A NOTE ON ORDERINGS ON ALGEBRAIC VARIETIES

M. E. Alonso

Abstract

It was proven in $[\mathbf{A}-\mathbf{G}-\mathbf{R}]$ that if $V \subset \mathbf{R}^{\boldsymbol{n}}$ is a surface and α a total ordering in its coordinate polynomial ring, α can be described by a half branch (i.e., there exists $\gamma(0, \varepsilon) \rightarrow V$, analytic, such that for every $f \in \mathbf{R}[V] \operatorname{sgn}_{\alpha} f=\operatorname{sgn} f(\gamma(t))$ fort small enough). Here we prove (in any dimension) that the orderings with maximum rank valuation can be described in this way. Furthermore, if the ordering is centered at a regular point we show that the curve can be extended C^{∞} to $t=0$.

1. (1.0) Let V be an algebraic variety over \mathbf{R} and α an ordering in $K=\mathbf{R}(V)$. If α is described by a half-branch $\gamma:(0, \varepsilon) \rightarrow V$, no non-zero polynomial vanishes over $\gamma(t)$ for t small enough. Consequently, if V^{\prime} is birrationally equivalent to V (i.e., $\mathbf{R}\left(V^{\prime}\right)=\mathbf{R}(V)$), $\alpha \cap \mathbf{R}\left[V^{\prime}\right]$ is also described by a curve in V^{\prime}.
(1.1) Proposition. Let V be an algebraic variety over \mathbf{R} and $n=\operatorname{dim} V$. If $\mathbf{R}[V]$ is an integral extension of $\mathbf{R}\left[x_{1}, \ldots, x_{n}\right]=\mathbf{R}[\underline{x}]$ and α an ordering on $\mathbf{R}[V]$ such that $\beta=\alpha \cap \mathbf{R}[\underline{x}]$ can be described by a half-branch, then the same holds true for α.

Proof. By our previous remark (1.0) we can suppose V is a hypersurface. Thus $\mathbf{R}[V]=\mathbf{R}\left[\underline{x}, x_{n+1}\right](P)$ where $P \in \mathbf{R}[\underline{x}]\left[x_{n+1}\right]$ is a monic polynomial in x_{n+1}. Let δ be the discriminant of P and $\pi: V \rightarrow \mathbf{R}^{n}$ the projection on the first n-coordinates. Then the restriction

$$
\pi_{1}: V \backslash \pi^{-1}(\delta=0) \rightarrow \mathbf{R}^{n} \backslash\{\delta=0\}
$$

has finite fibers with constant cardinal over every connected component. Moreover, by the implicit function theorem, π_{\mid}is an analytic diffeomorphism from every connected component of $V \backslash \pi^{-1}(\delta=0)$ onto someone of $\mathbf{R}^{n} \backslash\{\boldsymbol{\delta}=0\}$.

Let $\gamma:(0, \varepsilon) \rightarrow \mathbf{R}^{n}$ be the curve describing β. The connected components C_{1}, \ldots, C_{p} of $\mathbf{R}^{n} \backslash\{\delta=0\}$ are open semi-algebraic sets, and we can write

$$
C_{i}=\bigcup_{j=1}^{q}\left\{f_{i j 1}>0, \ldots, f_{i j r}>0\right\}, \quad f_{i j l} \in \mathbf{R}[\underline{x}] .
$$

As γ describes the ordering in $\mathbf{R}[\underline{x}]$ and the C_{i} 's are pairwise disjoint, for t small enough, $f_{i j l}(\gamma(t))$ does not change the sign and $\gamma(t)$ is contained in a unique $C_{i_{0}}$. We put $C=C_{i_{0}}$.

Let D_{1}, \ldots, D_{s} (we shall see below that s is not zero) be the connected components of $V \backslash \pi^{-1}\{\delta=0\}$ diffeomorphic to C via π. We claim that

$$
s=\text { number of extensions of } \beta \text { to } R(V)
$$

By construction s is the number of roots of $P\left(\underline{x}, x_{n+1}\right)$ for every $\underline{x} \in C$. On the other hand, the number of extensions of β to $\mathbf{R}(V)$ coincides with the number of roots of $P \in \mathbf{R}(\underline{x})\left[x_{n+1}\right]$ in a real closure of $(\mathbf{R}(\underline{x}), \beta)$ (see $[\operatorname{Pr}]$ 3.12). We shall prove now the latter is also the number of real roots of $P\left(\underline{x}, x_{n+1}\right)$ for $\underline{x} \in C$.

Let $S=\left\{P_{0}, \ldots, P_{l}\right\} \mathbf{R}(\underline{x})\left[x_{n+1}\right]$ be the standard Sturm sequence of

$$
P\left(\underline{x}, x_{n+1}\right)=x_{n+1}^{m}+a_{1} x_{n+1}^{m-1}+\cdots+a_{m}, \quad M=1+m+\sum_{i=1}^{m} a_{i}^{2}
$$

and Δ the product of all numerators and denominators of the non-zero coefficients of the polynomials in x_{n+1} used in the construction of S. In this situation, by Artin's specialization theorem there exists $\underline{x}_{0} \in \mathbf{R}^{n}$ such that
(a) $f_{i_{0} J h}\left(\underline{x}_{0}\right)>0, \Delta\left(\underline{x}_{0}\right) \neq 0$, some $j=1, \ldots, q$, all $h=1, \ldots, r$
(b) $\operatorname{sgn}_{\beta} P_{k}(\pm M)=\operatorname{sgn}_{\mathbf{R}} P_{k}\left(\underline{x}_{0}, \pm M\left(\underline{x}_{0}\right)\right), k=0, \ldots, l$.

By (a), $\underline{x}_{0} \in C$ and $S_{x_{0}}=\left\{P_{1}\left(\underline{x}_{0}\right), \ldots, P_{l}\left(\underline{x}_{0}\right)\right\}$ is the standard Sturm sequence of $P\left(\underline{x}_{0}, x_{n+1}\right)$. By (b) the number of sign changes of $S_{\underline{x}_{0}}$ and S coincides. Then the claim is proven.

Now, let us denote by $\gamma_{k}=\left(\pi_{\mid D_{k}}\right)^{-1} \circ \gamma, k=1, \ldots, l$ the liftings of γ. Then it is easy to prove:
(a') If $f \in \mathbf{R}[V] \backslash\{0\}, f\left(\gamma_{k}(t)\right) \neq 0$ and its sign does not change for t small enough. Consequently every γ_{k} defines an ordering that we call α_{k}.
(b^{\prime}) If $k \neq k^{\prime}, \alpha_{k} \neq \alpha_{k^{\prime}}$.
From the remarks above, α must be equal to some α_{k}, hence it is described by the corresponding α_{k}.
2. (2.0) Let K and Δ be ordered fields and $p: K \rightarrow \Delta, \infty$ a place such that for x positive, $p(x)$ is not negative. Then we define a signed place $\hat{p}: K \rightarrow \Delta \cup\{+\infty, \infty\}=\Delta, \pm \infty$ in the following way:

$$
\hat{p}(x)=p(x) \quad \text { if } p(x) \neq \infty ; \quad \hat{p}(x)=\operatorname{sign}(x) \cdot \infty \quad \text { if } p(x)=\infty
$$

Now assume K is the function field of a real algebraic variety V, and α an ordering in K. A point $O \in V$ is the center of α in V if the real valued canonical place p_{α} associated to α (see [B] Chap. VII) is finite over
$\mathbf{R}[V]$ and the ideal of O is the center of p_{α} in $\mathbf{R}[V]$. In that case, every function positive at O is positive in α, and if α is described by γ, then $\lim _{t \rightarrow 0} \gamma(t)=O$.

We are interested in the case when the rank of p_{α} is maximum (i.e., it coincides with the dimension of V). In this situation the decomposition of p_{α} in rank 1 places is

$$
\begin{equation*}
K=K \xrightarrow{\theta_{n-1}} K_{n-1}, \infty \rightarrow \cdots \rightarrow \mathbf{R}, \infty, \tag{2.0.1}
\end{equation*}
$$

where K_{j} is a function field over \mathbf{R} of dimension j. Then it is possible to define uniquely orderings in $K_{j}(j=1, \ldots, r)$ such that, considering α in K, all places verify the compatibility conditions. Thus we consider the associated signed places $\hat{\boldsymbol{\theta}}_{j}: K_{j} \rightarrow K_{J-1}, \pm \infty$ (see [B] Chap. VIII), to get a decomposition of \hat{p}_{α} in rank 1 signed places.
(2.1) Proposition. If p_{α} has a maximum rank, α can be described by a half-branch.

Proof. The proof goes by induction. If $n=1$, by 1.1 and 1.0 we can suppose $K=\mathbf{R}(x), \alpha$ centered at $x=0$, and $x>{ }_{\alpha} 0$. Then, there is a unique ordering with this property (i.e., making x infinitesimal with respect to \mathbf{R} and positive), and it is described by the curve $\gamma(t)=t$.

In the general situation we can choose $\zeta_{1}, \ldots, \zeta_{n-1}, \zeta_{n}$ in K such that $\theta_{n-1}\left(\zeta_{1}\right), \ldots, \theta_{\mathrm{n}-1}\left(\zeta_{n}\right) \in K_{n-1}$ and:
(i) $\theta_{n-1}\left(\zeta_{1}\right), \ldots, \theta_{n-1}\left(\zeta_{n-1}\right)$ are algebraically independent.
(ii) $\zeta_{1}, \ldots, \zeta_{n}$ are algebraically independent
(iii) $p_{\alpha}\left(\zeta_{t}\right)=0(i=1, \ldots, n)$.

Since K is the quotient field of the integral closure of $B=$ $\mathbf{R}\left[\zeta_{1}, \ldots, \zeta_{n-1}, \zeta_{n}\right]$ we can suppose $K=q \cdot f(B)$ by 1.1. Then the kernel of $\theta_{n-1}: B \rightarrow K_{n-1}$ is an height one prime ideal and hence it is generated by some $F \in B$. The field K_{n-1} is the function field of the hypersurface $\{F=0\}$. Moreover we may assume $F>{ }_{\alpha} 0$.

Let us consider, according to 2.0 , the ordering β associated to $r=\theta_{0} \circ \cdots \circ \theta_{n-2}$ in K_{n-1}. Then $p_{\beta}=r$ and β is centered at $\underline{0}=$ $(0, \ldots, 0)$ which belongs to the hypersurface. Consequently, for every $f \in B$ we have:
(2.1.1) if $f(\underline{0})=p_{\alpha}(f) \neq 0$, then $\operatorname{sgn}_{\alpha} f=\operatorname{sgn} f(\underline{0})$ if $\theta_{n-1}(f) \neq 0, \operatorname{sgn}_{\alpha} f=\operatorname{sgn}_{\beta} f$, where \bar{f} is $f+(F)$ if $\theta_{n-1}(f)=0$ and $f=u \cdot F^{r}$ with g.c.d $(u, F)=1$, then $\operatorname{sgn}_{\alpha} f=\operatorname{sgn}_{\alpha} u=\operatorname{sgn}_{\beta} \bar{u}$.

Now we need a lemma:
(2.2) Lemma. Let $H=\{F(\underline{x})=0\}$ be a real irreducible hypersurface in \mathbf{R}^{n} and β a rank $(n-1)$ ordering in H (i.e., in $\left.\mathbf{R}[\underline{x}] /(F)\right)$ centered at the point $\underline{0}$ and described by $\gamma:(0, \varepsilon) \rightarrow H$. Then, there is not more than one ordering α in $\mathbf{R}[\underline{x}]$ making F infinitesimal and positive, and inducing β in $\mathbf{R}[\underline{x}] /(F)$. Moreover α can be described by a half-branch.

Proof. The first claim is an easy consequence of 2.1.1.
Next, as p_{β} has rank $n-1, p_{\beta-1}$ is discrete and its value group is isomorphic to $Z \oplus \stackrel{n-1}{\cdots} \oplus Z$, lexicographically ordered. Let $\bar{h} \in$ $\mathbf{R}[\underline{x}] /(F)$ have value $\left(a_{1}, \ldots, a_{n-1}\right)$ with $a_{1} \geq 1$ (notice that this is possible because the valuation ring of p_{β} contains $\mathbf{R}[\underline{x}] /(F)$), and put $\psi(t)=h(\gamma(t))$. Since $p_{\beta}(\bar{h})=0, h(\underline{0})=0$ and $\lim _{t \rightarrow 0} \psi(t)=0, \psi$ is analytic in $(0, \varepsilon)$. Now we define the analytic curve:

$$
\gamma^{*}:(0, \varepsilon) \rightarrow \mathbf{R}^{n}: t \mapsto\left(\gamma_{i}(t)+c_{i} e^{-1 / \psi(t)^{2}}\right) \quad i=1, \ldots, n
$$

where the c_{i} 's will be determined later.
Thus, the result follows from the statements (a) and (b) below.
(a) For any c_{i} 's, if $G \in \mathbf{R}[x]$ is positive along γ, so is along γ^{*}.
(b) There is $\left(c_{1}, \ldots, c_{n}\right) \in \mathbf{R}^{n}$ such that $F\left(\gamma^{*}(t)\right)>0$ for t small enough.
To prove (a) we first write:

$$
\begin{equation*}
G\left(\gamma^{*}(t)\right)=G(\gamma(t))+m(t) e^{-1 / \psi(t)^{2}} \tag{2.2.1}
\end{equation*}
$$

where $m(t)$ is a polynomial in $\gamma_{1}(t), \ldots, \gamma_{n}(t)$ and $e^{-1 / \psi(t)^{2}}$. On the other hand, looking at the value of \bar{h}, for large $m \in N$ we know that \bar{h}^{m} / \bar{G} $(\bar{G}=G+(F) \in \mathbf{R}[\underline{x}] /(F))$ is infinitesimal in β w.r.t. \mathbf{R} and so, $1-$ $\bar{h}^{m} / \bar{G}>_{\beta} 0$. Since \bar{G} is positive in β, taking an even m we have $\bar{G}>_{\beta} \bar{h}^{m}$ $>_{\beta} 0$. Hence $G(\gamma(t))>_{\beta} \psi(t)^{m}>_{\beta} 0$ for small t enough, what implies $\lim _{t \rightarrow 0} e^{-1 / \psi(t)^{2}} / G(\gamma(t))=0$. Thus, we get (a) after dividing in 2.2.1 by $G(\gamma(t))$ and taking the limit when $t \rightarrow 0$.

For (b), we take the Taylor expansion of F at $\gamma(t)$ and compute it at $\gamma^{*}(t):$

$$
\begin{align*}
F\left(\gamma^{*}(t)\right)= & \sum_{i=1}^{n} \frac{\partial F(\gamma(t))}{\partial x_{i}} c_{i} e^{-1 / \psi(t)^{2}} \tag{2.2.2}\\
& +\sum_{i, j} \frac{\partial^{2} F(\gamma(t))}{\partial x_{i} \partial x_{j}} c_{i} c_{j} e^{-2 / \psi(t)^{2}}+\cdots
\end{align*}
$$

As $\partial F / \partial x_{i} \notin(F)$ for some i, we have $c_{i}=\operatorname{sgn}_{\beta}\left(\partial F / \partial x_{i}\right)(= \pm 1 \neq 0)$ and we take $c_{j}=0$ for $j \neq i$. Then, β being described by γ :

$$
\begin{equation*}
H(t)=\sum_{i=1}^{n} \frac{\partial F(\gamma(t))}{\partial x_{i}} c_{i}>0, \quad \text { for small } t \tag{2.2.3}
\end{equation*}
$$

Again we have $\lim _{t \rightarrow 0} e^{-1 / \psi(t)^{2}} / H(t)=0$. Then, dividing in 2.2 .2 by $H(t)$, we find $F\left(\gamma^{*}(t)\right) / H(t)>0$, hence $F\left(\gamma^{*}(t)\right)>0$, for small t.
(2.3) Remark. Looking at the class of the curve γ at 0 , we see that if $O \in \operatorname{Reg} H$, and γ can be extended C^{∞} to $t=0$, the same holds true for γ^{*}.
(2.4) Remark. Notice that 2.2 and 2.3 hold also true if we replace \mathbf{R}^{n} by an algebraic variety V with $O \in \operatorname{Reg} V$. In fact the same proof applies, by taking a regular system of parameters at O in the place of x_{1}, \ldots, x_{n}.
(2.5) Application. As an example of the constructibility of the proof of 2.1 we determine the curves describing the rank 2 orderings in \mathbf{R}^{2} (see [A-G-R]).

Firstly, after changes $x \rightarrow \pm(x \pm a)^{ \pm 1}, y \rightarrow \pm(y \pm b)^{ \pm 1}$, we can suppose $(0,0)$ is the center of the ordering α and $x>_{\alpha} 0, y>_{\alpha} 0$. Assume the divisor w which specializes p_{α} is centered in $\mathbf{R}[x, y]$ at $F(x, y)=0$, and $x=t^{n}, y=a_{1} t^{n_{1}}+\cdots\left(n \leq n_{1}\right), t>0$, is a primitive parametrization of the half-branch describing the corresponding ordering in $\mathbf{R}[x, y] /(F)$. According to the above parametrization and looking at the proof of 2.2 , we may choose $h(x)=x, c_{1}=0$ and $c_{2}= \pm 1$ in the proof of 2.2, and we get a half-branch describing α of the form:

$$
\gamma(t)=\left(t^{n}, \pm e^{-1 / t^{2 n}}+a_{1} t^{n_{1}}+\cdots\right)
$$

Now assume that the prime divisor w is centered at the maximal ideal, (x, y). Let us call v the valuation corresponding to p_{α}. Following Abhyankar [A], after a finite number of quadratic transforms along w we get the previous situation. In fact, we call $A_{0}=\mathbf{R}[x, y]$ and, if $v(x) \leq v(y)$ (so $w(x) \leq w(y)$) we put: $r_{0}=p_{\alpha}(y / x), y_{1}=\left(y-r_{0} x\right) / x, x_{1}=x$ and $A_{1}=A_{1}\left[x_{1}, y_{1}\right]$. Repeating this procedure we end at $A_{s}=A_{s-1}\left[x_{s}, y_{s}\right]=$ $\mathbf{R}\left[x_{s}, y_{s}\right]$ such that, the center of w in A_{s} is 1-dimensional, and w is centered at (x_{s-1}, y_{s-1}) in A_{s-1}. We have, say,

$$
y_{s}=\left(y_{s-1}-r_{s-1} x_{s-1}\right) / x_{s-1}
$$

and $x_{s}=x_{s-1}$. Hence $w\left(x_{s}\right)=w\left(x_{s-1}\right)>0$ and $M_{w} \cap A_{s}=\left(x_{s}\right)$. Thus, according to the proof of 2.2 , the half-branch $x_{s}= \pm e^{-1 / t^{2}}, y_{s}=t$ describes the ordering in A_{s}. Hence, going backwards in the quadratic transformations, it follows easily that the ordering α can be described by a curve

$$
\left(P\left(t, e^{-1 / t^{2}}\right), Q\left(t, e^{-1 / t^{2}}\right)\right)
$$

for some polynomials P and Q.
3. (3.0) We finish this note with some considerations about the class at $t=0$ of the γ 's describing orderings (see also [R] §3). To start with notice that any algebraically independent power series $x_{1}(t), \ldots, x_{n}(t)$, describe an ordering in $\mathbf{R}[x]$. Then by [An] the set of such orderings is dense in the space of all orderings endowed with the Harrison Topology [H]. Moreover, the valuations associated to these orderings are discrete of rank one. Hence the orderings with maximum rank valuation, cannot be described by curves which are analytic at $t=0$ unless the variety is a curve. So, the best result we can expect is the following:
(3.1) Proposition. If $V \subset \mathbf{R}^{n}$ is an algebraic variety an α an ordering centered at $0=(0, \ldots, 0) \operatorname{Reg} V$, with associated valuation of maximum rank, there is a half-branch describing α which can be extended C^{∞} (but not analytically) to $t=0$. Furthermore the set of orderings of $\mathbf{R}[V]$ described by half-branches C^{∞} at $t=0$ but not by analytic ones, is dense in the space of orderings.

Proof. The proof goes by induction on $d=\operatorname{dim} V$. If $d=1$, the valuation associated to the ordering α is discrete, has rank one, and the ordering is described by the unique branch of V through 0 :

$$
\left(t, u_{2}(t), \ldots, u_{n}(t)\right)
$$

where each $u_{i}(t)$ is analytic and the choice $t>0$ or $t<0$.
In the general case, set $\hat{p}_{\alpha}=p$ and consider again

$$
K=\mathbf{R}(V) \xrightarrow{q} K_{n-1}, \pm \infty \xrightarrow{r} \mathbf{R}, \pm \infty, \quad p=r \circ q
$$

the decomposition of p in signed places of rank one.
As we did in 2.1 we can find an (affine) algebraic variety V_{1} and π : $V_{1} \rightarrow V$ birational morphism such that the center of q in V_{1}, say H_{1}, has dimension $d-1$. By means of Hironaka's desingularization I [Hi] we may assume V_{1} is smooth. Then by Hironaka's desingularization II (loc. cit), we find \tilde{V} and $\tilde{\pi}: \tilde{V} \rightarrow V_{1}$, a proper birrational map such that $\tilde{\pi}^{-1}\left(H_{1}\right)$ is
a normal crossing divisor. Let $\tilde{0}$ be the center of p in \tilde{V} and \tilde{H} the center of q. Since the valuation ring of $q, \mathbf{R}\left[V_{1}\right]_{\mathcal{J}\left(H_{1}\right)}$, dominates $\mathbf{R}[\tilde{V}]$ and \tilde{H} lies over H_{1}, we have $K_{n-1}=q f \cdot \tilde{H}$ and the center of r in \tilde{H} is $\tilde{0}$.

We call β the ordering in K_{n-1} corresponding to the precedent decomposition (i.e. $\hat{p}_{\beta}=r$). Since r has maximum rank, by our inductive hypothesis the ordering $\beta \cap \mathbf{R}[\tilde{H}]$ can be described by $\gamma:(0, \varepsilon) \rightarrow \tilde{H}$, with $\lim _{t \rightarrow 0} \gamma(t)=0$, and γ can be extended C^{∞} to $t=0$. Then, considering a modification γ^{*} of γ as we did in 2.2 and using Remarks 2.3 and 2.4, α is described in \tilde{V} by γ^{*} and it can be extended C^{∞} to $t=0$. Finally $\pi_{1} \circ \tilde{\pi} \circ \gamma^{*}$ is a curve which defines the ordering α and can be extended C^{∞} to $t=0$.

The second part comes from the first one, the above remark 3.0, and the fact that the set of orderings with maximum rank are dense (see [B], 8.4.9).

References

[A] S. Abhyankar, Valuations centered in a local domain, Amer. J. Math., 78 (1956), 321-348.
[A-G-R] M. E. Alonso, J. M. Gamboa and J. M. Ruiz, Ordres sur les surfaces réelles, C. R. Acad. Sc. Paris t. 298, Série I, $\mathrm{n}^{\circ} 1$ (1984), 17-19.
[An] C. Andradas, Real valuations in function fields, to appear in Comm. Algebra.
[B] G. W. Brumfiel, Partially Ordered Rings and Semi-Algebraic Geometry, London Math. Soc. Lect. Note Series 37. Cambridge Univ. Press (1979).
[H] D. Harrison, Finite and infinite primes for rings and fields, Mem. Amer. Math. Soc. $\mathrm{n}^{\circ} 68$, (1968).
[Hi] H. Hironaka, Resolution of singularities of an algebraic variety over a field of characteristic zero I, II, 79 (1964), 109-326.
$[\operatorname{Pr}] \quad$ A. Prestel, Lectures on formally real fields, IMPA. Lecture Notes 22. Río de Janeiro (1975).
[R] J. M. Ruiz, Central orderings in fields of real meromorphic function germs, Manuscripta Math., 45 (1984), 193-214.

Received January 16, 1985 and in revised form July 1, 1985.

Departamento de Algebra y Fundamentos
Universidad Complutense
28040 Madrid, Spain

