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INTEGRAL REPRESENTATION FORMULAS
ON ANALYTIC VARIETIES

TELEMACHOS E. HATZIAFRATIS

Integral representation formulas for holomorphic functions on ana-
lytic subvarieties of domains of C" are derived. These formulas gener-
alize the Cauchy-Fantappie formula and the Weil formula for analytic
polyhedra. The kernels we obtain are explicitly defined.

Introduction. In recent years integral formulas and their applications
have attracted a lot of attention in several complex variables; see for
example [4, 5, 7, 8, 9, 10] and the most relevant to our work papers of
Stout [15], Palm [11] and Henkin and Leiterer [6].

In this paper we develop analogues of Cauchy-Fantappie Kernels for
analytic subvarieties of domains of C". First let us recall the Cauchy-
Fantappie formula. Let ΰ c C " be a bounded domain with smooth
boundary and let γ: (dD) X D -> C" be a smooth function so that

(1) α - t

for ( £ , Z ) G (dD)xD.

Then the Cauchy-Fantappie formula associated to γ is the following:
For / G Θ(D) Π C(D) and z G D we have:

where

a n d

In §1 we give a generalization of the formula (2) from the domain D
to analytic subvarieties of D. More precisely we consider a bounded
pseudoconvex domain D with smooth boundary and m (m < n) holo-
morphic functions hγ,...,hm in U where U is a domain containing the
closure D of D. We set

V=:{z^U:hι(z)= ••• = A m ( z ) = 0},

M=:VΠD and dM =:Vn(dD).
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Our assumptions are that the variety V should have no singular point
on dM and that it should meet dD transversally. Under these hypotheses
we construct a kernel Kh

M{ζ, z) so that for f <Ξ Θ(M) C\ C(M) and z e M
we have

f(z) = f f{ζ)Kh

M{ζ,z).

This is the content of Theorem I.I.
The kernel Kh

M is explicitly defined in terms of a function γ (γ is
assumed to satisfy (1) as in the Cauchy-Fantappie formula) and in terms
of functions λ/y (f, z), holomorphic in (ξ, z) e U X ί/, so that

(such functions always exist; see for example Harvey [2], p. 89).
Some of the interesting features of Theorem I.I is on the one hand the

explicit form of the kernel K^ξ, z) and on the other hand the fact that
M is allowed to have, finitely many, singular points.

The case m = 0 of Theorem LI is the formula (2) and the case m = 1
of it was obtained by Stout [15]. In fact Stout's paper was the starting
point of this work. The kernel obtained by Stout coincides with ours in
the case m = 1; this is not immediate however and in §11 we show that
they are indeed the same.

The proof of Theorem I.I (given in this paper) is an extension of
Stout's proof from the case m = 1 to the general case. A second proof of
Theorem I.I is contained in Hatziafratis [3].

In §111 we develop a Weil type integral formula for analytic polyhedra
on analytic varieties. The main result of this section is Theorem III.l
which generalizes the Weil integral formula for analytic polyhedra in C"
(see [14, 16]). To obtain this result we combine results from §1 together
with some standard techniques contained for example in Range-Siu [12].

As we pointed out before the results in this paper are related to those
of Palm [11] and Henkin and Leiterer [6]. The setting of Henkin and
Leiterer [6] is more general than ours (we allow, however, finitely many
singular points on M). On the other hand our results are more explicit
than theirs. In fact we do not know the relation between our results and
those of Henkin-Leiterer and Palm.

Acknowledgment. I would like to express my warmest thanks to
Professor Alexander Nagel for very helpful discussions.
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I. We will use the standard notation of differential forms (see for
example [13], Chapter 16). We will use also determinants whose entries are
differential forms. For the properties of these determinants see for exam-
ple [1], p. 8. As usual we will denote the Jacobian

Also AkΦj jm dζk denotes the differential form

i.e., (j)) means that dζj{ is omitted.
The space of holomorphic functions on X is denoted by Θ(X) and

the space of continuous functions on Y is denoted by C(Y).

Description of the setting. Let D be a bounded pseudoconvex domain
with smooth boundary and let γ be as in the "introduction". Let U be an
open neighborhood of Ί> and let h = (hl9..., hm)\ U -* Cm be an
m-tuple of holomorphic functions, (m < n). Define

Z ( h ) = : { z ^ U : h ι ( z ) = .-• = h m ( z ) = 0 }

and set

M =:Z(A) Π D and dM =:Z(A) π(dD).

Let Λl7(f, z) be holomorphic functions in (f, z) e t/ X t/ so that

Consider the differential forms
« — w + l

f, z) =:det γ,,

(in each of the above determinants j runs from j = 1 to j = n forming
the 1st up to the wth row of it) where

1 α ' f - h )

Now we introduce the kernel

Kh

M(ζ,z)=:c(n,m)-
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where

c(«,m)=:(-l)'»("+1) (-l)"("-1)/2+1 - I
(n - m)\(2πι)

The main result of this section is the following:

THEOREM II. // |vΛ| Φ 0 on dM and Z(h) meets 3D transυersally
then for f e Θ(M) Π C(M) and z e Mwe have the integral formula:

f{ζ)Kh

M{ζ,z).

Comments, (i) It follows from the assumptions made about the variety
Z(Λ) that dM is a smooth (2n — 2m — l)-dimensional manifold. Notice
that we allow Z(h) to have finitely many singular points in D.

(ii) Notice that if m = 0 the integral formula is reduced to the
Cauchy-Fantappie formula.

(iii) Since we have fixed γ we do not indicate the dependence of the
forms ah and Kj^ on γ. These forms depend also on the factorizing
functions Λ/y which we consider fixed too.

(iv) Notice also that if γ^f, z) are holomorphic functions of z then
the kernel ΛΓĵ (f, z) is holomorphic in z too.

The proof of Theorem II will be based on Theorem 12 which
expresses an interesting "exactness" property of the kernels K^(ζ,z).
Roughly speaking, using Theorem 12 we will reduce the proof of Theorem
II from the case with codim M = m to the case with codim M = m - 1,
then to the case with codim M = m - 2 and so on until codim M = 0 in
which case M becomes D and the integral formula of Theorem II is the
Cauchy-Fantappie formula.

In order to state Theorem \2 we need the following:
Let g G Θ(U) and gy e $([[/ x JJ) so that

Set Λ* =:(g, hl9...,hm): U -> C w + 1 (now we assume that m + 1 < n)
and M * = : Z ( A * ) Π 2 ) .

Now we associate to A*, Λf* (and the chosen factorizations of
g9hl9...9hm) the differential forms ah\βh* and AjJ£ like before. In
particular

ah* A βh*

KM* = c(n,m + 1)- (notice m is replaced by m + 1).
- z,y)
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Now we state Theorem 12.

THEOREM 12. For a fixed z ^ M* the following formula holds:

provided that the differential forms are restricted to Z(h) — Z(g) locally at
a point where |VΛ*| Φ 0.

Comments, (i) Notice that |vA*(f)l φ ° implies |V*(£)I * 0. This is
necessary for the definition of K^* and K^.

(ii) Since γ(f, z) is a smooth function of ξ e 3D, if we fix z in D
then there is a smooth extension of γ(f, z) for f in a neighborhood W of
3Z> and it is with that extension that we will be working. We may also
assume that z ί W and that (f - z, γ(f, z)) * 0 for f e ΪΓ.

For the proof of Theorem 12 we need the following lemmas.

LEMMA 1. We have

(i) Σ (-i)^-^^f'^-'*") A

Λ I Σ τfdζ, I = (-1) Σ
A < ••••

X
" 3g

9 f
Λ

Proof. This is a straightforward computation. (Fix a multi-index
(Jv — 'Jm) with 1 ^ Λ < " '" <Jm^n a n ^ compute the coefficient of
ΛΛ Φ h Jm dζk in the left-hand side of (1).)

LEMMA 2. Consider the differential form

r>tt)=: Σ (-l) A + " + Λ > β A ..Λ. Λ «*

where βj ...j are some smooth functions. Then η(ζ), restricted to Z(h)
locally at a "point ζ° with (8(A l f..., hm)/d(ζn_m+v..., fn))(f °) # 0,
6e expressed in the following way:

nit) - A(ζ) dζι Λ ~
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where

*{hl9...9hm) V1 d(h^...,hm)

and

COROLLARY 1. // ξ° is as above then the differential form βh{ζ),

restricted to Z(h) locally at ζ °, is given by the following formula:

Proof. It follows from the definition of βh(ξ) that

Λ+ ... +jm d(hlt..., hm) .

Ίΰ ΓT Λ ζk

Thus Corollary 1 follows immediately from Lemma 2 applied with

COROLLARY 2. H

βh*(0

when differential forms are restricted to Z(h) locally at a point where

|VΛ*| Φ 0. {Recall |vA*| # 0 /if̂ //e$ |vΛ| ^ 0.)

Proof. Let f ° be as in Lemma 2. By Lemma 1 and the definition of

βh'(ζ) we have

x Σ (-DΛ+-+X...,m Λ dζk

where we have set

(2) v - Λ,= :Σ
/-I
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But it is easy to check that

(3) Σ a,

77

Also applying Lemma 2 with the α
we obtain

(4) β

*{h»...,hm)

...^ given by (2) using also (1) and (3)

| I Λ #*.

Now (4) together with Corollary 1 completes the proof of Corollary 2.

For the proof of Lemma 2 we need the following elementary lemma.

LEMMA 3. Let A e CmXm beanm X m matrix, say,

A =

a11 a\m

a ml

with det(A) Φ 0.

Let B and X ^ CmXk be m X k matrices, say,

B =

J\k

umk

and

Assume that

(1)

anx{+ ••• +almxJ

m = Ίy

i.e., we have k systems ofm equations in m unknowns each. Then

det

Xl
det(C)

det(A)

where C is the matrix obtained from A by substituting the first k columns of
A by the columns of B.
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Proof. Consider the m X m matrix T:

T=:

xι
xι

x1

xk

I

1

xk

X l

xk

xk

Xk + 1

x k

0

0

1

0

Then using equations (1) it is easy to check that

A • T= C

(A Tdenotes the product of the matrices A and T) and therefore

det(C)
det(Γ) =

det(Λ)'

But

det(Γ) = det

This completes the proof of the lemma.

Proof of Lemma 2. Throughout this proof we are working on Z(h)
locally at ξ°. Since (d(hι,...,hm)/WH_m+ί,...,ξnM°) * 0 it follows
from the implicit function theorem that there are holomorphic functions
hlt..., hm of ζ(m) =:(£ 1 } . . . , ζn_m) so that the system of equations {hx =
0,..., hm = 0} is equivalent to the system of the equations:

In particular

which give the following equations:

(locally at r°).

= 0 , y = l , . . . , m

j = l,...,m, 1= !,...,« - m.
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Now fix a multi-index (jv..., jm) with 1 < j\ < <jm<n. Let

us assume that

1 < Λ < ••• < Λ < n - m < n - m + 1 <jk + ι < ••• <jm<n

(k can be any one of the numbers 1,2,..., m).

Let us consider the differential form

« = * Λ ' (Λ) (Λ) AdfΛ_m Λ dξn_m + 1

Recall that (j)) in β means that dζjt is omitted. Recall also that

differential forms are considered restricted to Z(h) locally at ξ°. Thus θ is

a "multiple" of d$λ A Λdξn_m. In fact

= σ i Λ

where σx is the sign so that

# i Λ - - (j\) (Λ) A<C_ W Λ dζλ Λ ΛdξJk

= σιdξ1 Λ ••

(in the Jacobian of (2), "jk+ι" means that hjk+i_{n_m) is omitted and

similarly for Λ + 2 , . . . , j j .

It is easy to compute oλ:

(3) oλ = ( - l ) ( l w - n ) Λ ( - l ) Λ + - +A(_1)*(*-D/2>

Next applying Lemma 3 with the systems of equations (1) (with

dhj/dξj in the place of the JC'S) we obtain

H h ι , . . . , h m ) l d ( h h ) V1

where σ2 is the sign of the following permutation:

n - m + I9...,jk+ι,...,jm,...9= . s i \
2 ' L w - m + 1 , . . . , Λ

It is easy to compute σ2:

/-x _ /+\n(m-k)/~\jk + 1+-+jm /~\(m-k)(m-k-l)/2
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Now from (2), (3), (4) and (5) we obtain

d(tιl9...9hj n — m

Λ dζk

which implies the formula of Lemma 2 and completes the proof.

LEMMA 4. // φ: (3D) X D -> C - {0} we smooth function then
n - m - 1

detίφγ,, Λly,..., hmJ, '3 f(φγ,-),.'.,3 f(φγ/)j = Φ"-" «*(£, 2).

particular,

, = ( ί - z, r ) " 1 y,, j = 1,..., Λ.

Proof, This follows from properties of determinants with entries
differential forms (see [1], p. 8).

We now turn to the proof of Theorem 12.

Proof of Theorem 12. Throughout this proof differential forms are
restricted (in ζ) to Z(h) - Z(g) locally at a point where |VΛ*| Φ 0 and z
is a fixed point on M*. In view of Lemma 4 we may and do assume that
(1) U-z, γ α,z)) = l forU,z)€=(8D)xZ>.
Next we claim that

n - m - 2

Now we prove (2). We have

αh\ζ,z) = det Yi Si

Ίj gj hy hmj hj h

(in the above determinant j runs from J = 2 to j = n forming the 2nd up
to the Hth row of it).

We may assume lλ Φ zv Then, by (1), we have

o o
Λ,, h

mj

n - m - 2

yj • • 3 γ ;
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(ξx — zλ multiplied the first row and we added to the first row of the

determinant the y th-rows multiplied by (ξj — Zj), j = 2 , . . . , « ) and there-

fore

(3)

= det

n — m - 2

o g(f) o

gj Kj • • • hmj

= (-l)m + 1det g(ζ) o o o o

n — m — 1

9...,hmj9 d γ j 9 . . . , d y j

(the last determinant in (3) is (n — 1) X (n — 1) and j runs from j = 2 to
y = n forming the (n — 1) rows of it). On the other hand

(4)

= det

= det hlj9...9hmj9 3γy,...,3γ,

But (3) and (4) imply (2). This proves (2). Now the proof of Theorem
12 follows from (2) and Corollary 2 (recall that differential forms are
restricted to Z(h) - Z(g)).

This concludes the proof of Theorem 12.
Finally we turn to the proof of Theorem II. As we pointed out earlier

this proof is based on ideas of Stout. See also [15] which contains the case
m = 1

Proof of Theorem II. First we make a few reductions. Since we assume
that D is pseudoconvex, in view of Cartan's extension theorem and an
approximation argument (recall that a pseudoconvex domain is the union



82 TELEMACHOS E. HATZIAFRATIS

of an increasing sequence of strictly pseudoconvex domains) we may and

do assume that / e 0(D), i.e., / is holomorphic in a neighborhood of D.

Also Theorem II is true for m = 0 (since for m = 0 it is the

Cauchy-Fantappie formula) and therefore we can prove it by assuming

that it is true for the case when the variety is defined by m holomorphic

functions and proving it when the variety is defined by m + 1 holomor-

phic functions, i.e., we will assume it for M and we will prove it for M*.

Thus our assumptions are that |vΛ*| ̂  0 on 3M* and that Z(/z*) meets

dD transversally.

Moreover in view of Sard's theorem on the set of critical points (using

a deformation argument) and by the implicit function theorem we may

and do assume that:

(i) |vΛ| Φ OonθM

(ii) Z(h) meets 3D transversally.

Notice also that Z(h*) meets dM transversally. It follows from these

assumptions that dM and 3M* are smooth manifolds of dimensions

(In — 2m — 1) and (In - 2m - 3) respectively. It also follows that {f G

dM: g(ξ) = T} is a smooth manifold (for T G C, |τ | < ε and e a small

positive number) diffeomorphic to 3M*.

Since we assume Theorem II for M we have

(1) fU)=f f(ξ)Kk

u(ζ,z).

Next write (1) as follows

(2) / ( * ) « ( / +/ ){f(ζ)Kh

M(ζ,z))/ )

where (8M) t =:{£ e dM: \g(ξ)\ > ε} (ε > 0, small). But

lim f
Ξ(9Λ/)-(8Λ/)e

and (2) becomes

(3) f(z/U)

Next by Theorem 12 and the fact that / is holomorphic we obtain

dg{ζ)~
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on Z{h) — Z(g) and therefore

(4)

83

λitl
(by Stokes'theorem)

if
Letting ε -> 0 in (4) we see that

(5) l i m /

Now (3) and (5) imply that

Thus the integral formula holds for M* and the proof of Theorem II
is complete.

II. In this section we will show that the kernel K^ζ, z) of Theorem
LI with m = 1 coincides with the kernel constructed in Stout [15]. Here
m = 1, i.e., the variety M is defined by one holomorphic function. Let D,
U and γ be as in Theorem LI and let h e Θ(U) and hj e 0(£/ X I/) so
that

L e t M = { z E ΰ : / i ( z ) = 0} and define

Λ (0 dΎn

|VA(f) l 2 -:Σ
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and

) _ (-lV"-1)("-2)/2 + 1 (n ~ 2 ) ! a(^z) Λ

(2τπ) (f - z ,γ( f ,z))

K(ξ,z) is our kernel in the case m = 1. Stout defined the kernel in the

following way:

(constant)

where a(n are the following differential forms:

α d ) = : (-l)*γA3γ 2Λ • • • (k)

and the remaining aU) are defined by cyclic permutation of the γ ; 's. Let

us look in the following figure:

Tn-1

.th
3 -ray

To define α ( 1 ) we eliminated the first ray and we "expanded" the

remaining in a way that is clear from the definition of a(l\ Thus to obtain

a(2) we eliminate the second ray and so on; for example

<* ( 2 ) = Λ dyn A dΎι - γ43γ3 Λ 3γ5 Λ Λθγ^ Λ dΎι

+ (-l) Λ γ 1 3γ 3 Λ

(see also Stout [15]).
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Thus in order to show that K(ζ, z) coincides with the Stout's kernel
we have to show that

Indeed E ^ C - l ) 0 ' " 1 ^ " 1 ^ / ^ is a combination of the forms 3γx

Λ • (/) (y) A3γn (1 < i < j < n). The form θυj) = : 3 Y l
Λ ( 0 • (j) • • Λ 3γn comes from the forms α ( l ) and α O ) :

α(<) is defined by eliminating the /th-ray so we get the
form θ(i n at the yth-ray stage of the expansion of α ( 0 as

(-l)7~'+1Y/3y,-+i Λ Ahj-i Λ aγ,.+1 Λ Λ3γn Λ 3γx Λ Ady,_!

au) is defined by eliminating the yth-ray so we get the
form θ(i,j) at the /th-ray stage of the expansion of α ( y ),
as

/ + '-1γ;3γ^. + 1 Λ Λ3γn Λ 3γx Λ Λβγ,^ Λ 3γ; + 1 Λ

Therefore the coefficient of θ(i, j) in Σ%t ( - l ) ^ " 1 ^ - 1 ^ ^ is

This proves (*).

III. In this section we develop a Weil type integral formula for
analytic polyhedra on analytic varieties. We will do this by combining
results and methods from §1 and from Range-Siu [12]. The main result of
this section is Theorem III.l which generalizes the Weil integral formula
for analytic polyhedra in Cn. (See Sommer [14]). We start by describing
the setting. Let hl9...9hm9 gι,...,gN be holomorphic function on Cn

with m < n and N > n — m. Let

F = : { z e C « : Λ 1 ( z ) = ••• = hm(z) = 0}

and

P-{zeV:\gι(z)\<l,...,\gN(z)\<l}.
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We denote by P the closure of P. Also

N

dP = {ξ e P: \gj(ζ)\ = 1 for some./: 1 <y < N) =: \J Tj.
7 = 1

More generally, for / = {jx < < jk} c {1,..., N} define

Now we make the following assumptions:
(*) |V(Λ)| Φ 0 on dP (h =:(/ι 1 ? . . ., ft J and |vft| is as in §1).

(**) Tj is assumed to be piecewise C1-manifold for all /.
Next let us consider holomoφhic functions hij(ξ9 z) and g/y(f, z) so

that

mΛ, (£) - ht{z) = Σ *l7(f, z)(fy - zy), 1 < i <

and

i \S / oi\ / ίm^ oij V« ' / \^/ ' /'/ ' ~~~ ~~~ *

Also let Hi9 Gt be the following columns: Hi =\ha,...,hin), 1 < / < m,
Gz

 = ί ( g Λ , . . . , gιn), 1 < i < Ny and let βh(ζ) be the differential form
associated to h as in §1.

With this notation and under the assumptions (*) and (**) we will
prove the following theorem.

THEOREM III.l. For / e &(P), i.e., f holomorphic in a neighborhood
{in V) ofP andz e P we have:

f{z) = c{n,m)

where

and

/ι 1 V M J. >u\ /T I

C(Λ, mj = (-1) '(-I)
(π — m)!(2ττ/)/



INTEGRAL REPRESENTATION FORMULAS 87

Before we prove the above theorem we introduce some further nota-
tion and give two lemmas. Consider the simplex

( ( o , , J y £ λ = l ) .

For / = {j\ < < jk) c {0,1,..., N) define the /-face of Δ by

Eλy / =

LEMMA 1. Consider the chain c =:Σ 7 (- l) l ' / | τ> X ΔOi/ where Σj indi-

cates that the summation is extended over all ordered multi-indices J c

{1,...,N}. Then

J

Proof. See Range-Siu [12], p. 329.

Next for j e {1,..., N} define

Y (l,)=(γ/> >Y«y) where γ/ = gf / = l , . . . , n .
OJ \ O ) Sj \ Z )

Notice that γ(j z ) is well-defined if |gy(f)l = 1 a n ( i l?y(
z)l < h i e

 ?

z e P and f e τy. Also notice that

Also define

0 _ / 0 0\ i. 0 _ *1 ~~ Zl 7 — 1

Now for λ = (λ 0 , . . . , λ^) G Δ let

Notice that for (f, λ ) G τ ; X Δoy, γ(f, z, λ) =1(7^ . . . , γrt) is well-defined
and also that

(1) Σ
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We introduce the differential form

I /<£/

where Σ , indicates that the summation is extended over ordered multi-in-
dices / = { / „ < ••• < im) c {1,...,«}, |/| = / 0 + ••• +im, 3 f λ = : 3 ?

+ dλ and A1 is the following determinant:

hua ' * Λ i«.

A' =
hmi. *-./.

The differential form K(ξ, z, λ) can also be written in the following way:

* ( * ' z ' λ ) = ( π - J l - i ) ! ^ ' Z' λ ) Λ ^ }

where

/ " ~ ? ~ X N

α(f, z, λ) =:det hlj9... ? Amy, yj9 d^xyj9..., 3^λγ7

(in the above determinant j runs fromy' = 1 to j = n forming the 1st up
to the wth row of it).

LEMMA 2. We have

provided that differential forms are restricted in (f ?λ) to the chain c of
Lemma 1 and z is a fixed point on P.

Proof. Notice that

(2)

n — m — 1

O

In the above determinant j runs from j = 2to j = n forming the 2nd up
to the nth row of it; we obtained (2) in the following way: (ξτ — zλ)
multiplied the first row of the determinant α(£, z, λ) and then we added
to this first row the remaining y'th-rows multiplied by ξj — zy; we also
used (1) and the fact that f, z e V.

Now using (2) it is easy to show that

(3) 3ί,λ[α(£,
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On the other hand, by Corollary 1 of §1 we have

(4) dβh(ζ) = 0.

Now (3) and (4) complete the proof of Lemma 2.

Proof of Theorem III.l. Apply Stokes' theorem to the chain c of
Lemma 1 and to the differential form f(ξ)K(ξ, z, λ) where K(ξ, z, λ) is
as in Lemma 2. We obtain

(1) / f(ξ)K(ξ,z,\)= [ diιλ[f(ξ)K(ζ,z,λ)] =0.

The last equation in (1) follows from Lemma 2 and the fact that / is
holomorphic. By (1) and Lemma 1 we obtain

(2) Σί

(recall that the summation Σj is extended over all multi-indices from
{1,..., TV}). Now notice that for ({, λ) e (9P) X Δo, K(ξ, z, λ) involves
only the Bochner-Martinelli section γ°. It follows from Theorem I.I
applied with the Bochner-Martinelli section γ° and the holomorphic
function / on the variety V that

(3)

where

<,m = (-1) (-1) (2π0 (n ~ m).

Now observe that for (ξ, λ ) e τ ; x Δ ; , ( / c { l , . . . ,JV})we have

(4) (\ +

and therefore for (ξ, λ) e Tj X Δy

(recall that Σ 7 is extended over multi-indices / = {/0 < < im) c
{I , . . . , «}). Since, by (5), K(ξ, z, λ) is a (n — m — l)-form in
<A 0,..., dλN the only terms in the sum of (2) which do not possibly
vanish are those for which / has exactly (n — m) numbers. So (2) can be
written (also in view of (3))

(6) Σί f(ξ)K(ξ,z,λ)-c'mJ(z)
j* •'(ί,λ)eτ,.xΔ/.
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where Σj* is extended over /* = {j\ < * * * <y«_w} c {1,...,7V}. All

that remains to be computed now is

(7) ί K{ξ, z, λ) (ξ restricted to τ>).

So fix a / * = { Λ < <Λ_ W } c {1,. . . , N}. Now the coefficient of

, _

Therefore the "coefficient" of ηs in ΛΓ(£, z, λ) is

which is equal to the following:

(in the above determinants γ denotes the column r ( γ l 5 . . . ,γ Λ ) and

denotes the column '(γ/*,.. ., γ^)). It follows from (8) that

(9)

x Σ {-i)'-\vη,

for (f, λ) G τ7* X Δy*. So in order to compute the integral (7) we need to

compute

/

Recall that λ e Δ/ + means λ 4- +λ^_ = 1 and therefore J λ x =

-(dλj2 + +ί/λ Λ m) which substituted in Σ j l Γ ί - l ) 5 " ^ ^ gives (after

a computation)

(11) Σ (-1) λ,;}, = </λΛ Λ ΛdλJnm (for λ e Δ y . ) .
5 = 1

By (11) the integral (10) becomes

(12) [ d\, Λ ••• Λdλ, = 7 TΓ7.
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By (7), (12) and (9), (6) can be written

/(*) = ZnnΣ ί f(S)dd{Hl9...9Hm9 y\...,y'--)βh(S)

(J* = {j\ < <jn_m] c {1,.. ., JV}) which immediately implies the

integral formula of Theorem ΠI.l and completes the proof.
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