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FIXED POINT THEOREMS FOR SOME
DISCONTINUOUS OPERATORS

LUCIMAR NOVA G.

The purpose of this paper is to show the existence of fixed points
for operators T defined on a subset AT of a Banach space X and
belonging to a class that the author calls D(a,b) with 0 < a, b < 1.

1. Introduction. Let T be a mapping of a set K into itself. An

immediate question is whether some point is mapped onto itself; that is,

does the equation

(1) Tx = x

have a solution? If so, x is called a fixed point of T. This question

generates a theory which began in 1912 with the work of L. E. J. Brouwer,

who proved that any continuous mapping T of an «-ball into itself has a

fixed point, and was followed in 1922 by S. Banach's Contraction Princi-

ple, which states that any mapping T of a complete metric space X into

itself that satisfies, for some 0 < k < 1, the inequality

(2) d(Tx,Ty)<kd(x,y)

for all x and y in X, has a unique fixed point. Here d denotes the metric

on X. J. Schauder [13], Tychonoff [16]. S. Lefschetz [10], F. Browder [2],

W. A. Kirk [7], and many others have added to and generalized these

basic results.

In 1969 and 1971, R. Kannan [5], [6], proved some fixed point

theorems for operators T mapping a Banach space X into itself which,

instead of the contraction property in (2), satisfy the condition:

(3) \\Tx - Ty\\< a[\\x - Tx\\ + \\y - Ty\\],

for all x, y in X; where 0 < a < 1/2. G. Hardy and T. Rogers [4]

generalized this result to continuous mappings T of a complete metric

space X into itself that satisfy:

(4) d(Tx, Ty) < aιd{x, y) + a2d(x, Tx) + a3d(y, Ty)

+ a4d(x, Ty) + a5d(y, Tx),

for all x and y in X, where at > 0 and ax + a2 + a3 4- a4 + a5 < 1. K.

Goebel, W. A. Kirk, and T. N. Shimi [3], extended the last result to
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continuous mappings of a nonempty bounded, closed and convex subset

K of a uniformly convex Banach space into itself, where aι > 0 and

ax + a2 + a3 + a4 + α5 < 1.

In this article we will prove some fixed point theorems for operators T

defined on a subset K of a Banach space X that satisfy the inequality.

(5) \\Tx - Ty\\< a\\x - y \ \ + b[\\x - Tx\\ + \\y - Ty\\]

for all JC and y in # , where 0 < α, b < 1. Any operator Γ satisfying

condition (5) will be said to belong to class D(a,b). A contraction

operator is in class D( k, 0) with 0 < k < 1.

Note that although condition (2) implies the continuity of the opera-

tor Γ, condition (3) to (5) may hold even if the operator is not continuous.

Indeed, any operator T is in D(l, 1), since by the triangle inequality:

\\Tx-Ίy\\z\\Tx-x\\ + \\x-y\\ + \\y-Ty\\.

Furthermore, inequality (5) is a direct consequence of (4) and the

triangle inequality, provided we forego the upper bounds required in [3].

2. Discussion. If we carefully examine the statement and proof of

Banach's Contraction Principle (see for example Kreyszig [9, pp. 300-302])

we observe that the main conclusions are

(i) There exists a unique fixed point,

(ii) A contraction mapping is an asymptotically regular operator for

any point, that is, \\Tn~ιx - Tnx\\ -> 0 as n -> oo.

(iii) The sequence xn = Tnx0, of Picard iterates converges to the unique

fixed point.

Which of these conclusions hold for operators T in the class D(a,b) with

0 < a, b < 1?

First, observe that these classes are not empty: consider the discon-

tinuous operator

Tχ= tyx> ° ^ x < 1 / 2 ,
\ px, 1/2 < x < 1,

with 0 < γ, p < 1, γ Φ p. Then T is in D(0, μ/(l - μ)) where μ =

max{γ, p} because

I (y — 7γ Ί = v r for v p [Π 1 /2)

so that
I r M 1 F M ' I J / I \ I I t ^T' I I I ΛTf 7 I I
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The same inequality holds if xι e [1/2,1]. Now if xx < 1/2 < x2; then

γZΓ^(xι ~ Txx) = yxλ; γz~^(x2 ~ Tx2) = px2

and

\Txλ — Tx2\ < yxλ + px2 < -r——[\xx - Txλ\ 4- \x2 — 7*2 1}
1 μ

Moreover, (i) as is obvious from its graph, T has a unique fixed point at

(ii) γz~{Tnx - Tn + 1x) = yTnx < μn + ιx

for n sufficiently large, arbitrary x in [0,1], and 0 < μ < 1, so that T is
asymptotically regular at any point, and (iii) {xn — Tnx)n converges to 0.

How many fixed points can an operator in the class D(a, b), 0 < a,
b < 1, have? We shall show that the behaviour of the classes D(a, b) is
identical whether or not 6 = 0.

LEMMA 1. Let T be in the class D(a, b), a, b > 0, a < 1. If Fτ =
{ x G K\Tx = x) is not empty, then Fτ consists of a single point.

Proof. Assume that xi9 i = 1,2, are fixed point of Γ, and T satisfies
D(a, b). Then

which only holds if xλ = x2. D

When does T have a fixed point? Before answering this question we
will need the following three interesting facts.

LEMMA 2. / / Γ G D(a,b)9 a + 2b < 1, then I n f ^ ^ l x - 7x|| = 0.

Proof. Define xn = Tnx0, with x0 an arbitrary point. Then

ll*π - *« + lll = l l Γ * « - l - Txn\\

< aWx^ - xj 4- blWx^, - * J | + WTx^ - Txn

so that

Hence
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and as (a + b)/(l - b) < 1 it follows that \\xn - Txn\\ -> 0 as n -+ oo;

that is \nίx^κ\\x - Tx\\ = 0. D

Let X b e a Banach space, T be a mapping of X into itself, and x be

a point in X. The mapping Γ is asymptotically regular in x if | | Γ " + 1 Λ : —

Tnx\\ -> 0 as H -> oo.

Because of the definition of xπ in the proof of Lemma 2 we observe

that T"x0 - Tn+ιx0 = xn- xn+ι = (I ~ T)xn -> 0 as n -» oo, so that

we have

LEMMA 3. If T e D(a, b), a + 2b < 1, /Λew 7" w asymptotically regu-

lar at any point.

From Banach's Contraction Principle, we know that for T in D(a, 0),

the Picard iterates converge to the unique fixed point. Although we have

not yet proved the existence of a fixed point, is there any property that a

sequence of points {xn} in K could satisfy that would imply the existence

of a fixed point and the convergence of that sequence to that point? The

following result answers this question.

THEOREM 1. Let K be a closed subset of a Banach space X and let

T ^ D(a, b) with 0 < a,b < 1. Then the sequence [xn}n contained in the

set K, satisfies

(6) lim (xn - Txn) = 0,
n-+ oo

if and only if the sequence converges to the unique fixed point of T.

Proof. The condition is necessary because

\\Txn - Txm\\ < a\\xn - xm\\ + B{\\xn - TxJ + \\xm - TxJ]

and applying the triangle inequality we have

\ \ 1 Λ n 1 Λ m \ \ — 1 __ a \ W Λ n 1 Λ n \ \ ' \ \ Λ m 1 Λ m \ \ ) '

Thus, it follows, from the hypothesis that {Txn}n is a Cauchy sequence.

Since X is complete and K is closed there exists z 6 ί such that

lim Txn = z
n—> oo

and since xn — Txn -> 0 as n -> oo, then xn -> z as n -> oo. Using the

triangle inequality and the fact that T e D(a,b) with b < 1, we have:

~ Xn\\+
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and since xn -> z, and xn — Txn -> 0 as /i -» αo it follows that z is a
fixed point under T. By Lemma 1 it is unique.

For the sufficiency part of the theorem we assume that there exists
z e K such that z = Tz and

lim xn = z.

Since T <E D(a, b) with 6 < 1, using the triangle inequality, we have:

\\Txn - xj-\\xn - z\\<\\Txn - z\\<a\\xn - z\\ +b\\xn - TxJ.

Thus,

(l-b)\\Txn-xn\\<(l + a)\\xn-z\\,

by hypothesis, Txn - *„ -> 0 as w -> oo. D

We have already seen that the Picard iterates of any point x in K
satisfy equation (6). Hence we have proved

THEOREM 2. Let K be a closed subset of a Banach space X, let
T e D(a, b) with a + 2b < 1. Then Thas a unique fixed point z in K.

Moreover, the Picard iterates of any point x in K converge to z.
When a + 2 b < 1 we can estimate the rate of convergence of the

Picard iterates:

\\Tx - z\\ = \\Tx - Tz\\ < a\\x - z\\ + b\\x - Tx\\

<(a + b)\\x - z\\+ b\\z - Tx\\

or

(7) \\Tx-z\\

Hence

and a + b < 1 — b.
Here is an example of an operator T in Z>(0,1) which does not have a

fixed point:
Consider the function

= (x/4 + 19/50, if 0 < JC < 1/2,

" \ x/5 + 19/50, if 1/2 < x < 1.

It is enough to see the case x e [0,1/2), y e [1/2,1] and to compare
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\x-Tx\ + \y-Ty\ =
\βy - 15JC

20
Analyzing the cases 5x — Ay < 0 or 5x — Ay > 0, we observe that

T e D(0,1) but T does not have a fixed point in [0,1].

The fixed point of the following operator T solves a differential
equation which is not covered by the usual Picard Theorem, although the
solution is found by the same iterative process.

Let

yx(t) + Γ k(s, t, x(s)) ds9 0 < x{t) < A,
Jo

ρx(t)+ [' k(s9t,x(s))ds9 x(t) > A,
Tx(t) =

where k(s, t,x{s)) = ce~a{t~s) x(s), ayc > 0, and 1 > γ > p > 0. Let

0 < x(t) <A< y{t) such that 2x(s) < (1 + (1 - γ)/(l - p))y(s) for
all 0 < s < t. Then

JC(O - Tx(t) = (1 - y)x(t)-fk(s,t,x(s))ds

so that

| J * ( ί ) - 7 > ( ί ) | - - Tx(t)) + ±-fk{S,t,x(s))ώ\
' Ό J

and

(9) \Tx(t) - Ty(t)\

+ Y^- f k(s, t, x(s)) ds - γ ^ ζ k(s, t, y(s)) ds

-
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Inequality (9) also holds for any other positive choices of x(t) and y(t).

Thus

ΓGΰ

and if 0 < γ < min(l/2, 1/3(1 - c/a)\ the operator T will have a
unique fixed point and any Picard iterates will converge to that fixed
point.
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