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SUMS AND PRODUCTS OF Br SPACES

DOMINIKUS NOLL

In reminiscence of Ptak's open mapping theorem, a topological
space satisfying the open mapping theorem is called a Br space. This
paper is devoted to the study of sums and products of Br spaces in the
category of topological spaces. We prove that, in general, sums and
products of even two Br spaces need no longer be Br. On the other hand,
for any Br space E the sum E θ E is again a Br space. Moreover, since
Cech complete spaces are known to be Br, we ask whether a sum E θ F
is Br provided that E is Cech complete and F is Br. It turns out that, at
least in the framework of complete regularity, the answer to this question
is in the positive if and only if F is a Baire space.

Introduction. The notion of Br spaces has first been introduced by

T. Husain in the categories of locally convex vector spaces (see [HuJ) and

topological groups (see [Hu2]). Originally, it goes back to V. Ptak's open

mapping theorem (see [Kό], p. 35 ff).

A Hausdorff topological space E is called a Br space if every

continuous, nearly open bijection / from E onto any Hausdorff space F

is in fact open.

For a survey of the classical theory of Br spaces we refer the reader to

Kόthe's book [Kό], where the locally convex case is treated. The linear

topological case is investigated in the lecture notes [AEK]. Br groups are

considered by several authors. See for instance [Hu2], [Ba], [Gr], [Su]. In a

purely topological context, Br spaces have first been investigated by

Weston in [We], although the term Br space is not used there. Translated

into the Br terminology, Weston proved that every completely metrizable

topological space is a Br space. His result has been generalized by

Byczkowski and Pol in [BP], who proved that every Cech complete

topological space is a Br space. In [No] we have further generalized this

result proving that every Hausdorff, semi-regular topological space densely

containing some Cech complete sub space is in fact a Br space. We just

mention another generalization of Byczkowski and Pols' result into a

somewhat different direction by Wilhelm (cf. [Wi]).

In the present paper we examine the invariance of the class of Br

spaces under topological sums and products. It turns out that, in general,

the sum of even two Br spaces need not be a Br space. A counterexample

is given in §2. In §1 we obtain a positive result stating that the sum E θ E
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is a Br space provided that E is Br. This result is then used to obtain a
generalization of the Banach-Klee theorem. In §2 we investigate sums of
Br spaces £ θ F i n the specific case when F is Cech complete. It turns
out that for E θ F to be a Br space in this situation one has to assume
that £ be a Baire space. In §3 we present a special class of Br spaces
which is of some interest in itself. This class is then used to give the
promised counterexample. Finally, in §4 we deal with products of Br

spaces. We prove that the product of two Br spaces need no longer be Bn

again using the spaces defined in §3. This negative answer is by no means
surprising when we recall the situation in the classical theory. Indeed,
counterexamples in the classical cases can be found in [Kό] and [Gr] for
the locally convex and the case of groups respectively.

Our terminology is from the book [E]. To be somewhat shorter, a

Hausdorff semi-regular space which densely contains some Cech complete

subspace will be called almost Cech complete. Finally, a mapping /:

E -* F is called nearly open if for every x e E and every neighborhood U

of x the set f(U) is a neighborhood of f(x).

1. Sums of Br spaces. In this section we examine the problem of
invariance of the class of Br spaces under topological sums. The following
easily proved statement is the starting point of our investigation.

PROPOSITION 1. Let (Et\ i Ξ /) be a family of topological spaces whose
sum ®{Et: ί e / } is a Br space. Then every summand Et must be Br,
too. D

So far we know of a large class of Br spaces closed under arbitrary
sums, the class of almost Cech complete spaces. Another example for this
phenomenon is provided by the class of arbitrary sums of ^-minimal
( = Γ2-minimal) spaces (see Proposition 5 below).

Our first step will be the following proposition which, in many cases,

reduces the general problem to the case of the finite sums.

PROPOSITION 2. Let {EL: t € / ) with card(/) > 2 be a family of
topological spaces such that EL θ Eκ is a Br space whenever i, K e /, ι Φ /c.
Then the sum ®{Et: i & 1} is aBr space as well.

Proof. Let /: θ , EL -> F be a continuous, nearly open bijection, F a
Hausdorff space. Since card(/) > 2, every EL is Br by Proposition 1. Now
/ Γ Et is a continuous, nearly open bijection Et -> f(Et), hence we derive
Eι « f(Et). We prove that f(Et) is closed in F. Assume not. Then there
exists K Φ i in / with f(Et) Π f(Eκ) Φ 0. But now EL θ Eκ is a Br space
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which implies Et Θ Eκ » f(Et Θ Eκ) » /(£,) 9f(Eκ), contradicting/(^J
Π f(Eκ)Φ 0. Hence /(£ t ) is closed in i 7 and since / is nearly open this
proves the result. D

With this observation in mind we shall now deal with the case of
two-element families of Br spaces, i.e. given two Br spaces E and F, we
ask whether their sum E Θ F must be a Br space. It turns out that, in
general, the answer is in the negative. An example will be given in §3.
Consequently, we are now interested in situations in which, nevertheless,
the answer is in the positive. We pose the following problems.

(1) Given a Br space £, must E Θ E be a Br space?
(2) Given a Br space E and an (almost) Cech complete space F, under

what conditions on E will E Θ F be a Br space?
In this section we shall give a solution to the first problem. Problem (2)
will be treated in §2.

Before giving an answer to problem (1), let us mention that every Br

space must be semi-regular (cf. [E], p. 84). Indeed, if E is a Br space and
if Es denotes the semiregularization of E (i.e. the set E endowed with the
topology generated by the regular-open subsets (= open domains, see [E],
p. 37) of the space E) then the mapping id: E -> Es is a continuous,
nearly open bijection and, moreover, Es is a Hausdorff space. This
implies E = Es.

THEOREM 1. Let E be a Br space. Then E Θ E is a Br space as well.

Proof. Let /: E Θ E -» F be a continuous, nearly open bijection
onto the Hausdorff space F. Assume that the point set of E Θ E is
E X {1} U E X {2}. Then we have f(E X {1}) « f(E X {2}) « E since
E is a Br space. It remains to prove that F = f(E X {1}) Θ f(E X {2}).
This will be established in several steps.

(I) First we observe that F may be assumed to be semi-regular.
Indeed, if F is not semi-regular then we regard / as a mapping /:
E Θ E -> Fs9 where Fs denotes the semiregularization of F. Then / is
again a nearly open, continuous bijection and Fs is Hausdorff. But if we
can prove the openness of / with target space Fs, then / will be open with
target space i7, too.

(II) We prove that every nonempty open set U c E contains some
nonempty open subset V with int/(F X {1}) Π f(V X {2}) = 0 . Indeed,
if x G U then /(x, 1) and f(x,2) can be separated in F since F is
Hausdorff. Thus there exists a neighborhood V of x contained in U with
int/(Kx{l}) Π int/(Fx{2}) = 0 .
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(III) Now we prove that every nonempty open set U c E contains
some nonempty open subset V with int/(Fx{l}) Π f(E X {2}) = 0 .
Assume that there exists a nonempty open set U c E with int/(F X {1})
Π f(E X {2}) # 0 for all nonempty open subsets Voί U. In view of (II)
we may assume that int/(ί/x{l}) Π/(ί/X {2}) is empty. Moreover,
since £ is semi-regular, we may assume that U is a regular-open set.

For every open subset V of U there exists an open set F ω c £ such
that int/(Fx{ l } ) Π / ( £ X {2}) = / ( F ω X {2}). Let £/* := int CT.

For every open subset W of t/* there exists an open set Wp c £ such
thatint/(ίFx{2}) n f(E X {1}) = f(Wp X {1}).

The mappings V -* Vω and W -> Wp are monotonic and moreover
have the following properties which can be derived from the assumptions
onU.

(i) U Π U* = 0
(ii) If F c ί/ then F ω c U* and if F is nonempty, so is F ω .

Moreover, if F is regular-open, then ( F ω ) p c F.
(iii) If We U* then PFP c ί/ and if PF is nonempty, so is Wp.

Moreover, if W is regular-open, then (Wp)ω c W.

Now for every regular-open set W in E let ίF denote the set W U
(JF Π U)ω U (W Π ί/*)p. Let 93 be the set of all JF, JF regular-open in
E. Then ^ is a base for a new topology on E. In fact, let F, ίF G 33
and x ^ V Π W be given. We have to find 0 in ^ with I G O C

V Γ\ W. There are seven different cases to be considered. Let us give a
proof for x <Ξ (VΠ U)ω (Ί (WΠ U)ω exemplary. Choose a regular-
open set O with JC G O c (FΠ ί/)ω Π (PFΠ £/)ω. Obviously, O c V.
Since 0 c ( F Π ί/)ω c [/* we have O Π t/ = 0, hence ( 0 Π ί/)ω = 0,
too. On the other hand (0 Π C/*)p = 0 P c ((F Π t/) ω ) p c F c F This
proves 0 c F. Analogously, we obtain O c W.

Now let T denote the original topology on E and let σ denote the
topology generated by 93. Then σ is strictly coarser than T. We prove that
σ is Hausdorff. Let x, j> e £, x # y be given. Choose regular-open
neighborhoods Vχ9 Vy of x, ^ such that int f(Vx X {/}) Π
int/(F v x{j}) =£ 0 for all /, j G {1,2}. This is possible since the points
/(x, 1), /(x, 2), /(}>, 1), /(j;, 2) can be separated in F. But now we derive
Vx Π Fv = 0 . Hence σ is Hausdorff.

Finally, we prove that ΊάE\ (E,τ) -> (£, σ) is nearly open. We have
to prove V c clσ(F) for regular-open F. Since F c clσ(F) is clear we
prove (VΠ U)ω c clσ(F). The proof for (F Π t/*)p c clσ(F) is similar.
Let y e ( F Π £/)ω. Let 0 be a basic neighborhood of j . It is easy to see
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that we may assume y e O c (VΠ ί/)ω. Thus (O Π ί/*)p c ( F Π £/)ωp

c V proving O Π V Φ 0. But now we have arrived at a contradiction
since E is a 2?r space. This proves (III).

(IV) Now every nonempty open U contains some nonempty open Vυ

such that the statement of (III) holds. Hence G:= U{mtf(Vυ X {1}): U
open in E) is an open subset of Fdensely contained in f(E X {1}). Since
/ is nearly open this proves the theorem. D

Thus our first problem has been solved in the positive. In view of
Proposition 2 we obtain the following

COROLLARY 1. Let E be a Br space and let (Et: i <= I) be a family of

copies of E(i.e. Et « E for all c). Then φ { Et: t G / j is a Br space. D

The following consequence of Theorem 1 is somewhat more interest-
ing.

COROLLARY 2. Let G be a topological group which is a Br space. Then

G is complete with respect to its two-sided uniformity.

Proof. Let G be the completion of G with respect to the two-sided
uniformity. Suppose that there exists some i ί E G \ G . Let H:= G U xG
be endowed with the trace of the topology of G. Let G Θ G = G X {1} U
G X {2} and define the mapping /: G Θ G -> H by f(x, 1) = x and
f(x,2) = xx. Then / is continuous and bijective, the latter since G Π xG
= 0 . Moreover, since G and xG are both dense in H, / is nearly open.
Hence it must be open and this yields the openness of G in H, a
contradiction. D

From this result we may derive the Banach-Klee theorem stating that
every completely metrizable topological vector space is complete with
respect to its natural uniformly (cf. [Kl], [We]).

Let us mention another point of view from which Corollary 2 seems
to be of some interest. It is well-known that a Br group need not be
complete with respect to its two-sided uniformity. Indeed, there even exist
//-minimal abelian groups which are incomplete. Take for instance the
group Q = {e2viq: ? e Q } . (Cf. [Gr]). Now, in view of Corollary 2 above,
it is clear that Q cannot be a Br space in the topological sense.

2. Absolute Baire spaces. In this section we continue our investiga-
tion of finite sums of Br spaces with problem (2). We obtain a rather
satisfactory answer to problem (2). It turns out that a necessary and
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sufficient condition on a Br space E can be given to assure that the sum
E θ F is Br for every (almost) Cech complete space F9 at least when E is
assumed to be completely regular: E has to be a Baire space. In the
absence of complete regularity, however, this condition is not really
necessary and has to be replaced by the following notion.

DEFINITION 1. (a) Let E be a Hausdorff topological space and let E
be a dense subspace of E. Then E is called Baire-embedded in E if every
Gδ subset G of E with G Π E = 0 is nowhere dense in E.

(b) A Hausdorff topological space E is called an absolute Baire space
if E is Baire-embedded in every Hausdorff topological space E containing
E as a dense subspace. D

REMARKS. (1) The reader might consult here Aarts and Lutzers' paper
[AL], where the concept of an A -embedded subspace is introduced. If E is
dense and co-dense in E then E is Baire-embedded in E if and only if
E \ E is v4-embedded in E.

(2) Every Hausdorff Baire space is an absolute Baire space. Indeed, if
E is a Hausdorff space densely containing the Baire space E and if G is a
Gδ set in E with G Π E = 0 and G dense in the nonempty open set W
then W Π G is a dense Gδ subset of ίΓ and W Π E is a dense second
category subset of W, but both sets have empty intersection, a contradic-
tion.

(3) Let E be a Hausdorff Baire space and let £ be a dense
Baire-embedded subspace of E. Then E is a Baire space. For let U c i?
be nonempty and open. Choose £/ open in £ with U Π E = U. Assume
that U is of the first category, say U c U{ Cn: n e N} where the Crt are
closed and nowhere dense in E. Now let G := Π{ i? \ Cn:« e N}, then G
is a dense Gδ in £", hence U Π G is a somewhere dense G8. Since
(£/ Π G) Γ) E = 0 this is a contradiction.

(4) If E is //-closed, then £ is an absolute Baire space. Consequently,
an absoluite Baire space need not be Baire since Herrlich asserts the
existence of first category //-minimal spaces (see [He]). However, in view
of (3) we know that an absolute Baire space is Baire provided that it
admits some Hausdorff Baire extension. In [Ca] it is proved that a
Hausdorff space E admits some Baire Hausdorff extension if and only if
its Fomin extension oE is a Baire space.

PROPOSITION 3. Let E be a topological space such that the sum E θ F

is a Br space whenever F is {almost) Cech complete. Then E is Baire-em-

bedded in any (almost) Cech complete space E containing E as a dense

subspace. Consequently, if E is completely regular, it is a Baire space.
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Proof. Let E be an (almost) Cech complete space containing E as a

dense subspace. Let G be a Gδ subset of E with G Π E = 0 and assume

that W:= intG is nonempty. Let F:= W Π G. Thus F is a dense Gδ

subset of an open subset W of E and therefore is (almost) Cech complete.

As far as the inheritance of semi-regularity is concerned we refer the

reader to [E], p. 154. Moreover, since Cech completeness is hereditary with

respect to Gδ subsets, we derive that F is an (almost) Cech complete

space. By assumption, E Θ F is a Br space. Let H:= E U F be endowed

with the trace of the topology of E and define the mapping f:EΘF-+H

in the natural way. Then / is a continuous bijection. But / is also nearly

open since f(E)=H and f(F) = WΠH. Hence we conclude that / is

an open mapping. This, however, contradicts the fact that f(E) is dense.

This proves the first part of the proposition. The second part is a

consequence of remark (3) and the fact that E is now Baire-embedded in

its Stone-Cech compactification. D

We shall see in the following that if E is assumed to be an absolute

Baire space then E Θ F will in fact be Br whenever E is Br and F is

almost Cech complete. However, our method of proof is valid for a much

larger class of spaces F than the class of almost Cech complete spaces.

DEFINITION 2. A Hausdorff topological space E is called a (β)-space

if E is a set with the Baire property in every Hausdorff space E

containing E as a dense subspace (i.e. there exists an open set G c E and

a first category set P c E with E = GAP). D

REMARKS. (1) Every almost Cech complete space is a (β)-space.

Indeed, if E is almost Cech complete and if C is a dense Cech complete

subspace of E, then E = C U (E\ C) is a set with the Baire property in

any Hausdorff extension E oί E since C is a dense Gδ in E. (Cf. [Ox], p.

19).

(2) If E is completely regular and analytic in the sense of Frolίk [F],

then E is a (β)-space.

(3) Every first category space is a (β)-space.

(4) Every ϋ-closed space is a (β)-space.

PROPOSITION 4. Let E be a Br space which is absolute Baire and let F

be a Br space which is a Baire (β)-space. Then E Θ F is a Br space.

Proof. Let /: E Θ F -> G be a continuous, nearly open bijection onto

the Hausdorff space G. Since E and F both are Br spaces we conclude
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E ~ f(E) and F ~ f(F). It remains to prove that f(F) is closed in G.
Assume that f(F) Π f(E) Φ 0. Since f(F) is a Baire space, int f(E) Π
f(F) is Baire, too. Thus int/(£) Π/(F) is a second category subset of
77:= int/(£) Π int/(jF). Now /(F) is a (ft)-space, so /(F) is a set with
the Baire property in its Hausdorff extension intf(F), say f(F) = GAP
for G open and P of the first category in int/(F). We claim that
f(E) Π G is of the second category in H. Assume not. Then there exist an
Fσ set R c 77 with f(E)ΠGc:R and 7? is of the first category in i7.
Hence intf(E) Π (G\R) is a Gδ set in if, hence in int/(jF), which does
not intersect f(E) ~ E. Consequently, intf(E) Π G\R) is nowhere
dense in int f(E), hence is nowhere dense in 77. But now we have

intf(E) Π G = (int/(£) Π G Π i?) u( int/(£) n ( G \ Λ ) )

c R U(intf(E) Π(G\R))

contradicting the fact that int/(is) Π G is an open subset of H and
therefore has to be of the second category in H. This proves the claim.
But now recall that f(F) differs from G only by a set of the first category.
Hence also f(E) Γιf(F) must be of the second category in H, which is
absurd since it is empty. This proves our proposition. D

THEOREM 2. Let E be a completely regular Br space. The following

statements are equivalent'.

(1) E is a Baire space;

(2) For every Cech complete space F the topological sum E Θ F is a Br

space;

(3) For every Baire (β)-space F which is a Br space the sum E Θ F is a Br

space. D

Combining Proposition 4 with Proposition 2 we obtain the following

COROLLARY 1. Let (Et: ι e / ) be a family of Baire {βyspaces which

are Br spaces. Then their topological sum ©{£",: t e / } is a Br space as

well. D

We conclude with

PROPOSITION 5. Let (Et: ι e 7) be a family of H-minimal spaces. Then

φ {Et: i G 7} is a Br space.

Proof. This follows again from Proposition 2 since the sum of two

77-minimal spaces is 77-minimal hence Br. D



Br SPACES 181

3. Stationary sets and Br spaces. We have promised to give an

example of two Br spaces whose topological sum is no longer a Br space.

Such an example will be constructed in this section. To this end we shall

present an interesting class of Br spaces defined by means of stationary

sets of ordinals.

Let K be a regular uncountable cardinal. A subset S of K is called

cofinal if card(S) = K. A subset C of K is called co-closed (resp. closed) if

C is sequentially closed (resp. closed) in K for the order topology on K. A

cofinal subset S oί K is called co-stationary (resp. stationary) if it intersects

every co-closed (resp. closed) cofinal subset of K. NOW let K be endowed

with the discrete topology and let κω have the product topology. If S c K

is cofinal then let S* denote the set of all mappings / e κω with

/ * := sup {f(n):n e co} G S . Let S* be endowed with the trace of the

product topology. A base for the topology of S* is formed by the sets

Bs(a0,al9 . . . ,«„) = { / e S*: f(i) = at for i < n}9 where the α, vary

over K. If no confusion may occur, we omit the subscript S.

The class of spaces S* with K = ωx has been used by Fleissner and

Kunen in [FK] to give counterexamples in the problem of invariance of

the class of Baire spaces under products.

THEOREM 3. Let S c K be cofinal. The following statements are equiva-

lent:

(1) S is ω-stationary;

(2) S* is a Baire space;

(3) S* is a Br space;

(4) For every almost Cech complete space F the sum S* Θ F is Br.

Proof. (1) implies (2). This is proved for the case K = ωλ in [FK]. ex. 1.

The proof in the present case, however, is completely analogous.

(1) implies (3). Let /: S* -> F be a continuous, nearly open bijection

onto the Hausdorff space F. Fix I G S * and a neighborhood U =

B(a0,..., an) of x. We prove that f(U) is closed in F. Let y e f(U),

y = f(z). Since U is closed it remains to prove ZELU. Let F =

B(y09..., ym) be a neighborhood of z. We have to prove U Π V Φ 0. Let

FS denote the set of all finite sequences of ordinals less than K. We define

a mapping Θ: FS X FS X ω -» FS such that Θ(α, 16, n) D α whenever π

is even and Θ ( α , b , « ) D b whenever n is odd.

(1) Θ(α, b,0) has to be defined. If α = 6 = 0 then we proceed as

follows. The set i n t / ( F ) Π f(U) is nonempty and contains some x1.

Define Θ ( 0 , 0,0) := (JC^O), . . . , x\n)y x\n + 1)). In all other cases de-

fine Θ(α, b,0) = α.
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(2)Θ(α,b,l)hastobedefined.If b = 0 and if (^(O),.. .,x\n + 1))
is an initial segment of α then define as follows. Choose y1 G int/(5(α))
Π/(F) . This is possible since a(i) = x1(i) for i < n + 1. Now define
Θ(α, 0,1) = (/(0) , . . . , / (m), y\m + 1)). In all other cases define
θ ( α , b , l ) = b.

(3) θ(α, 6, /c) for A: even, A: > 2 has to be defined. If int/(#(α)) Π
f(B(h)) is empty then define Θ(α,b,/c) = α. Otherwise choose xk+ι

in this intersection and define Θ(α, b, /:) = (x^+ 1(0),.. ., xk+ι(s),
xk + 1(s + 1)) where α = ( JC* + 1 (O), . . . , JC* + 1 (*) )

(4) Θ(α, b, fc) for fc odd, A: > 3 has to be defined. If int/(#(b)) Π
f(B(a)) is empty then define Θ(α,b,&) = b. Otherwise choose yk within
this intersection and define Θ(α, b, k) = {yk(0)>..., yk(r), yk(r + 1)),
where b = (yk(0),...,yk(r)).

Suppose now that Θ has been defined. An ordinal η < K is called a
fixed-point of Θ if the following condition is satisfied: Whenever
Θ(α, b, k) = c holds for some k and any α, b G FS with α < TJ, β < η
for all α in α, β in b, then also γ < η for all γ in c. It is easy to see that
the set Φ of all fixed-points of Θ is closed and cofinal. Let C denote the
set of all limit ordinals in /c with cofinality ω. Then Φ Π C is ω-closed
and cofinal and consequently there exists η e Φ π C Π S and a sequence
(?]„) with η 0

 < ^i < ' ' ' S1 tl- Now define two sequences (αrt) and (hn) in
FS with α 0 c aλ c and b 0 c bx c as follows.

Θ(0,0,O) = α 0, αx = α^η 0 ,

θ ( α l 5 0,1) = b 0 , bx = b^τ/1?

Θ(α 1 ?b 1 ?2) = α 2, α3 = a£η2,

©(03,^,3) = b 2 , b3 = bfη 3,etc.

Now there exist mappings w, ϋ G /cω with u = (J{an:n G CO}, t> =
U{ bA7:« G ω}. Since η is a fixed point of Θ we have w*, y* < η. But on
the other hand the ηn converge to η and this yields w* = y* = η G S,
hence u, v ^ S*. Note that w G [/ and v ^ V. Furthermore, observe that
i n t / ( 5 ( α J ) Π f(B(hn)) Φ 0 holds for all Λ. Since (5(α n ) :Λ G ω) is a
neighborhood base of u and (B(hn):n ^ ω) is a. neighborhood base of v
this implies u = υ, hence t/ Π F =/= 0. This proves (3).

Now it is clear that (1) implies (4) since (2) and (3) together imply (4).
Obviously (4) implies both, (2) and (3). We prove that (2) implies (1). Let
C be ω-closed and cofinal. Define open dense subsets Gn of S* by
Gtt = { / e Λ 3k > nsup^kf(i) G C). Then Π{Gn: n G ω] Φ 0 .
Choose / herein, then f* ^ S Π C. This proves (1). It remains to prove
that (3) implies (1). Assume that S is not ω-stationary and choose an
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ω-closed unbounded set C with S Π C = 0 . We define a bijective
mapping *: K -» K with the following properties:

(i) α** = α for all a < κ;
(ii) If α ί C, then a < α* and α* e C.

We proceed by induction. Assume that γ* has been defined for all γ < a.
If there exists γ < a such that γ* = a then define α* = γ. If such a γ
does not exist then let α* be the first element of C greater than a with
α* <£ (γ*: γ < a}.

We claim that * has the following property. If / e S* and if g is
defined by g(n) = /(«)*, then g does not belong to S*.

Indeed, let nl9 n2,... be those indices with /(/!,-) </(«,-)* a n d l e t

m1? m 2 , . . . be the remaining indices with /(mz) >/(m I )*. By the con-
struction of * we must have /(mz) e C, hence / e S * implies sup,-/^,.)
> sup,/(ra,). On the other hand we have g(π, ) =f(ni)* e C by the
construction of *. Now /(/i,)* > / ( Λ , ) > / ( ' W / ) > f(m,)* yields g* =
sup/:/(/!,)* G C, hence g <£ S*.

We finish the proof by showing that S* is not a l?r space. Let T
denote the original topology on 5*. For α e /c, / < Λ define
5 * ( α 1 ? . . . , α J : = 5(α 1 ? . . . ,απ) U 5 « . . . , < ) . The set 95 ofthe5*(α)
with α e F5 is a base for a new topology T* on S* which is strictly
coarser than T. We prove that r* is Hausdorff. Let /, g e 5*, / ^ g be
given. Assume that B*(/(0),...,/(«)) Π J5*(g(O),..., g(w)) # 0 holds
for all n. Since T is Hausdorff we may assume that J?(/(0),...,/(«)) Π
#(g(0)*,.. ., g(π)*) # 0 holds for all H. But by the claim proved above
this implies g £ 5*, a contradiction. Hence T* is Hausdorff. It remains to
prove that the mapping id: (5*, r) -> (S*, T*) is nearly open. To this end
we prove 5*(α 0 , . . . , <xn) c c l τ + (£(α 0 , . . . , an)). Let / be in the left hand
side. We may assume that / e 5(α£,. . . , α*). We have to prove that for
all m > n B*(f(0) f(m)) Π B(a0 αn) # 0 . Choose α w + 1 , . . . , αm

with α7* = /(/) and define h ^ S* such that Λ(ι) = α,. for all i < m. Then
A obviously belongs to both B(a0 •••«„) and B(f(0)* - f(m)*). This
proves that the identity mapping is nearly open. But now we have arrived
at a contradiction and this proves the statement. D

We can now give the promised counterexample. Let K = ω1? then
stationary and co-stationary sets coincide. Choose two stationary sets S, T
in ωλ with S Π T = 0 . (For the existence of such sets see [So].) Then 5**
and Γ* are both Br spaces but their sum S* Θ Γ* is not a Br space. To
see this regard the natural mapping /: S* Θ Γ* -» /cω. / is a continuous,
nearly open bijection onto /(S* Θ Γ*) but S* and Γ* both being dense in
/cω, it cannot be an open map.
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THEOREM 4. Let S be a cofinal subset of K. The following statements are

equivalent:

(1) S contains some ω-closed cofinal subset;

(2) 5* contains a dense completely metrizable subspace {and therefore is

almost Cech complete).

(3) S* is a Baire (β)-space.

(4) For every Baire Br space E the sum E Θ S* is a Br space.

Proof. (1) implies (2) for if C c S is ω-closed and cofinal then C* is a

dense completely metrizable subspace of S*. (2) obviously implies (3). (3)

implies (4) by Proposition 4. Finally, (4) implies (1) for if S does not

contain any ω-closed cofinal set then there exists an ω-stationary set T

with S Π T= 0. But then the sum Γ* Θ S* is not a Br space, a

contradiction with (4). D

4. Products of Br spaces. In this section we examine products of Br

spaces. We start with a negative result stating that even the product of two

Br spaces need not be a Br space.

PROPOSITION 6. Let S, T c K be co-stationary subsets. The following

statements are equivalent.

(1) S Π T is ω-stationary;

(2) S* <8> Γ* is a Baire space;

(3) S* (8) Γ* is a Br space.

Proof. (1) implies (2). This may be established using the method of

proof in [FK], ex. 1. On the other hand, if S Π T is not ω-stationary then

choose an ω-closed cofinal set C with S Π T Π C = 0 . Using again ex. 1

in [FK] one derives that S* ® Γ* is not a Baire space. (1) implies (3). This

may be obtained by a slight modification of the proof of Theorem 3,

(1) => (3). It remains to prove that (3) implies (1). Assume that S Π T is

not ω-stationary and choose an ω-closed cofinal set C with S Π T Π C =

0. We construct a bijection *: κX/c->/cX/c with the following proper-

ties:

(a)(α,j8)** = (α, j8)foral l(α, j8)e K X κ;

(b)If (a9β)* = (γ,δ), then either a = β e C, a = β> max{γ,δ}

or γ = δ G C, γ = 8 > max{α,β}.

We define * by induction. Let p: K -> K X K be some bijection. Assume

that p(γ)* has been defined for all γ < a. If there exists γ < a with

p ( γ ) * = p(α) then define p(α)* = p(γ). Otherwise choose I J G C such
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that (17,17) £ (p(γ) , p(γ)*: γ < «} and such that η > max{ε,£}, where

p(α) = (e,£). Define p(α)* = (η,η).

Assume that * has been defined. For α 0 , . . . , α n , βo,...,βninκ let

* ( (α o , jβ o ) , . . . , (« , , ,&))

where

The sets B*(a) define a topology T* on S* X Γ* which is strictly coarser
than the original topology T. We prove that r* is Hausdorff. Let (fl9 g^,
(Λ> £2) e ^* X 7"*9 (Λ, gi) ^ (Λ, g2) b e given. Assume that for all Λ e ω
we have

0), g 2 (0)) , . . . , (/2(n), fo(ιi))) ^ 0 .

Since T is Hausdorff we may assume that for all n e ω

π5((/2(o)g2(o))*,...,(/2(«)g2(«))*)

is nonempty. This yields (fι(n), gχ(«))* = {f2(n)>gi(n)) f°Γ a ^ «. Now
let /ij, /?2 denote those indices with max{ f2(ni), g2(

ni)} < fi(ni) =

^(/ty) e C and let mx, m2, be the remaining indices which conse-
quently satisfy max {/i(tfθ, g^m,)} </ 2 (^ z ) = g2(mi) G C. Since £ Π
Γ Π C = 0 we have sup/g1(«/) < sup/g1(m/). By the definition of the
sequences («,), (m,) we obtain the following inequalities:

supΛίm,.)^ supg 2(m z)> supmaxl/^m,), g^mj}

> supg1(mi) = g : >

> supmax{/2(n,),g2(«,)}

hence /2* = g* = supy^ίm,) = supf g2(m,) e C, contradicting the fact

that S Γ\ T Γ\ C = 0. Hence T* is a Hausdorff topology.

It remains to prove that the mapping

id: ( 5 * X Γ*,τ) -> ( 5 * X Γ*,τ*)

is nearly open. We prove

2?*((α0, &), . . . , (<*„,&)) c dr*B{(αθ9βo)9. . . , ( α B , jβj) .
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Let {f,g)<=B*((ao,βo),...,(an,βn)). We may assume (/, g) e

B((a0,β0)*,... ,(an,/?„)*). Let m > « . W e have to prove that

B*((f(θ),g(O)),...,(f(m),g(m)))nB{(ao,βo),...,(<xn,βn))φ 0.

We choose pairs (an+1, βn + 1),..., (am, βj such that ( « „ # ) * =

> g(i)) Since S* and Γ* are both dense in κω we can find fλ e 5"*,

e Γ* with /^i) = α,, g^i) = β, for / < m. But then we have

ΠB((f(0),g(0))*,...,(f(m),g{m))*).

This proves our claim. But now we have proved that (3) does not hold, a

contradiction. D

Now it is clear how to give an example of two Br spaces whose

product is no longer a Br space. Take disjoint stationary subsets S,T of

ωl9 then S*, Γ* are Br spaces but S* ® Γ* is not.

So far we have only obtained a negative result. And in fact, it seems

very difficult to obtain positive answers for the problem of invariance of

the class of Br spaces even under finite products. This is corroborated by

the fact that even if one of the factor spaces is compact we do not know

whether the product of two Br spaces is again Br. A special positive

answer is provided by the class of almost Cech complete spaces, which is

closed under countable products. Another special situation in which

positive answers occur is provided by the results in §1. Indeed, if (E t: ι e /)

is a family of copies of the space E, then © {EL: i e /} is homeomorphic

with the product E ® I where / is endowed with the discrete topology.

Hence in view of Theorem 1 and Proposition 2 we may state

PROPOSITION 7. // E is a Br space and if D is a discrete space, then

E <8> D is again a Br space. D

In the remainder of this section we will apply the idea, which lead to

this observation in the category of topological groups.

THEOREM 5. Let G be an abelian Br group. The following statements are

equivalent'.

(1) Whenever D is a discrete abelian topological group, then the product

group G ® D is again a Br group.

(2) Whenever H is a subgroup of the completion G of G with G Π H =

{e}, then H = {e} must hold.
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Proof. Assume (1). Let H be a subgroup of G with G Π H = {e}.

Let /: G ® Hd -> G be the homomorphism defined by f(x,y) = xy.

Thus / is a continuous bijection onto f(G X H). Here i/^ denotes H with

discrete topology. / is nearly open since G is dense in G. Hence (1)

implies that / is open. This proves H = {e}. On the other hand, assume

that (2) holds. Let /: G <8> D -> 7/ be a bijective, continuous and nearly

open homomorphisms with 2) a discrete abelian group and H a Haus-

dorff topological group. Since G X {e} is open i n G x ΰ , the restriction

/ Γ G X {e] is again a continuous, nearly open, bijective homomorphism

onto f(G X {e}) and therefore is in fact open. It remains to prove that

f(G X {e}) is closed in H. Let H be the completion of H. (Note that if

is abelian since G and D are.) Let G be the closure of /(G X {e}) ~ G in

# . Thus G is the completion of G. Let F : = /({e) X D) Π G. Thus F is a

subgroup of G with G Π i 7 = { e } . In view of (1) this implies F = {e) in

G . H e n c e i n H w e h a v e f(G x{e}) nf({e} X D ) = {e}. B u t t h i s

implies that f(G X {e}) is closed in H. D

Following Banaschewski, (cf. [Bn]), a Hausdorff abelian topological

group G is called essentially embedded into its completion G if for every

closed subgroup C of G the relation G Π C = {e} implies C = {e}.

Hence a group G satisfying (2) above might be called strongly essentially

embedded into G. Now using the ideas from [Bn], one can easily prove

that a Hausdorff abelian topological group G is a Br group if and only if

its completion G is Br and the embedding G -> G is essential (see for

instance [Gr]). Now if Q is the group defined at the end of §1 then Q is

essentially embedded in its completion Sι and therefore is a Br group.

But obviously Q is not strongly essentially embedded into S1, hence there

exists a discrete abelian topological group D such that Q ® D is no longer

a Br group.
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