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ASYMPTOTIC BEHAVIOR OF TWO SEMI-LINEAR
ELLIPTIC FREE BOUNDARY PROBLEMS

THOMAS I. VOGEL

Given a bounded open set Ω c R " with C2+a boundary and a
monotone increasing function /(/) with /(0) = 0, this paper treats two
related exterior free boundary problems:

Problem A: Given λ > 0, determine u e C0

2+otl(R" - Ω) satisfying:

/, -.x Δu = λ/(u) inR" - Ω

u = 1 on ΘΩ.

Problem B: Given c > 0, determine v e C0

2+αi(R/7 - Ω) satisfying:

(Λ Λ\ Δv =f(v) inR" —Ω

v = c on ΘΩ.

In both problems, the free boundary is the boundary of the support of the
sought function.

Problem A comes from the Langmuir-Hinshelwood model for chemi-
cal kinetics (among biochemists this is known as Michaelis-Menten kinet-
ics) ([1], [2]). Ω then represents a patch of constant concentration of a
reactant diffusing into a substrate. Problem B has appeared in a paper by
Caffarelli and Spruck [3], in which they show that if Ω is convex, then the
level surfaces of u are convex surfaces. A special case of Problem B
appears in continuous hot-dip galvanizing ([9]).

Section 2 is concerned about existence and uniqueness for fixed c or
λ. From this point of view, Problem A is contained in Problem B,
therefore in this section we deal only with Problem B. The results follow
easily from the work that has been done on the interior problem
([5], [7], [8]). With this as a starting point, we attempt to determine
characteristics of the free boundary. The main thrust of this paper is to
show that in i?2, as λ -> 0 (Problem A) or as c -» oo (Problem B), the
free boundaries are asymptotic to a family of circles. By this we mean the
following. Let p be a point in Ω, let d{p) be the distance from p to the
point on the free boundary closest to /?, and let dx{p) be the distance
from p to the point on the free boundary farthest from p. Then as λ -> 0
(Problem A) or as c -> oo (Problem B), the ratio d1(p)/d(p) approaches
1. Thus, if we scale the picture so that the point on the free boundary
closest to p is at distance 1 from /?, then the free boundary in this scaled
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picture approaches a unit circle uniformly. No assumption of regularity is
made on the free boundary. This fact has been proven in Problem B for
/ ( 0 = X{t>o) (['!)> where χυ is the characteristic function of U. This is
the limiting case as p -> 0 of /(/) = tp. It is therefore a natural generali-
zation to consider the problem for more general /'s. The behavior of
problem A as λ tends to infinity has been analyzed in [5].

If the constants c and λ are allowed to vary, then Problems A and B
are not the same. Indeed, the only case in which the problems are
equivalent is when /(/) = ktp for t > 0. In that case, a solution to
Problem B may be scaled to solve problem A with λ = cp~ι. For general
functions f(t) the two problems are distinct. They are similar enough,
however, that the methods overlap greatly. Section 3 obtains the asymp-
totic result for Problem A, and in §4 the appropriate changes are made to
obtain the analogous result for problem B. The argument in §3 uses
radially symmetric solutions for comparisons. The proof uses the concept
of asymptotic independence, and gives a partial answer to the question: if
a family {FR(x)} is asymptotically independent of R for large x, under
what conditions will the family of inverse functions {FR

ι(y)} be asymp-
totically independent of R for large yΊ One can think of this question in a
more concrete fashion: if the asymptotic expansion of FR(x) as x -> oo
has no R dependence in the highest order term, will this also be true of
the inverse function FR

ι(y)Ί Without futher conditions, the answer is
"no", as shown by the example of §3.

The reason that the methods of the present paper do not extend to
n > 2 is that the integral equation which corresponds to (3.3) clearly has
asymptotic dependence on R in higher dimensions.

2. Existence and uniqueness. We will deal with Problem B in this
section, since if λ and c are fixed, problem A is a special case of problem
B. Let Ω c Rn be a bounded open set with C2+a boundary, and let /(/)
be a continuous function defined for all t e R have the following proper-
ties:

(a) /(t) is monotone increasing

(b) /(/) = 0 for t < 0, f(t) > 0 for t > 0

(2.1) (c) f(t) is C1 except at t = 0

(d) lim ~^γ- = k for some 0 < p < 1 and some 0 < k < oo.

Let c be a positive constant. We will show that the there exists a function
v e C0

2+αi(RM - Ω) solving equation (1.2), that is, solving Problem B.
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To do this, we need the following existence lemma.

LEMMA 2.1. Let U c Rw be a bounded open set with C2+a boundary, let
/(/) be as above, and let φ(x) be a non-negative element of Hλ(U). Then
there exists a unique function w e C2+ai(U) with (w — φ) e Hl(U) which
is a classical solution of

(2.2) Δw=/(w) inU.

Here aλ = min(α, p).

Proof. The existence proof is much the same as the analogous result
for f(w) = wp in [7]. The existence of a weak solution is shown varia-
tionally by minimizing the functional

+ F(υ)\dx9

where F(t) = /0' f(s) ds, and Kφ = {v e iϊ^Ω) |(ϋ - φ) e flftΩ)}. The
argument that this is a classical solution is the same as in [7]. Uniqueness
comes from Theorem 9.3 of [6] since f(t) is monotone.

Lemma 2.1 implies uniqueness for the solution of Problem B im-
mediately. Indeed, if uλ and u2 both solve (1.2) and have compact support
then we can let U = BR — Ω, where BR = BR(0) is a large enough ball to
contain supp( wx) U supp(«2) Then uλ and u2 will have the same boundary
values on dU, so that we can apply Lemma 2.1.

To prove the existence of a solution to problem B, we must find a
solution wR to (2.2) with U = BR — Ω and boundary values wR = c on 3Ω,
wR = 0 on dBR, and then show that Rτ sufficiently large,

supp(wΛi) Π dBRι = 0 .

We will then let u be the extension of wRi by zero.

LEMMA 2.2. Suppose Ωx c Ω2 c BR. Let ui9 i = 1,2, solve (2.2) with

Uj = BR — Ωz αwrf vwYΛ boundary data

ci on 3Ω;

0 on dBR"

Assume c2 > cv Then u2(x) > uλ(x).

Proof. Since wx is subharmonic, ux(x) < cx < c2 on 9Ω2. We may
now apply Theorem 9.2 of [6] in U2.

Assume for simplicity that O G Ω . From the above lemma we may
conclude the following: If Ω c BR c BR and v solves (2.2) with boundary
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data

c on 3Ω

then v is less than the radially symmetric function w(x; R, Rλ) =
w(\x\; R, Rλ) which solves (2.2) in BR — BRι with boundary values c on
dBRι and 0 on BR. Thus, to show the existence of a solution to (2.2) it
suffices to show that given Rl9 there is a value of R sufficiently large to
ensure that supp(w(jc; R, Rλ)) Π dBR = 0 .

LEMMA 2.3. // (w; 1?, JRX) solves:

I

r

w(R.) = c

/or iί sufficiently large, w(r; R, Rλ) = 0 for R* < r < R. Here R* =
/?*(c, i?l9 /). (Of course w" + w'/r w /Ae radialLaplacian)

Proof. By property (2.1), (d) of /(/), we must have /(/) > btp on [0, c]
for some b > 0. Let

and assume R > R*. I will prove that this suffices. Define x(r) by:

b

( /Λ \Ί/{l-p)\ ° \ ί r>* \2/(1-D) ^ Γ.JU

( 1" p ) l^TΠTJ (**-') r<R*
0 Λ* </•

One can verify that:

x"{r) = bxp on [Rλ,oo)

x(R1) = c

x'(r)<0 on [i?!,oo)
Thus *"(/•) + (l/r)jc'(r) < f(x(r)) on [Λl5 oo). From Theorem 9.2 of [6],
the comparison principle for quasi-linear elliptic operators, x(r) ^ v(r)
on [Rv R]. This gives the desired result.

THEOREM 2.4. Gwe« a bounded Ω c R" with C2+a boundary and a
function f(t) satisfying properties (2.1), (a)-(d), there is a solution to
Problem B.
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Proof. Find Rλ so that Ω c BRχ. Let w(x) solve (2.2) with £/ =

BR*{c Rιf) — Ω and boundary values c on 3Ω and 0 on dBR*{cRιf). From

Lemma 2.3, supp( w) Π dBR* = 0 . Extend w(x) to the rest of R" by zero.

The result is the desired function v(x).

DEFINITION. The set Γ = 9{ u > 0} is called the free boundary. On Γ

we have u = 0, \Vu\ = 0. No regularity claims are made for Γ. The usual

regularity results ([4], Chap. 2) do not apply the case /(0) = 0.

3. Asymptotoc behavior of Problem A as λ approaches zero.

LEMMA 3.1. Let Ωx c Ω2 be bounded open sets and let λλ > λ 2 . Let ut

solve Problem A corresponding to Ωf . Then u2(x) > ux{x) everywhere.

Proof. We have

ΔW l - λ2f(u1) > Δt/2 - λ2f(u2) = 0.

Moreover, if suppίwj U supp(w2) £ BR, uλ{x) < u2(x) on d(BR — Ω2),

from the subharmonicity of uv We therefore can apply Theorem 9.2, [6]

for the desired result.

As in [9], we will use radial solutions to gain insight into the

asymptotic behavior of general solutions. We will see that as λ tends to

zero, the free boundaries are asymptotic to a family of circles, as in the

simpler case considered in [9]. For reasons which will become clear later

on, we set 1/μ = λ, and we therefore consider the radially symmetric

problem:

(3.1) w"{r)+\w'(r) = \f(W{r)) on[tf,oo)

w(R) = 1

sup{r|w(r) > 0} = q < oo,

where μ and R are given, and q is determined uniquely by μ and R, so

that we write q = GR(μ). We must first show that as μ tends to infinity,

so does q.

LEMMA 3.2. l i m ^ ^ G ^ μ ) = oo.

Proof. We seek y(r) to solve:

(3.2) y" + \ y = \f{\) R < r < R

r μ
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Here R is determined by the requirement that (3.2) has a solution, so that
R = R(μ). One can integrate (3.2) explicitly to obtain:

f
and that y' < Oon(i?,Λ).

As μ tends to infinity, it is clear that R must become infinite. We
must now show that GR(μ) > R(μ). But this is clear, since

Δ J > - - / ( J O > Δ W - - / ( H ; ) .

If GR(μ) < R(μ), then w(R) = y(R) = 1 and w(R) = y(R) = 0. This
implies that w(r) > y(r), a contradiction.

To show that the free boundaries are asymptotic to a family of circles,
it is necessary to show that the highest order term of GR(μ) as μ tends to
infinity does not depend on R. To make this idea precise, we must make
the following definition.

DEFINITION. A family of functions HR(x) parametrized by R is

asymptotically independent of R as x tends to infinity if:

HR{x)
h m 7Γ77Y = 1

for any Rl9 R2 in the parameter set.
Thus we seek to show that GR(μ) is asymptotically independent of R

as μ tends to infinity. To do this, we must rewrite (3.1) as an integral
equation:

f
Jr

Changing the order of integration:

Jr Jr μi

= / plogp y v ^" dp- \ p\ogrjy lμ" dp.
Jr μ Jr μ

Hence,

(3.3) μ= Γ plog pf(w(p)) dp-log RΓ pf(w(p)) dp,
JR JR

since w(R) = 1.
We will need to use q as a parameter, therefore it is necessary to show

that two solutions of (3.1) with the same value of q and of R but possibly
different values of μ are in fact identical.
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LEMMA 3.3. Suppose that wλ(r) and w2(r) solve (3.1) with the same R,

but with μΎ and μ2 not necessarily equal, and that the corresponding q 's are

equal. Then μλ = μ2 andwλ{r) = w2(r) for all r > R.

Proof. First we must show that if w(r) solves (3.1), then w\r) < 0 on

(R, q) and w"{r) > 0 on (R, q). Rewrite (3.1) as

it is clear that rw\r) increases to a value of zero at r = q. Hence

w\r) < 0 on (R,q). The fact that w"(r) is positive on this interval

follows immediately from (3.1).

Now, we may assume that μλ < μv It follows that w2(r) > wλ(r) for

all r from Lemma 3.1. Suppose w2(r) > w2(r) for some r^(R,q).

Define wδ(r) = wλ(r — δ), so that

ws(q + 8) = 0

ws(R + 8) = l.

For δ sufficiently small we must have w2(r) > w$(r) for some r e (R +

δ,q). However,

1 = wδ(R + 8) > w2(R + δ), and wδ(q) > w2(q) = 0.

It therefore follows that wδ(r) > w2(r) on (R 4- δ, q), which is a con-

tradiction. Hence wλ(r) = w2(r) for all r G (R, q), so that μλ = μ2.

It follows from this lemma that solutions to (3.1) may be parame-

trized by R and q, and that for fixed R the function q = GR(μ) has an

inverse. From (3.3), this inverse can be expressed as:

(3.4) μ = GR\q) = Γ plogp/(w(p; q9 R)) dp
JR

pf(w(p;q,R))dp9JR

where we write w(p;q,R) to indicate the dependence of w on the

parameters q and R. I will sometimes use μ(q,R) instead of GR

λ(q).

They are the same. We will see from this integral representation that

GR

λ(q) is asymptotically independent of R for large qy and then use an

inverse lemma to show that GR(μ) is asymptotically independent of R for

large μ.
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LEMMA 3.4. For all r > R, with R fixed, hm q^oow(r; q, R) = 1, and

Proof. This is obtained by a shooting argument. We first need a lower
bound on w'(R; q, R) independent of q if q is sufficiently large. Let b(r)
solve

V + -V = 1, b(R) = 1, b(2R) = 0.

From Lemma 3.2, as # tends to infinity, so does μ. Therefore, for q > 2R
sufficiently large, we have:

Aw(r;q,R)<Δb, w(R;q, R) = b(R), w(2R; q, R) > b(2R)9

hence w'(R; q,R) > b'(R) for q sufficiently large, the desired bound.
For any subsequence qt tending to infinity, we can, by taking a

subsequence, assume that hmt^^w\R; q,R) = L with b\R) < L < 0.
Let z(r) be that function which solves:

z" + -z' = 0, z(R) = 1, z'(R) = L.

By the theorem on continuous dependence of solutions of O.D.E.'s on
their parameters, w(r9qi9 R) approaches z(r) almost uniformly on the
domain of existence of z(r), call it [iϊ, Rλ). It remains to be shown that
Rλ = H- oo. From the almost uniform convergence of w(r; qt, R) to z{r),
it follows that z\r) < 0 and z(r) > 0 on [R,RX). Hence z"{r) > 0, so
that L < z\r) < 0 for all r e [R, Rx). But this imphes a bound on z"{r)
as well. Thus, by well-known existence theorems, Rλ = +00. We there-
fore have z(r) satisfying:

z'\r) + -rz\r) = 0, z(Λ) = l, z(r) > 0, z\r) < 0

for i? < r < 4- 00. It is easy to see by an explicit integration that z(r) = 1
is the only solution. This implies the desired result.

LEMMA 3.5.

ttpf{w(p;q,R))dp
f«plogpf(w(p;q,R))dp Q

Proof. Integrating by parts:

(p\ q, R)) dp = (-
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and

f plogpf(w(p;q,R))dp = (l-RlogRw'(R;q,R))μ(q,R).
JR

Since R is fixed, the result follows immediately from Lemma 3.4.

LEMMA 3.6. IfRλ > R, then μ(q, Rx) < μ(q, R).

Proof. Suppose that μ(q, Rλ) > μ(q, R). Define wδ(r) =
w(r - 8; q, R), with 8 > 0, so that

implying that

the last inequality by our assumption. Now set 8 to be R1 - R. We have:

wδ(i?1) = l = w(i?1;9,i?1)

amd

wM + #i - R) = o = ™{q + δ; ί, * i)-

By the comparison principle for quasi-linear elliptic operators, we must
have

wδ(r) < w(r\q,Rλ)

But this is contradicted at r = q.

LEMMA 3.7. IfR<Rλ<r, then

winq.R^^winq.R).

Proof. Define wε(r) = w(r - ε; q, RJ, for ε > 0. Then:

the last inequality from Lemma 3.6. Suppose for some r e (Rλ + ε, ήr), we
have

wε(r)<w(r;q,R).

Since wε(ήr + e) = w(qr 4- ε; q + ε, R) = 0, it follows from the comparison
principle that

wε(r)<w(r;q,R)
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for r e (r, q + ε). However, this is violated at r = q. We therefore con-
clude that

wε(r)> w(r;q,R)

for all r e (R 4- ε, q). Now let ε tend to zero to obtain the desired result.

LEMMA 3.8. The family of functions μ = G^(q) is asymptotically
independent ofRasq tends to infinity.

Proof. From Lemma 3.5 and equation (3.4), it follows that to prove
asymptotic independence of G^ι{q), we must show that
/^ p log ρ/(w(p; q, R)) dp is asymptotically independent of R for large q.
We must examine the quotient

( 3 5 ) f«p\ogpf(w(p;q,R))dp

flplogpfiwip q.R^dp

with Rλ assumed to be larger than R. Integrating by parts, this is:

μ(q,R)[l-R\ogRw'(R',q,R)}
μ(q, Λjjl - R.logR.wiR,; q, Rx)] '

From Lemma 3.4, the quantities in brackets in both the numerator and
denominator approach 1. Therefore, using Lemma 3.6,

lύninf /*

Now, write (3.5) as

( 3 6 ) fpplσgpf(w(p\q,R))dp | fj plogpf(w(p', q, R)) dp
flplogpfiwip q.R^dp ft plogpf{w(p; q9 Rλ)) dp'

By Lemma 3.7 and the monotonicity of /, the second fraction in (3.6)
is bounded from above by 1. We must therefore prove that the first
fraction in (3.6) goes to zero. But this is clear, since the numerator is
bounded by l/^1 plogp/(l) dp\, and the denominator grows like μ(q, Rx).
By this argument,

Hence

J fl plogp/(w(p; q, Rj) dp

£ p log p/( w(p q, Rj) dp
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= 1,
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i.e. that GR

ι(q) is asymptotically independent of R as q tends to oo.
We must now use the asymptotic independence of GR

ι(q) to establish
the asymptotic independence of GR(μ). One might think that this follows
immediately; that if y = gR(x) is insensitive to the value of R as x (and
y) tend to infinity, then x = g^(y) should exhibit the same property. A
simple counter-example is gR(x) = R + log c, so that gR

x(y) — ey~R.
Here gR(x) is clearly asymptotically independent of iϊ, and just as clearly
we have asymptotic dependence on R of gR\y). We must therefore
derive conditions which will imply the asymptotic independence of the
family of inverse functions and shown that these conditions are satisfied
in our particular case. The following lemma is more tractable for x
tending to infinity than for x tending to zero, which is why we use the
parameter μ rather than λ.

LEMMA 3.9. Suppose that the family of functions FR(x), defined for
x > R, satisfies:

(a) lim^ - a, FΛ( JC) = oo for all R
(b) FR(x) is positive and monotonically increasing in x for fixed R
(c) {FR(x)} is asymptotically independent ofRasx tends to infinity
(d) (FR(x + Ax) - FR(x))/Ax > FR(x)/x

for all x9 R, and Ax for which these quantities are defined.
Then the family {FR

1(y)} is asymptotically independent of R as y tends
to infinity. (Notice that no differentiability assumptions are made on FR(x).)

Proof. From condition (d), we have:

FR(x + Δx) - FR(x)
(3.7)

for all JC, R, and Ax for which these quantities are defined, including
Ax = 0. Fix R and Rl9 with Rx > R. Pick y > max(FRi(Rλ), FR(R)),
and let x = FR*(y). Let Ax = F^iF^x)) - x. (The choice of y ensures
that FRι(x) is in the domain of FR

λ). Putting these particular values of x
and Ax into (3.7) we obtain:

(3.8)
FRι(x)-FR(x)
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As y tends to infinity, so does x = F^ι(y) from assumption (a).
Therefore, from assumption (c), the left hand side of (3.8) must approach
zero. We conclude that:

establishing the lemma.

Note. Condition (d) can clearly be weakened by inserting a multiplica-
tive constant depending on R.

LEMMA 3.10. μ(q,R)/(q — R)2 is monotonically increasing in q for
fixed R.

Proof. Take Δ# > 0. Define s(r; q) to be μ(R, q)w(r; q, R), so that:

and consider the inhomogeneous scaling

We have

μ(q,R) Z's+β μ(q,R) R+(r-R)βΣ>i

Set

β =
μ(q,R) '

so that

Aq,R) +(r - R) H

We have that μ(q, R) is increasing in q for fixed R from Lemma 3.1, so
that
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and

Using the comparison principle for quasi-linear elliptic operators, we
conclude that

zβ(r) <s(r,q).

Now, zβ{r) is first zero at

the last inequality since s(r, q) > 0. Hence

Aq,R)

(q-R)2 (q + Δq-R)2

as desired.

THEOREM 3.11. The family of function {GR(μ)} is asymptotically
independent ofRasμ tends to infinity.

Proof. We must verify that each of the conditions of Lemma 3.9 hold
for the family {GR

ι(q)}. Condition (a) follows from Lemma 3.2. Condi-
tion (b) comes from Lemma 3.1. Condition (c) is proven in Lemma 3.8. It
remains for us to prove that condition (d) holds. First assume that
Aq > 0. From Lemma 3.10, we have

Δq,R) ^ μ(q,R)

(q + *q-R)-(q-R)2'

thus

μ(q + Δq,R) μ(q9R)
q + Aq - R q - R '

implying

(q - R)(μ(q + Δtf, R) - μ(q, R)) > Aqμ(q, R).

That is,

GR\q + Aq) - G~R\q) ̂  G~R\q) ^ G~R\q)
Aq q — R q

The proof for Aq < 0 is similar. This establishes condition (d) of Lemma
3.9, proving the theorem.
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THEOREM 3.12. Let Ω c Rz be a bounded open set with C2+a boundary.
Let vλ(x, y) solve Problem A, and let Γλ be the corresponding free boundary.
Then as λ tends to zero, Γλ is asymptotic to a family of concentric circles
with center in Ω. Moreover, the rate of growth of these circles depends only
on λ, not on SI. To be precise, if

d(Tx,p)= inf dist(/?,#) and d1{Tλ,p)= sup dist(/>,#),

for some fixedp e Ω, then

Proof. Let Bλ(p) be a ball of radius rλ contained in Ω with center p,
and let B2(p) be a ball of radius r2 containing Ω. From Lemma 3.1, Γλ is
contained in the annulus with center p, inner radius Grι(μ) and outer
radius Gr2(μ) (here μ = 1/λ). From Theorem 3.11, we have

completing the proof.

km 777-γ = 1,
μ-00 GAμ)

4. Asymptotic behavior of Problem B as c approaches 00. Proving
the result analogous to Theorem 3.12 in the case of problem B involves
much the same chain of logic as in §3. I will therefore omit proofs when
they are obvious modifications of those lemmas in §3. We will need an
assumption of f(t) in addition to assumptions (2.1), (a)-(d).

LEMMA 4.1. Let Ωx c Ω2 be bounded open sets and let c2 > cv Let vt

solve Problem B corresponding to Ωz. Then v2(x) > vλ(x) everywhere.

Proof. See Lemma 3.1.

The radially symmetric functions z(r) for problem B solve:

(4.1) z"(r) + -rz{r)=f{z) on(Λ,oo)

z{R) = c> 0, sup{r|z(r) > 0} = q < oo.

Here R and c are given, and q is determined uniquely by R and c, so we
write q = HR{c). We must show that c tends to infinity, so does q.
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LEMMA 4.2. limc_^00 HR(c) = oo.

Proof. Let y(r) solve:

(4.2) y" + -ry'=f{c)

Integrating (4.2) explicitly, we get

Λ R2-R2 , R, /Λ
0 = A + T l 0 § D-4 " 2"*U; Ac)'

By assumption (e), c/f(c) -* oo, therefore we must have
limc_>00 Λ(c) = oo. As in Lemma 3.2, HR(c) > R(c), proving the lemma.

LEMMA 4.3. Suppose that zx(r) and z2{r) solve (4.1) with the same
value of q, but possibly differing Rv R2 and cv c2. Then zx(r) = z2(r)
where they are both defined.

Proof. As in Lemma 3.3, z\r) < 0 and z"{r) > 0 on (R,q). Let
zδ(r) = zι(r ~ δ ) f o r 8 > ° τ h e n

If zδ(r) < z2(r) for max(Rv R2) < r < q, then it follows from the com-
parison principle that zδ(q) < z2(q), since zδ(q + 8) = z2(q 4- δ). But
this is a contradiction. Hence zδ(r) > z2(r) on their domain of mutual
definition. Letting 8 tend to zero, we obtain zλ(r) > zx(r) for
max(i?l9 R2) < r < q. But since zx and z2 are not distinguished, we
obtain zx{r) = z2(r).

Note. This result is much stronger that Lemma 3.3, the analogous
result for Problem A. Using Lemma 4.3, we may parametrize solutions to
(4.1) by q and R. The analog in equation (3.4) is:

(4.3) c = H

= f plogpf(z(p;q,R))dp-logR[q pf(z(p;q9R))dp,
JR JR

where I will sometimes write c(q,R) for HR\q). Of course c(q,R) =

z(R;q,R).

LEMMA 4.4. For allr > R,

zψ^ι=h and
( R )

4
, R)
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Proof. Let y{r) = z(r; q, R)/c(qy R). We have

(4.4) y"+ \y* = \f{<y), y(R) = i

From assumption e) on the function /, we have that the right hand side of
(4.4) approaches zero as c tends to infinity. This is enough to ensure that
the shooting argument of Lemma 3.4 works.

LEMMA 4.5.

Mpf(z(p;q,R))dp = Q

,7-00 j%p\ogpf{z(p;q,R))dp

Proof. Integrating by parts, this fraction is:

-Rz'(R;q,R)

c(q9R)-RlogRz'(R;q9R)9

from which the result follows by Lemma 4.4.

LEMMA 4.6. H^(q) is asymptotically independent of R as q tends to

infinity.

Proof. From Lemma 4.5 and equation (4.3), it follows that to
prove asymptotic independence of H^ι(q), we must show that
SR plog/(z(p; q,R))dρ is asymptotically independent of R for large q.
This is an easier task than proving Lemma 3.8, because of the strength of
Lemma 4.3. We must examine the quotient:

flplogp/(z(p;g,Λ))</p

lfrp\agpf{z{p\q,R))dpm

Write this as

The denominator of (4.5) is bounded, by the monotonicity of z and of
/. The numerator of (4.5) can be written as:

c(q,R) I z'(R;g,R)

after an integration by parts. By Lemma 4.4, the quantity in brackets
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approaches 1 as q tends to infinity. By assumption (e) on /;

r c(q,R)
lim r/ V—~- = oo,

f{c(qR))

since lim g_O0c(q, R) = oo. Therefore the numerator of (4.5) approaches
infinity, so that:

lim
q-*oo fpplogpf(z{p;q,R))dp

w
Therefore, for Rλ > R,

f«p\ogpf(z(p;q,R))dp j
fZιP\ogpf(z(p;q,R))dp

plogpf(z(p;q,R))dp + /£ plogρ/(z(p; q,R)) dp

= 1.

We have used the fact that z(p; q, R) = z(p; q, Rλ) for r > Rv This
demonstrates the asymptotic independence of /^ p log p/(z(p; q, R)) dp
and hence of H^ι{q).

To show that HR(c) is asymptotically independent of R for large c,
we must verify that the hypotheses of Lemma 3.9 hold. This is done by
proving a result analogous to Lemma 3.10.

LEMMA 4.7. c(q,R)/(q — R)2 is monotonically increasing as a function
of q for fixed R.

Proof. We use an inhomogeneous scaling which differs from that of
Lemma 3.10. Take Aq > 0 and let:

so that wa(q) = 0, w'a{q) = 0. We have that:

α \ q + Aq - R

1 / l \ f q-R , ,
R + (r - R)((q + Aq - R)/(q - R))\aJ\q + Aq - R}w«
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Now choose a = ((q — R)/(q + Δ# — R))2, so that:

Since w'a < 0, it follows that:

I claim that wa(r) > z(r\ q, R). Indeed, if this were not the case, we can
let wδ(r) = wa(r - δ), so that

If wδ(r) = z(r;q,R) for some r < q, then we can use the compari-
son principle to say that wδ(q) < z(q; q,R) = 0, since wδ(q + δ) =
z(q + δ; q, R). But this is a contradiction, because wδ(q) > 0. There-
fore wδ(r) > z(r; q, R) for R + 8 < r < q. Now let δ -» 0 to conclude
that wa{r) > z(r; q, R). At r = R this implies:

+ Δ g - l t

yielding the desired result.

THEOREM 4.8. The family of functions {HR(c)} is asymptotically in-
dependent ofRasc tends to infinity.

Proof. Same proof as Theorem 3.11.

THEOREM 4.9. Let Ω c R2 be a bounded open set with C2+a boundary.
Let wc(x, y) solve Problem B, and let Tc be the corresponding free boundary.
Then as c —> oo, Γc is asymptotic to a family of concentric circles with center
in Ω. The rate of growth of these circles does not depend on Ω.

Proof. Same as the proof of Theorem 3.12.
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