_{m}\right) \\
& +\sum_{r \neq j} \sum_{A_{r} \times A_{j}} c_{m} \bar{c}_{k} f\left(\tilde{x}_{k}^{-1}\right) f\left(\tilde{x}_{m}\right) f_{1}\left(i\left(x_{k}\right)^{-1} i\left(x_{m}\right)\right) .
\end{aligned}
$$

Set $b_{r}=\sum_{x_{k} \in A_{r}} c_{k} f\left(\tilde{x}_{k}\right)$. As $\# A_{r}<\# U$, by the induction hypothesis the right hand side of this inequality is greater than or equal to $\sum_{r}\left|b_{r}\right|^{2}+$ $\sum_{r \neq,} b_{r} \bar{b}_{j} f_{1}\left(s_{1 j}^{-1} s_{1 r}\right)$, which is non-negative because f_{1} is positive definite on G_{1}. Thus (2), and therefore (3), hold in this case.

The general case $U=A \cup B$ is handled by the same token. Indeed, we have just proved that (3) holds for the subset A of U, and, as B is properly contained in U, we can assume, by induction on $\# U$, that (3) holds for B. Moreover, if $x \in A$ and $y \in B$, then $|x y|=|x|+|y|$, and we can apply (1). Now we decompose the sum in the left hand side of (3) into three parts, corresponding to the conditions that x_{k} and x_{m} both belong to A, or both to B, or one to A and the other to B. By the induction hypothesis, it follows that

$$
\begin{aligned}
\sum_{m, k} c_{m} \bar{c}_{k} f\left(x_{k}^{-1} x_{m}\right) \geq & \left|\sum_{A} c_{k} f\left(x_{k}\right)\right|^{2}+\left|\sum_{B} c_{m} f\left(x_{m}\right)\right|^{2} \\
& +2 \operatorname{Re} \sum_{A \times B} c_{m} \bar{c}_{k} \bar{f}\left(x_{k}\right) f\left(x_{m}\right) \geq\left|\sum_{U} c_{k} f\left(x_{k}\right)\right|^{2}
\end{aligned}
$$

Remark 1. As a consequence of Theorem 1 , for $t \geq 0$, the function $x \rightarrow \exp (-t|x|)$ is a (continuous) positive definite function on G. This result is due to U. Haagerup [14] for the special case of free groups (see also [1], [11]).
3. Convolution operators and positive definite functions on amalgams. From now on, we assume that $G={ }_{H} K_{i}$, where the $K_{i}, i \in I$, are a family of compact groups, and the indices k_{i} of $H=\bigcap_{l} K_{i}$ in K_{i} are bounded. We shall refer to the groups K_{i} as the factors of G. We normalize the Haar measure m of G so that $m(H)=1$.

Following [16], we say that two words $x=s_{i_{1}} \cdots s_{i_{n}} h, y=s_{j_{1}} \cdots$ $s_{j_{m}} h^{\prime}$ give rise to a simple cancellation if $|x y|=|x|+|y|-2$, that is, if $s_{i_{n}} h s_{j_{1}} \in H$. In order that a cancellation occurs, $s_{i_{n}}$ and $s_{j_{1}}$ must belong to the same set S_{i}, i.e., to the same factor K_{i}, and the right H-cosets determined by $h s_{j_{1}}$ and $s_{i_{n}}^{-1}$ must coincide.

We say that x and y give rise to a reduction if $|x y|=|x|+|y|-1$, that is, if $s_{i_{n}}$ and $s_{J_{1}}$ belong to the same factor K_{i} but do not give rise to a cancellation.

Denote by W_{n} the set of words of length n, and by $B_{n, m}(x)$ the set $\left\{(y, z) \in W_{n} \times W_{m}: x=y z\right\}$. Obviously $B_{n, m}(x)=\varnothing$ unless $|n-m| \leq$ $|x| \leq n+m$. In particular, if $\operatorname{supp} f \subset W_{n}, \operatorname{supp} g \subset W_{m}$, then $f * g(x)=$ 0 unless $|n-m| \leq|x| \leq n+m$.

Lemma 1. Let $p=n+m-t, 0 \leq t \leq n+m$, and $|x|=p$; write $x=s_{i_{1}} \cdots s_{t_{p}} h$ with $h \in H$. Let $q=[(t+1) / 2], q^{\prime}=[(t-1) / 2], y_{0}=$ $s_{i_{1}} \cdots s_{i_{n-q}}, z_{0}=s_{i_{n-q^{\prime}+1}} \cdots s_{i_{p}} h$. Then:
(i) if t is even, $t=2 j$, then $y_{0}=s_{i_{1}} \cdots s_{i_{n-j}}$, $z_{0}=s_{i_{n+j+1}} \cdots s_{i_{p}} h$, and $B_{n, m}(x)=\left\{(y, z) \in W_{n} \times W_{m}\right.$: there exist $w \in W_{j}$ such that $y=y_{0} w$, $\left.z=w^{-1} z_{0}\right\}$.
(ii) if t is odd, $t=2 j+1$, then $y_{0}=s_{i_{1}} \cdots s_{i_{n-j-1}}, z_{0}=s_{i_{n+j+1}} \cdots s_{i_{p}} h$ and $B_{n, m}(x)=\left\{(y, z) \in W_{n} \times W_{m}:\right.$ there exist $p_{1}, p_{2} \in \stackrel{i_{n+j+1}}{W_{1}}, w \in \stackrel{i_{p}}{W}$ such that $y=y_{0} p_{1} w, z=w^{-1} p_{2} z_{0}$ and $\left.p_{1} p_{2}=s_{i_{n}}\right\}$.
(iii) If $u \in K_{\imath}-H$, and π_{2} denotes the projection of $G \times G$ onto its second factor, then $\int_{\pi_{2}\left(B_{1,1}(u)\right)} d m=k_{i}-2$.

Proof. Let $t=2 j$. Then $\left(y_{0}, z_{0}\right) \in B_{n-j, m-j}(x)$. By uniqueness of the reduced word expression in G [18], for every $(y, z) \in B_{n, m}(x)$ there exists $w \in W_{j}$ such that $y=y_{0} w$. Then $y_{0} z_{0}=x=y_{0} w z$, hence $z=w^{-1} z_{0}$. To prove (ii), let $t=2 j+1$: then $x=y_{0} s_{i_{n}} z_{0}$. If $(y, z) \in B_{n, m}(x)$, then, again, $y=y_{0} u$, for some $u \in W_{j+1}$. Then $y_{0} s_{i_{n}} z_{0}=x=y z=y_{0} u z$ and $z=u^{-1} s_{i_{n}} z_{0}$. As $|z|=m,\left|z_{0}\right|=m-j-1$ and $|u|=j+1$, a reduction occurs in the product $u^{-1} s_{i_{n}} z_{0}$. By definition of z_{0}, no reduction occurs in the product $s_{i_{n}} z_{0}$. Hence a reduction occurs in the product $u^{-1} s_{i_{n}}$. If $s_{i_{n}} \in K_{i_{n}}$ and $u^{-1}=s_{r_{1}}^{\prime} \cdots s_{r_{1+1}}^{\prime}$ this means that $e \neq s_{r_{r+1}}^{\prime} s_{i_{n}} \in K_{i_{n}}$. Let $p_{1}=s_{r_{j+1}}^{\prime-1}, p_{2}=s_{r_{j+1}}^{\prime} s_{i_{n}}, w=u^{-1} p_{1}$. Then $|w|=j, y=y_{0} p_{1} w, z=w^{-1} p_{2} z_{0}$.

To prove (iii), pick any representative $s \in S_{i}$. Then there is exactly one representative $s^{\prime} \in S_{i}$ such that $u=s s^{\prime} \bmod H$. Since u is nontrivial, s^{\prime} is nontrivial if s is trivial, i.e., if $s \in H$. Thus there are exactly $k_{i}-2$ choices of s such that both s and s^{\prime} are nontrivial and $u=s s^{\prime} h$ for some $h \in H$. By part (ii),

$$
\iint_{\pi_{2}\left(B_{1,1}(u)\right)} d m=\left(k_{i}-2\right) m(H)=k_{i}-2 .
$$

Denote by χ_{n} the characteristic function of W_{n}; in particular, $\chi_{0}=$ χ_{H}. We shall denote by H_{l} the expectation defined by left average over H on $L^{1}(G) \cap L^{\infty}(G): H_{l} f(x)=\int_{H} f(h x) d h$. Similarly, the right average is denoted by H_{r}. Observe that H_{l} and H_{r} have norm 1 on $L^{p}(G)$, $1 \leq p \leq \infty$.

Let $k=\max _{i} k_{i}=\max _{i} \#\left(K_{i} / H\right)<\infty$.
Lemma 2. Let f, g be square-integrable functions with support in W_{n}, W_{m} respectively. Then:
(i) $\left\|(f * g) \chi_{p}\right\|_{2} \leq\|f\|_{2}\|g\|_{2}$ if $p=n+m-2 j$, with $0 \leq j \leq$ $\min (n, m)$
(ii) $\left\|(f * g) \chi_{p}\right\|_{2} \leq \sqrt{k-2}\|f\|_{2}\|g\|_{2}$ if $p=n+m-2 j-1$ with $0 \leq$ $j \leq \min (n, m)-1$.

Proof. The argument follows the lines of [14, Lemma 1.3], [16, Lemma 2]. By density, we can assume $g \in L^{1} \cap L^{\infty}$. Let us first handle the case $p=n+m$.

Let us write $B(x)=B_{n, m}(x)$. It follows from Lemma 1.i that $m\left(\pi_{2}(B(x))\right)=m(H)=1$. By the remarks preceding the statement and by Lemma 1.i, one has

$$
\begin{aligned}
\left\|(f * g) \chi_{p}\right\|_{2}^{2} & =\int_{W_{p}} d x\left|\int_{\pi_{2}(B(x))} f(x z) g\left(z^{-1}\right) d m(z)\right|^{2} \\
& =\sum_{\left|s_{1} \cdots s_{s_{n}} s_{t_{n+1}} \cdots s_{r}\right|=p}\left|H_{r} f\left(s_{i_{1}} \cdots s_{i_{n}}\right)\right|^{2} \mid H_{l} g\left(\left.s_{i_{n+1}} \cdots s_{i_{p}}\right|^{2}\right. \\
& \leq\left\|H_{r} f\right\|_{2}^{2}\left\|H_{l} g\right\|_{2}^{2} \leq\|f\|_{2}^{2}\|g\|_{2}^{2} .
\end{aligned}
$$

To complete the proof of part (i), denote by λ_{y} the left translation by y^{-1}, and by ρ_{z} the right translation by z. Let $p=n+m-2 j$, and define two auxiliary functions f^{\prime}, g^{\prime}, with support in W_{n-j}, W_{m-j} respectively, by
$f^{\prime}(y)=\left\|\lambda_{y^{-1}} f\right\|_{L^{2}\left(W_{j}, m\right)}$ for $|y|=n-j$, and $g^{\prime}(z)=\left\|\rho_{z} f\right\|_{L^{2}\left(W_{J}, m\right)}$ for $|z|$ $=m-j$. It follows again from Lemma 1.ii that $\left\|f^{\prime}\right\|_{2}=\|f\|_{2},\left\|g^{\prime}\right\|_{2}=$ $\|g\|_{2}$. If $|x|=p=n+m-2 j$ and y_{0}, z_{0} are as in Lemma 1.i., one has

$$
\begin{aligned}
|f * g(x)| & =\left|\int_{\pi_{2}(B(x))} f(x z) g\left(z^{-1}\right) d m(z)\right| \\
& =f^{\prime}\left(y_{0}\right) g^{\prime}\left(z_{0}\right)=f^{\prime} * g^{\prime}(x)
\end{aligned}
$$

by Lemma 1.i. This yields (i).
Let now $p=n+m-1$, and $|x|=p, x=s_{i_{1}} \cdots s_{i_{p}} h$.By Lemma 1.iii, $m\left(\pi_{2}\left(B_{1,1}\left(s_{i_{n}}\right)\right)\right)=k_{i_{n}}-2 \leq k-2$. Write $y=x z^{-1}$. Then Lemma 1.ii, yields

$$
\begin{aligned}
\left\|(f * g) \chi_{p}\right\|_{2}^{2} & =\int_{W_{p}} d x\left|\int_{\pi_{2}\left(B_{n, m}(x)\right)} f(y) g(z) d m(z)\right|^{2} \\
& =\int_{W_{p}} d x\left|\iint_{\pi_{2}\left(B_{1,1}\left(s_{i_{n}}\right)\right)} \int_{H} f\left(y_{0} p_{1} h\right) g\left(h^{-1} p_{2} z_{0}\right) d h d m\left(p_{2}\right)\right|^{2} \\
& \leq\left\|H_{r} f\right\|_{2}^{2}\left\|H_{l} g\right\|_{2}^{2} m\left(\pi_{2}\left(B_{1,1}\left(s_{i_{n}}\right)\right)\right) \leq(k-2)\|f\|_{2}\|g\|_{2}
\end{aligned}
$$

Finally, to complete the proof of (ii), we reduce to the case $p=n+m-1$ by using the auxiliary functions f^{\prime}, g^{\prime} as in the proof of (i).

As in [14, 16], the previous lemma provides estimates for the norm of a function supported on W_{n} as a convolution operator on $L^{2}(G)$. Indeed, the argument of [14, Lemma 2] now yields:

Theorem 2. Let f be a function on $G={ }_{H} K_{i}$, with support in W_{n}, and let $k=\max _{i} k_{i}<\infty$. Then there exists a constant $C(n, k)=O(n)$ such that the norm of f as a left convolution operator on L^{2} satisfies the inequality $\|f\|_{C_{\lambda}^{*}} \leq C(n, k)\|f\|_{2}$.

Denote by $\|f\|_{C v_{p}}$ the norm of a function f as a left convolution operator on $L^{p}(G)$ (the norm of convolution operators on L^{2} will be denoted by $\left\|\|_{C_{\lambda}^{*}}\right)$. By Theorem $2,\|f\|_{C_{\lambda}^{*}} \leq C \cdot(n+1)\|f\|_{2}$ for some constant C independent of f. Moreover, $\|f\|_{C_{v_{1}}} \leq\|f\|_{1}$. Hence bilinear interpolation yields:

Corollary 1. There exists a constant C such that, for every function f with support in $W_{n},\|f\|_{C_{v_{p}}} \leq C \cdot(n+1)^{1 / q}\|f\|_{p}$, where $1 \leq p \leq 2$ and $1 / q=1-1 / p$.

If X, Y are normed spaces of functions on G, we denote by $\mathscr{M}(X, Y)$ the space of pointwise multipliers from X to Y, endowed with the multiplier norm $\|u\|_{M_{(X, Y)}}=\sup \left\{\|u v\|_{Y}:\|v\|_{X} \leq 1\right\}$. Recall that χ_{n} denotes the characteristic function of W_{n}.

COROLLARY 2. $\left\|\chi_{n}\right\|_{M_{\left(A, L^{2}\right)}} \leq C(n, k)$.
Proof. It is enough to observe that, by the duality between $A(G)$ and $C_{\lambda}^{*}{ }^{*}$ [10],

$$
\begin{aligned}
\left\|u \chi_{n}\right\|_{2} & =\sup \left\{\left|\int u v d m\right|:\|v\|_{2} \leq 1, \operatorname{supp} v \subset W_{n}\right\} \\
& \leq C(n, k)\|u\|_{A}
\end{aligned}
$$

Denote by B_{λ} the closed ideal of $B(G)$ consisting of the functions which can be uniformly approximated on compact sets by bounded sequences in $A(G)$. We can now characterize B_{λ} as follows:

Proposition 1. Let X be the largest closed subspace of $B(G)$ such that $\left\|\chi_{n}\right\|_{M_{\left(X, L^{2}\right)}}=O(n)$. Then $X=B_{\lambda}$.

Proof. If $u \in B_{\lambda}$, there exists a sequence $u_{j} \in A$, such that $\left\|u_{j}\right\|_{A} \leq C$ and $u_{j}(x) \rightarrow u(x)$ on compact subsets of G. Then $\left\|u_{j}\right\|_{\infty} \leq C$, and Corollary 2 yields

$$
\begin{aligned}
\left\|u \chi_{n}\right\|_{2} & =\sup \left\{\left\|u \chi_{n} \chi_{K}\right\|_{2}: K \subset G, K \text { compact }\right\} \\
& =\sup _{K} \lim _{j}\left\|u_{j} \chi_{n} \chi_{K}\right\|_{2} \leq C \cdot C(n, k)=O(n) .
\end{aligned}
$$

Conversely, let $u \in B$, and suppose that $\left\|u \chi_{n}\right\|_{2}=O(n)$. Then

$$
\left\|e^{-t|x|} u(x)\right\|_{2}^{2}=\sum_{n=0}^{\infty}\left\|e^{-t|x|} u \chi_{n}\right\|_{2}^{2}=\sum_{n=0}^{\infty} e^{-t n}\left\|u \chi_{n}\right\|_{2}<\infty .
$$

Therefore $e^{-t|x|} u(x) \in L^{2}$. Moreover, $e^{-t|x|} u \in B$, by Theorem 1. Hence $e^{-t|x|} u \in A$, and $\left\|e^{-t|x|} u\right\|_{A} \leq\left\|e^{-t|x|}\right\|_{B}\|u\|_{B}=\|u\|_{B}$, by Theorem 1 again.

Finally, $\lim _{t \rightarrow 0} e^{-t|x|} u(x)=u(x)$ for each x. Thus $u \in B_{\lambda}$.
Denote by $\mathscr{M}(A)$ the space of pointwise multipliers of $A(G)$. It is obvious that $B(G) \subset \mathscr{M} A$, with norm-decreasing inclusion. Suppose H is finite (i.e., G is discrete), so that $L^{2}(G) \subset A(G)$. Then we show that $\mathscr{M} A$ contains B properly.

Proposition 2. Let $M=\sum_{n=0}^{\infty} C(n, k)^{2}\left\|u \chi_{n}\right\|_{\infty}^{2}<\infty$. If H is finite, then $u \in \mathscr{M} A$ and $\|u\|_{\mathscr{M}_{A}} \leq \sqrt{M}$.

Proof. For $h \in A(G)$, Corollary 2 yields $\|u h\|_{2}^{2} \leq M\|h\|_{A}^{2}$. Then $\|u h\|_{A} \leq\|u h\|_{2} \leq \sqrt{M}\|h\|_{A}$.

Theorem 3. If H is finite, then, for every $\varepsilon>0$, there exists a sequence $u_{n} \in A(G)$ such that $\lim _{n}\left\|u_{n} v-v\right\|_{A}=0$ for every $v \in A(G)$, and $\left\|u_{n}\right\|_{M_{A}} \leq 1+\varepsilon$.

Proof. As $C(n, k)=O(n)$, for every integer j there exists a smallest integer n_{j} such that $\sum_{n=n_{j}}^{\infty} e^{-2 n / J} C(n, k)^{2}<\varepsilon^{2}$. Let $u_{j}(x)=e^{-|x| / j}$ if $|x|<n_{j}, u_{j}(x)=0$ otherwise. Then

$$
\begin{aligned}
\left\|u_{j}\right\|_{\mathscr{M} A} & \leq\left\|u_{j}-e^{-|x| / J}\right\|_{\mathscr{M} A}+\left\|e^{-|x| / j}\right\|_{\mathscr{M}_{A}} \\
& \leq 1+\left(\sum_{n=n_{j}}^{\infty} e^{-2 n / j} C(n ; k)^{2}\right)^{1 / 2} \leq 1+\varepsilon
\end{aligned}
$$

by Theorem 1 and Proposition 2. Moreover, $\lim _{j} u_{j}=1$ uniformly on compact sets. Since all norms are equivalent on finite-dimensional vector spaces, $\left\|u_{j} v-v\right\|_{A} \rightarrow 0$ for every compactly supported $v \in A$. As the norms $\left\|u_{j}\right\|_{M_{A}}$ are uniformly bounded, the same is true for every $v \in A$.

In the remainder, we shall not need to restrict attention to the case of G discrete. We conclude this section by showing that the Fourier-Stieltjes algebra of G is much larger than its ideal B_{λ}. For this, we introduce a family of positive definite functions as follows:

Definition. A function u on $G={ }_{H} K_{i}$ is multiplicative with respect to the length if $0<u \leq 1, u(x y)=u(x) u(y)$ if $|x y|=|x|+|y|$ and, for every $i \in I, u_{i}=\left.u\right|_{K_{i}-H}$ is a constant (depending on i).

It is obvious that every such function u is bi- H-invariant (for the converse, see the proof of Thm.1). It is also immediate that, for every i, u_{i} is positive definite on K_{i}. Indeed, denote by c_{l} the constant value attained by u_{i} on $K_{i}-H$. Then $\left.u_{i}\right|_{K_{t}}=c_{i} \chi_{K_{t}}+\left(1-c_{i}\right) \chi_{H}$, because $u_{i} \equiv 1$ on H. Thus $\left.u_{i}\right|_{K}$ is the sum of two positive definite functions. The multiplicative property yields $u=*_{H} u_{i}$. Therefore, by Theorem $1, u$ is positive definite on G.

With notations as in $[\mathbf{1 0}, \mathbf{1 3}]$, let now P be the central projection, in the von Neumann algebra of the universal representation of G, defined by
$P B(G)=B_{\lambda}$. If u is a function in $B(G)$, denote by u_{λ} its projection on $B_{\lambda}: u_{\lambda}=P u$. We say that $u \in B_{\lambda}^{\perp}$ if $u_{\lambda}=0$.

Theorem 4. Let u be a multiplicative function with respect to the length. If $\left\|u \chi_{1}\right\|_{2}<1$, then $u \in A(G)$. If $\left\|u \chi_{1}\right\|_{2}=\infty$, then $u \in B_{\lambda}^{\perp}$.

Proof. Observe that, by the multiplicative property,

$$
\left\|u \chi_{n}\right\|_{2}^{2}=\int_{W_{n}}|u|^{2} \leq\left(\int_{W_{1}}|u|^{2}\right)^{n}=\left\|u \chi_{n}\right\|_{2}^{2 n}
$$

Thus, if $\left\|u \chi_{1}\right\|_{2}<1$, then

$$
\|u\|_{2}^{2}=\sum_{n=0}^{\infty}\left\|u \chi_{n}\right\|_{2}^{2} \leq \sum_{n=0}^{\infty}\left\|u \chi_{1}\right\|_{2}^{2 n}<\infty
$$

Hence $u \in B \cap L^{2} \subset A$. On the other hand, if $\left\|u \chi_{1}\right\|_{2}=\infty$, then the set of indices I is infinite (because u is constant on the compact factors K_{i}). Let us denote by u_{i} the constant $\left.u\right|_{K_{i}}$. Then there exists a function v on I, and a partition of I into disjoint subsets I_{n} such that: (i) $\sum_{i \in I_{n}} u_{i} v_{i}=1$, (ii) $\sum_{i \in I}\left|v_{i}\right|^{2}<\infty$. For each $i \in I$, choose a nontrivial representative s_{i} in S_{i}, and let $E=\bigcup_{I} s_{i} H, E_{n}=\bigcup_{I_{n}} s_{i} H$.

The function $f=\sum_{i \in I_{n}} v_{i} \chi_{s_{i} H}$ is supported in $E_{n} \subset W_{1}$. Therefore, by Theorem 2, there exists a constant C such that the norm of f_{n} as a left convolution operator on L^{2} satisfies the inequality

$$
\left\|f_{n}\right\|_{C_{\lambda}^{*}} \leq C\left\|f_{n}\right\|_{2}<C\left(\sum_{i \in I}\left|v_{i}\right|^{2}\right)^{1 / 2} \rightarrow 0
$$

If g is a finitely supported function on G, define

$$
\|g\|_{u}^{2}=\int_{G} g^{*} * g(x) u(x) d x
$$

We claim that

$$
\lim _{n}\left\|f_{n}-\delta_{e}\right\|_{u}=0
$$

Indeed,

$$
\begin{aligned}
\left\|f_{n}-\delta_{e}\right\|_{u}^{2}= & 1+\iint u\left(y^{-1} x\right) f_{n}(x) \bar{f}_{n}(y) d x d y \\
& -\int u\left(y^{-1}\right) \bar{f}_{n}(y) d y-\int u(x) f_{n}(x) d x
\end{aligned}
$$

For every $x, y \in E$, either x and y belong to the same right H-coset or $\left|x^{-1} y\right|=|x|+|y|$ and $u\left(x^{-1} y\right)=u(x) u(y)$. Thus, by (i),

$$
\begin{aligned}
\left\|f_{n}-\delta_{e}\right\|_{u}^{2}= & -1+\int\left|f_{n}\right|^{2}-\int u^{2}\left|f_{n}\right|^{2} \\
& +\iint u(x) u(y) f_{n}(x) \overline{f_{n}(y)} d x d y \\
= & \int_{E}\left(1-u^{2}(x)\right)\left|f_{n}(x)\right|^{2} d x
\end{aligned}
$$

The right hand side tends to zero, because of (ii), and the claim is proved. Denote by $\lambda(f)$ the left convolution operator on L^{2} determined by f. Let F be the positive functional on $C^{*}(G)$ associated with the positive definite function u, and define F_{λ} on $C_{\lambda}^{*}(G)$ by $F_{\lambda}=F \circ P$. By the Cauchy-Schwarz inequality,

$$
\begin{aligned}
F_{\lambda}\left(\mathbb{1}-\lambda\left(f_{n}\right)\right) & \leq F(P) F\left(\left(\mathbb{1}-\lambda\left(f_{n}\right)\right)^{*}\left(\mathbb{1}-\lambda\left(f_{n}\right)\right)\right) \\
& =F(P)\left\|f_{n}-\delta_{e}\right\|_{u}^{2}
\end{aligned}
$$

which converges to zero as $n \rightarrow \infty$. Thus $F\left(P \lambda\left(f_{n}\right)\right)=F_{\lambda}\left(\lambda\left(f_{n}\right)\right) \rightarrow F_{\lambda}(\mathbb{1})$ $=F(P)$. On the other hand, as $u_{\lambda}(x)=P u(x)=F_{\lambda}\left(\delta_{x}\right)$, one has

$$
\left|F_{\lambda}\left(\lambda\left(f_{n}\right)\right)\right|=\left|\int u_{\lambda} f_{n} d x\right| \leq\left\|u_{\lambda}\right\|_{B}\left\|f_{n}\right\|_{C_{\lambda}^{*}} \rightarrow 0
$$

It follows that $F(P)=0$. Since $F(P)=u_{\lambda}(e)$, this implies $u_{\lambda}=0$.
4. Convolution operators on $L^{p}(G)$ and A_{p}-algebras. In this section, we characterize the predual of the Banach space $C v_{p}$ of left translation invariant operators on $L^{p}(G), G={ }_{H} K_{i}$, with $\sup _{i} \#\left(K_{i} / H\right)<\infty$.

Definition. For $1<p<\infty$, let $1 / q=1-1 / p$, and $A_{p}=\{h=$ $\left.\sum_{i=1}^{\infty} f_{i} * g_{i}: f_{i} \in L^{p}(G), g_{i} \in L^{q}(G), \sum_{i=1}^{\infty}\left\|f_{i}\right\|_{p}\left\|g_{i}\right\|_{q}<\infty\right\}$. We endow A_{p} with the norm $\|h\|_{A_{p}}=\inf \left\{\sum_{i=1}^{\infty}\left\|f_{i}\right\|_{p}\left\|g_{i}\right\|_{q}: h=\sum_{i=1}^{\infty} f_{i} * g_{i}\right\}$.

We now show that, if $G={ }_{H} K_{i}$, with $\#\left(K_{i} / H\right)$ bounded, then $A_{p}^{*}=C v_{p}$.

Lemma 3. For $1<p<\infty$, every bounded operator T on $L^{p}(G)$ which commutes with right translations can be approximated, in the weak operator topology, by left convolution operators by functions with compact support.

Proof. Denote by v_{α} an approximate identity in $L^{1}(G)$. As T commutes with right translations, for every $u \in L^{p}(G)$ one has $\lim _{\alpha} T\left(v_{\alpha} * u\right)$ $=\lim _{\alpha} T \cdot v_{\alpha} * u=T u$. Thus we can assume that T is a left convolution operator by a function $f \in L^{p}(G), T=\lambda(f)$.

We first handle the case $1<p \leq 2$. For $t>0$, let $f_{t}(x)=$ $\exp (-t|x|) f(x)$. Now $\lambda\left(f_{t}\right) \rightarrow \rightarrow_{t \rightarrow 0} \lambda(f)$ in the strong operator topololy, since $B(G) \subset B_{p}(G) \subset \mathscr{M}\left(C v_{p}\right)$ [15]. Therefore, it suffices to show that there exists a sequence of functions h_{n} with compact support such that $\lambda\left(h_{n}\right) \vec{n} \lambda\left(f_{t}\right)$ in norm.

We construct this sequence as follows: $h_{n}=\sum_{m=0}^{n} f_{t} \chi_{m}$. Indeed, by Corollary 1,

$$
\begin{aligned}
& \left\|\lambda\left(h_{n}\right)-\lambda\left(f_{t}\right)\right\|_{C v_{p}} \leq \sum_{m=n+1}^{\infty}\left\|f_{t} \chi_{m}\right\|_{C v_{p}} \\
& \quad \leq C \sum_{m=n+1}^{\infty}(m+1)^{1 / q}\left\|f_{t} \chi_{m}\right\|_{p} \leq C \sum_{m=n+1}^{\infty}(m+1)^{1 / q} e^{-t m}\|f\|_{p}
\end{aligned}
$$

This completes the proof if $1<p \leq 2$. By the same argument, every right convolution operator on L^{p} can be approximated, in the strong operator topology, by right convolution operators $\rho(h)$, where h has compact support. Let now J be the involution of L^{p} given by $J u(x)=u\left(x^{-1}\right)$. Then, for $p>1$, the adjoint of $\lambda(f)$ on L^{p} is the operator $J \rho(f) J$ on L^{q}. If $p>2$, the first part of the proof yields a sequence of operators $\rho\left(h_{n}\right)$ on L^{q}, with h_{n} of compact support, which approximate $\rho(f)$ in the weak operator topology. The result now follows from the fact that $J \rho\left(h_{n}\right) J$ converges to $J \rho(f) J$ in the weak operator topology.

ThEOREM 5. Let $G={ }_{H} K_{l}$, with $\#\left(K_{l} / H\right)$ bounded. Then the dual space of A_{p} is isometrically isomorphic with $C v_{p}$.

Proof. Let $T \in C v_{p}, h=\sum_{i=1}^{\infty} f_{l} * g_{i}, f_{i} \in L^{p}(G), g_{i} \in L^{q}(G)$, and $\langle T, h\rangle=\sum_{i=1}^{\infty} T f_{l} * g_{l}(e)$. The inclusion $C v_{p} \subset A_{p}^{*}$ is immediate if we prove that the map $h \rightarrow\langle T, h\rangle$ is well defined on A_{p}. To prove this, let $\sum_{l} f_{l} * g_{i}(x)=0$ for every $x \in G$. Then $\Sigma_{l} \lambda(h) f_{i} * g_{l}(e)=0$ for every function h with compact support. By Lemma $3, \sum_{i} T f_{i} * g_{i}(e)=0$.

Conversely, let $\Phi \in A_{p}^{*}$, and fix f in $L^{p}(G)$. Then Φ determines a continuous linear functional on $L^{q}(G)$ by the rule $g \rightarrow \Phi(f * g)$. This functional is associated with a function $F \in L^{p}(G)$. Define an operator T on $L^{p}(G)$ by $T f=F$. It is easily seen that T commutes with right translations, that is, $T \in C v_{p}$, and $\|T\|=\|\Phi\|$. Thus $A_{p}^{*} \simeq C v_{p}$.

References

[1] A. Alesina and L. de Michele, A dichotomy for a class of positive definite functions, Pacific J. Math., 103 (1982), 251-257.
[2] R. Alperin, Locally compact groups acting on trees and property T, Monatsh. Math., 93 (1982), 261-265.
[3] W. Betori and M. Pagliacci, Harmonic analysis for groups acting on trees, Boll. Un. Mat. It., 3-B (1984), 333-349.
[4] M. Bozejko, Positive definite functions on the free group and the noncommutative Riesz product, to appear in Boll. Un. Mat. It.
[5] P. Cartier, Géomètrie et analyse sur les arbres, Sem. Bourbaki, 24 (1972-72), exposé 407, Lecture Notes in Mathematics, n. 317, Springer-Verlag, Berlin, 1974.
[6] J. M. Cohen and L. de Michele, Radial Fourier-Stieltjes algebra on free groups, Contemporary Mathematics 10 (Operator algebras and K-theory) (1982), 33-40.
[7] M. Cowling, La synthèse des convoluteurs de L^{p} de certains groupes pas moyennables, Boll. Un. Mat. It., 14-A (1977), 551-555.
[8] _L_ La synthèse des convoluteurs de L^{p} de certains groupes pas moyennables, Boll. Un. Mat. It., 1-A (1982), 317.
[9] L. de Michele and A. Figà-Talamanca, Positive definite functions on free groups, Amer. J. Math., 102 (1980), 503-509.
[10] J. Dixmier, Les algèbres d'operateurs dan l'espace Hilbertian, Gauthiers-Villars, Paris, 1969.
[11] M. Enomoto and Y. Watatani, Reduced group C^{*}-algebras of amalgamated free products with the metric approxmation property, preprint, 1984.
[12] A. Figà-Talamanca, Translation invariant operators in L^{p}, Duke Math. J., 32 (1965), 495-502.
[13] A. Figà-Talamanca and M. A. Picardello, Harmonic Analysis on Free Groups, Lecture Notes in Pure and Applied Math. 87, Marcel Dekker, New York, 1983.
[14] U. Haagerup, An example of a non-nuclear C^{*}-algebra which has the metric approximation property, Inventiones Math., 50 (1979), 279-293.
[15] C. Herz, The theory of p-spaces with an application to convolution operators, Trans. Amer. Math. Soc., 154 (1971), 69-82.
[16] A. Iozzi and M. A. Picardello, Graphs and convolution operators, in "Topics in Modern Harmonic Analysis", Istituto Nazionale di Alta Matematica, Roma, 1982.
[17] __ Spherical functions on symmetric graphs, Lecture Notes in Mathematics n. 992, Springer-Verlag, Berlin, 1983, 344-386.
[18] J. P. Serre, Arbres, amalgames, $S L_{2}$, Asterisque, 46 (1977).

Received April 12, 1984 and in revised form August 8, 1985.
Università di Roma
00100 Rome, Italy

