COHOMOLOGY WITH SUPPORTS

E. Spanier

In this paper we study cohomology theories on a space X with supports in a family of supports Φ . There is a uniqueness theorem asserting that a homomorphism between two cohomology theories on the space X with the same family of supports Φ which is an isomorphism for every $A \in \Phi$ is an isomorphism for every closed set $A \subset X$.

1. Introduction. By using cohomology with supports in a given family it is possible to pass from cohomology theories on X to cohomology theories on subsets of X with suitably related families of supports. In particular, compactly supported cohomology theories on a locally compact space X correspond to cohomology theories on the one-point compactification of X which vanish at infinity. Similarly, cohomology theories on a locally paracompact space X with relatively paracompact supports correspond to cohomology theories on the one-point paracompactification of X which vanish at infinity.

We also prove a uniqueness theorem for homomorphisms between additive cohomology theories with paracompact supports on finite dimensional space.

The remainder of the paper is divided into four sections. Section 2 contains the definition of a cohomology theory with supports in a family Φ , a uniqueness theorem for two cohomology theories with the same family of supports, and a characterization of cohomology with supports in suitable families in terms of limit properties.

Section 3 is devoted to the construction of cohomology theories on a space X with supports in a given family Φ from an ES theory on X. The definition of an ES theory on X is given and it is shown that given an ES theory on X and a family Φ of supports on X there is another ES theory on X with supports in Φ .

In Section 4 the relation between cohomology theories on X and on open subsets of X is studied. The concept of a cohomology theory on X concentrated on a subset $Y \subset X$ (i.e. which vanishes for every closed subset of X contained in X - Y) is introduced. The main result is a bijection between cohomology theories on X concentrated on an open set Y with supports in Φ and cohomology theories on Y with supports in a suitable family $\Phi|Y$.

The particular cases of compact and paracompact supports are studied in §5. Cohomology theories on a locally compact (locally paracompact) space X with compact (relatively paracompact) supports are shown to correspond to cohomology theories on the one-point compactification (paracompactification) X^+ which are concentrated on X. There is also established a uniqueness theorem for addititive cohomology theories with paracompact supports on finite dimensional normal spaces.

2. Supports. We consider cohomology theories on a space X with a given family of closed subsets of X as supports. The uniqueness theorem extends to this case and asserts that if φ : $H, \delta \to H', \delta'$ is a homomorphism between cohomology theories on the same space X with the same family Φ of supports such that for some integer n, φ_A : $H(A) \to H'(A)$ is an *n*-equivalence for all $A \in \Phi$ then φ_A is an *n*-equivalence for all closed $A \subset X$.

All topological spaces will be assumed to be Hausdorff spaces. A cohomology theory [7, 8] H, δ on X consists of:

- (i) a contravariant functor H from the category cl(X) of closed subsets of X and inclusion maps to the category of graded abelian groups and homomorphisms of degree 0 such that $H(\emptyset) = 0$, and
- (ii) a natural transformation δ : $H(A \cap B) \to H(A \cup B)$ of degree 1 for every two closed sets A, B in X, such that the following are satisfied:

Continuity. For closed $A \subset X$ there is an isomorphism

 $\rho \colon \lim_{\to} \{H(N) | N \text{ a closed nbhd of } A \text{ in } X\} \approx H(A)$

where ρ {u} = u|A for $u \in H(N)$.

MV exactness. For A, $B \subset X$ there is an exact sequence

$$\dots \xrightarrow{\beta} H^{q-1}(A \cap B) \xrightarrow{\delta} H^q(A \cup B) \xrightarrow{\alpha} H^q(A) \oplus H^q(B)$$
$$\xrightarrow{\beta} H^q(A \cap B) \xrightarrow{\delta} \dots$$

where $\alpha(u) = (u | A, u | B)$ for $u \in H^q(A \cup B)$ and $\beta(u, v) = u | A \cap B$ $-v | A \cap B$ for $u \in H^q(A), v \in H^q(B)$.

A cohomology theory H, δ is said to be *non negative* if $H^q(A) = 0$ for q < 0 and all closed $A \subset X$. A cohomology theory H, δ is said to be

additive if for every discrete¹ family $\{A_j\}$ of closed sets there is an isomorphism

$$H(\cup A_j) \approx \prod H(A_j)$$

sending $u \in H(\bigcup A_i)$ to $\{u \mid A_i\}$.

A family of supports [1] Φ on X consists of a collection of closed subsets of X such that

- (i) $A \in \Phi$, B closed in $A \Rightarrow B \in \Phi$.
- (ii) $A, B \in \Phi \Rightarrow A \cup B \in \Phi$.
 - If Φ also has the property

(iii) $A \in \Phi \Rightarrow$ there is a closed nbhd N of A in X with $N \in \Phi$, we say Φ is a *nbhd family of supports*.

EXAMPLES (2.1). The collection of all closed subsets of X is a family of supports on X. In case X is a normal space, it is a nbhd family of supports.

(2.2). The collection of all compact subsets of X is a family of supports on X. In case X is locally compact, it is a neighborhood family of supports.

(2.3). The collection of all paracompact subsets of X is a family of supports on X. The collection of all closed subsets of X having closed paracompact nbhds in X is a nbhd family of supports on X.

(2.4). If $Y \subset X$ and Φ is a family of supports on X, then $\Phi | Y = \{A \in \Phi | A \subset Y\}$ is a family of supports on Y and on X. If Y is open in a normal space X and Φ is a nbhd family in X, then $\Phi | Y$ is a nbhd family on Y and on X.

If Φ is a family of supports on X and H, δ is a cohomology theory on X, then H, δ has supports in Φ if given $u \in H(A)$ there exist B closed, $C \in \Phi$ with $A = B \cup C$ and $u \mid B = 0$.

This definition is a generalization of compactly supported cohomology [7, 8]. Note that the definition does not involve the natural transformation δ . Obviously every cohomology theory on X has supports in the family of all closed subsets of X.

If H, δ and H', δ' are cohomology theories on the same space X, a homomorphism φ from H, δ to H', δ' is a natural transformation from H to H' commuting up to sign with δ , δ' .

¹A family $\{A_j\}$ of subsets of a space X is *discrete* if every point of X has a nbhd meeting at most one member of the family.

The following is a generalization of [8, Proposition (2.8)] to arbitrary families of supports.

THEOREM (2.5). Let φ : $H, \delta \to H', \delta'$ be a homomorphism between two cohomology theories on X with supports in Φ and suppose $n \in \mathbb{Z}$ is such that φ_A : $H(A) \to H'(A)$ is an n-equivalence² for every $A \in \Phi$. Then φ_A is an n-equivalence for every closed $A \subset X$.

Proof. The proof parallels that of [8, Proposition (2.8)] and will, therefore, be omitted. \Box

Given a family Φ of supports on X a set $S \subset X$ is a *co*- Φ set if $\overline{X-S} \in \Phi$. The following is a useful criterion for verifying that a contravariant functor on cl(X) is continuous and has supports Φ .

PROPOSITION (2.6). Assume H is a contravariant functor from cl(X) to the category of graded abelian groups such that $H(\emptyset) = 0$, Φ is a family of supports on X, and for every closed $A \subset X$ there is an isomorphism

(*) $\rho: \lim_{\to} \{H(N) | N \text{ a closed co-}\Phi \text{ nbhd of } A \text{ in } X\} \approx H(A)$

where $\rho\{u\} = u | A$ for $u \in H(N)$. Then H is continuous and has supports in Φ .

Proof. We first show H is continuous. Let ρ' : $\lim_{\to} \{H(N) \mid N \text{ a closed}$ neighborhood of A in $x\} \to H(A)$ be the map of the continuity property. Then (*) implies that ρ' is surjective. To show it injective assume N is a closed neighborhood of A in X and $u \in H(N)$ is such that $u \mid A = 0$. By (*) there is a closed co- Φ neighborhood \overline{N} of N in X and $\overline{u} \in H(\overline{N})$ such that $u = \overline{u} \mid N$. Then $\overline{u} \mid A = 0$ so, again by (*), there is a closed co- Φ neighborhood M of A in \overline{N} such that $\overline{u} \mid M = 0$. Then $N \cap M$ is a closed neighborhood of A in N and $u \mid N \cap M = \overline{u} \mid N \cap M = 0$ proving that ρ' is injective. Therefore, H is continuous.

To show *H* has supports in Φ let $u \in H(A)$. By (*) there is a closed co- Φ neighborhood *N* of *A* in *X* and $v \in H(N)$ such that v | A = u. Since $v | \emptyset = 0$ because $H(\emptyset) = 0$, it follows from (*) again that there is a closed co- Φ *M* in *N* such that v | M = 0. Let $B = A \cap M$ and C $= \overline{A - M}$. Then $A = B \cup C$ where *B* is closed, $C \in \Phi$ and u | B = 0. \Box

²A homomorphism $\varphi: G \to G'$ of degree 0 between graded abelian groups is an *n*-equivalence if $\varphi: G^q \to G'^q$ is an isomorphism for all q < n and a monomorphism for q = n.

In the case of nbhd families of supports and for cohomology theories H, δ there is the following converse of Proposition (2.6).

PROPOSITION (2.7). Assume H, δ is a cohomology theory on X with supports in a nbhd family Φ . Then there is an isomorphism

 $\rho \colon \lim_{\longrightarrow} \{H(N) | N \text{ a closed co-} \Phi \text{ nbhd of } A \text{ in } X\} \approx H(A)$

where ρ {u} = u | A for $u \in H(N)$.

Proof. (1) Let $u \in H(A)$ and suppose M is a closed nbhd of A and $v \in H(M)$ are such that v | A = u (such M, v exist because H is continuous). Since H has supports in Φ , $M = B \cup C$ where B is closed, $C \in \Phi$ and v | B = 0. Since Φ is a nbhd family there is a closed nbhd C' of C with $C' \in \Phi$. Let $N = M \cup (X - \operatorname{int} C')$. Then N is a closed nbhd of A in X and

$$\overline{X-N}=\overline{X-M}\cap \overline{\operatorname{int} C'}\subset C'$$

so N is a co- Φ set. Since $C \cap [B \cup (X - \operatorname{int} C')] = C \cap B$, there is an exact sequence

$$H(N) \xrightarrow{\alpha} H(C) \oplus H(B \cup (X - \operatorname{int} C')) \xrightarrow{\beta} H(C \cap B).$$

Since $(v | C, 0) \in H(C) \oplus H(B \cup (X - \text{int } C'))$ is in ker β , there is $w \in H(N)$ such that w | C = v | C and $w | [B \cup (X - \text{int } C')] = 0$. Then w | M and v have the same restrictions to C and to B so by exactness of

$$H(C \cap B) \xrightarrow{o} H(M) \xrightarrow{\alpha} H(C) \oplus H(B)$$

there is $w' \in H(C \cap B)$ such that $\delta w' = v - w | M$. There is a commutative diagram

It follows that $v = \delta w' + w | M = (\delta'w' + w) | M$. Therefore, $\delta'w' + w \in H(N)$ is such that

$$(\delta'w' + w) | A = ((\delta'w' + w) | M) | A = v | A = u.$$

This proves that the map ρ in the Proposition is an epimorphism.

(2) To show ρ is a monomorphism assume $u \in H(N)$ where N is a closed co- Φ nbhd of A in X is such that u|A = 0. Since H has supports

in Φ , $N = B \cup C$ with B closed, $C \in \Phi$ and u | B = 0. By continuity of H there is also a closed nbhd M of A in N such that u | M = 0. There is an exact sequence

$$H(M \cap B) \xrightarrow{o} H(M \cup B) \xrightarrow{\alpha} H(M) \oplus H(B)$$

and $u|(M \cup B)$ is in ker α so there is $v \in H(M \cap B)$ with $\delta v = u|(M \cup B)$. By (1) above there are a closed co- Φ nbhd L of $M \cap B$ in N and $w \in H(L)$ such that $w|M \cap B = v$. Clearly $L = (M \cup L) \cap (B \cup L)$ and there is a commutative diagram

$$\begin{array}{cccc} H(L) & \stackrel{\delta'}{\to} & H(M \cup L \cup B) & \stackrel{\alpha'}{\to} & H(M \cup L) \oplus H(B \cup L) \\ & & & & & & & \\ \rho' \downarrow & & & \rho \downarrow & & & \downarrow \rho'' \\ H(M \cap B) & \stackrel{\delta}{\to} & H(M \cup B) & \stackrel{\alpha}{\to} & H(M) \oplus H(B) \end{array}$$

Since $M \cup B$, $M \cup L$ are closed co- Φ nbhds of A in N (because $\overline{X - M \cup B} = \overline{X - M} \cap \overline{X - B} \subset \overline{X - B} = \overline{X - N} \cup \overline{N - B} \in \Phi$ and $\overline{X - M \cup L} \subset \overline{X - L} \in \Phi$), it follows that $D = (M \cup B) \cap (M \cup L)$ is a closed co- Φ nbhd of A in N. Clearly

$$u \mid D = (u \mid (M \cup B)) \mid D = (\delta v) \mid D = (\delta \rho' w) \mid D = (\rho \delta' w) \mid D$$

$$= ((\delta'w) | (M \cup L)) | D = 0 | D = 0$$

proving that ρ is a monomorphism.

3. Existence of cohomology with given supports. In this Section we show how to obtain cohomology theories on a normal space X with supports in a given nbhd family of supports Φ from an ES theory on X. We begin by recalling the definition of an ES theory on X and some of its properties. See [8] for more details.

As *ES* theory *H*, δ^* on *X* consists of:

(i) a contravariant functor H from $cl(X)^2$ (the category of closed pairs in X and inclusion maps between them) to the category of graded abelian groups, and

(ii) a natural transformation

 δ^* : $H(B, \emptyset) \to H(A, B)$

of degree 1 for every closed pair (A, B) in X, such that the following are satisfied:

Continuity. For every closed A in X there is an isomorphism

 $\rho: \lim \{H(N, \emptyset) | N \text{ a closed nbhd of } A \text{ in } X\} \approx H(A, \emptyset)$

where $\rho\{u\} = u | (A, \emptyset)$ for $u \in H(N, \emptyset)$.

Exactness. For every closed pair (A, B) in X the following sequence is exact

$$\dots \xrightarrow{\delta^*} H^q(A,B) \xrightarrow{H(j)} H^q(A,\emptyset) \xrightarrow{H(i)} H^q(B,\emptyset) \xrightarrow{\delta^*} H^{q+1}(A,B) \to \dots$$

where $i: (B, \emptyset) \subset (A, \emptyset)$ and $j: (A, \emptyset) \subset (A, B)$.

Excision. For closed sets A, B in X there is an isomorphism

$$\rho\colon H(A\cup B,B)\approx H(A,A\cap B)$$

It is standard [2] that if (A, B, C) is a closed triple in X there is a corresponding exact sequence of the triple and that there is a cohomology theory H', δ' on X with $H'(A) = H(A, \emptyset)$ for $A \in cl(X)$. An ES theory has supports in a family Φ if the corresponding cohomology theory has supports in Φ .

The following will be useful in constructing ES theories with supports in Φ .

LEMMA (3.1). Let Φ be a nbhd family of supports on a normal space X. If A is closed and N is a co- Φ nbhd of A in X, there is a closed co- Φ nbhd of A contained in the interior of N.

Proof. By hypothesis A is disjoint from $\overline{X - N} \in \Phi$. Let $M \in \Phi$ be a nbhd of $\overline{X - N}$. Since A and $\overline{X - N}$ are disjoint closed sets in X there exist disjoint closed nbhds A' of A and B' of $\overline{X - N}$. Then $B' \cap M \in \Phi$ is a nbhd of $\overline{X - N}$ disjoint from A'. Therefore, $N' = \overline{X - B' \cap M}$ is a closed nbhd of A contained in $X - \overline{X - N} =$ interior of N and $\overline{X - N'} \subset B' \cap M \in \Phi$ so N' is a co- Φ nbhd of A contained in the interior of N. \Box

THEOREM (3.2). Let H, δ^* be an ES theory on a normal space X and let Φ be a nbhd family of supports on X. Then there is an ES theory H_{Φ} , δ_{Φ}^* on X with supports in Φ where

 $H_{\Phi}(A,B) = \lim_{\longrightarrow} \{H(M,N) \mid (M,N) \text{ a closed co-}\Phi \text{ nbhd of } (A,B) \text{ in } X\}.$

Proof. Note that the intersection of two closed co- Φ nbhds of (A, B) is a closed co- Φ nbhd of (A, B) so the collection of closed co- Φ nbhds of (A, B) is directed downward by inclusion and we can define $H_{\Phi}(A, B) = \lim_{\longrightarrow} \{H(M, N) | (M, N) \text{ a closed co-}\Phi \text{ nbhd of } (A, B) \text{ in } X\},$ and H_{Φ} is a contravariant functor on cl $(X)^2$. Consider closed triples (M, N, P) of co- Φ sets such that (M, N) is a nbhd of (A, B). As (M, N, P) vary over the collection of all such triples (which is directed downward by inclusion) note that:

(1) (M, N) varies over all closed co- Φ nbhds of (A, B) in X (to such (M, N) there is the triple (M, N, N)),

(2) (M, P) varies over all closed co- Φ nbhds of (A, \emptyset) (to such (M, P)) there is the triple (M, M, P)), and

(3) (N, P) varies over all closed co- Φ nbhds of (B, \emptyset) (to such (N, P) there is the triple (X, N, P)).

Corresponding to such a triple (M, N, P) there is an exact sequence

 $\ldots \to H^q(M,N) \to H^q(M,P) \to H^q(N,P) \xrightarrow{\delta^*} H^{q+1}(M,N) \to \ldots$

Taking the direct limit of these exact sequences over all such triples (M, N, P) and using (1), (2), (3) we obtain an exact sequence

$$\ldots \to H^q_{\Phi}(A,B) \to H^q_{\Phi}(A,\varnothing) \to H^q_{\Phi}(B,\varnothing) \xrightarrow{\mathfrak{o}_{\Phi}} H^{q+1}_{\Phi}(A,B) \to \ldots$$

This defines the natural transformation δ_{Φ}^* of degree 1 such that H_{Φ} , δ_{Φ}^* satisfy exactness.

We verify excision. Given closed sets A, B in X let (M, N) be a closed co- Φ nbhd of $(A, A \cap B)$ in X and (M', N') a closed co- Φ nbhd of $(A \cup B, B)$ in X. Then A-int $N \cap N'$ and B-int $N \cap N'$ are disjoint closed subsets of M' so there exist disjoint closed nbhds E of A-int $N \cap N'$ and F of B-int $N \cap N'$ in M'. Then $M'' = [E \cup (N \cap N')] \cap M$ is a closed co- Φ nbhd of A contained in $M' \cap M$ and $N'' = (F \cup N) \cap N'$ is a closed co- Φ nbhd of B contained in N' such that $M'' \cup N'' \subset M'$ and $M'' \cap N'' = N \cap N' \cap M \subset N$. Thus, $(M'', N'' \cap M'')$ is a closed co- Φ nbhd of $(A, A \cap B)$ contained in (M, N) and $(M'' \cup N'', N'')$ is a closed co- Φ nbhd of $(A \cup B, B)$ contained in (M', N'). Since H satisfies excision,

$$H(M'' \cup N'', N'') \approx H(M'', M'' \cap N'').$$

Since this isomorphism is valid for a cofinal system of closed $co-\Phi$ nbhds of $(A \cup B, B)$ and of $(A, A \cup B)$ on taking direct limits we obtain an isomorphism

$$H_{\Phi}(A \cup B, B) \approx H_{\Phi}(A, A \cap B).$$

To complete the proof we show that H_{Φ} is continuous and has supports in Φ . Since $H_{\Phi}(\emptyset, \emptyset) = 0$, in view of Proposition (2.6) it suffices to verify that the homomorphism

 $\rho \colon \lim_{\to} \{ H_{\Phi}(M, \emptyset) \mid M \text{ a closed co-}\Phi \text{ nbhd of } A \} \to H_{\Phi}(A, \emptyset)$ is an isomorphism.

Let $u \in H_{\Phi}(A, \emptyset)$. By definition of H_{Φ} there is a closed co- Φ nbhd (M, N) of (A, \emptyset) and $v \in H(M, N)$ such that $u = \{v\}_{(A,\emptyset)}$. By Lemma (3.1) there is a closed co- Φ nbhd M' of A contained in int M. Then v determines $\{v\}_{(M',\emptyset)} \in H_{\Phi}(M',\emptyset)$ such that

$$\{v\}_{(M',\emptyset)}|(A,\emptyset) = \{v\}_{(A,\emptyset)} = u$$

proving that ρ is an epimorphism.

To show that ρ is a monomorphism let $u \in H_{\Phi}(M, \emptyset)$ be such that $u|(A, \emptyset) = 0$ where M is a closed co- Φ nbhd of A. By definition of H_{Φ} there is a closed co- Φ nbhd (M', N') of (M, \emptyset) and $v \in H(M', N')$ such that $u = \{v\}_{(M,\emptyset)}$. Since $0 = u|(A, \emptyset) = \{v\}_{(A,\emptyset)}$ there is a closed co- Φ nbhd (M'', N'') of (A, \emptyset) contained in (M', N') such that v|(M'', N'') = 0. Since $M \cap M''$ is a closed co- Φ nbhd of A it follows from Lemma (3.1) that there is a closed co- Φ nbhd P of A contained in int $(M \cap M'')$. Then $(M \cap M'', M \cap N'')$ is a closed co- Φ nbhd of (P, \emptyset) and

$$u|(P, \emptyset) = \{v\}_{(M,\emptyset)}|(P, \emptyset) = \{v|(M \cap M'', M \cap N'')\}_{(P,\emptyset)} = 0$$

showing that ρ is a monomorphism.

The following is an interesting alternate description of the functor H_{Φ} defined in Theorem (3.2).

PROPOSITION (3.3). Let H, δ^* be an ES theory on a normal space X and Φ a nbhd family of supports on X. Let H_{Φ} be the contravariant functor on $cl(X)^2$ defined in Theorem (3.2). For any $(A, B) \in cl(X)^2$ there is an isomorphism

$$\rho' \colon H_{\Phi}(A, B) \approx \lim_{B' \atop B'} \left\{ H(A, B') \, | \, B' \text{ closed}, B \subset B' \subset A \text{ and } \overline{A - B'} \in \Phi \right\}$$

where $\rho'\{v\}_{(A,B)} = \{v | (A, N \cap A)\}'$ for $v \in H(M, N)$, (M, N) a closed co- Φ nbhd of (A, B).

Proof. In the above and in the proof we use $\{ \}$ to denote elements of $H_{\Phi}(A, B)$ and $\{ \}'$ to denote elements of the direct limit which is the codomain of ρ' . It is clear that ρ' as defined above is a homomorphism.

We show ρ' is an epimorphism. Let $\{v\}'_{(A,B)} \in \lim_{B'} \{H(A,B') \mid B' \text{ closed}, B \subseteq B' \subseteq A, \overline{A - B'} \in \Phi\}$ where $v \in H(A, B')$. Since $\overline{A - B'} \in \Phi$, $X - (\overline{A - B'})$ is a co- Φ nbhd of \emptyset in X. By Lemma (3.1) there is a closed co- Φ nbhd N of \emptyset contained in $\operatorname{int}(X - (\overline{A - B'})) = X - (\overline{A - B'})$. Then A and $B' \cup N$ are closed sets such that

$$A \cap (B' \cup N) = \left[\overline{A - B'} \cup B'\right] \cap \left[B' \cup N\right] = B'.$$

Therefore, there is an excision isomorphism

 $H(A \cup (B' \cup N), B' \cup N) \approx H(A, B').$

Let $v' \in H(A \cup N, B' \cup N)$ be such that v'|(A, B') = v. By continuity of H there is a closed nbhd (M, M') of $(A \cup N, B' \cup N)$ and $v'' \in H(M, M')$ such that $v''|(A \cup N, B' \cup N) = v'$. Then (M, M') is a closed co- Φ nbhd of (A, B) so $\{v''\}_{(A,B)} \in H_{\Phi}(A, B)$ and $\rho'\{v''\}_{(A,B)} = \{v''|(A, A \cap M')\}'_{(A,B)} = \{v''|(A, B')\}'_{(A,B)} = \{v\}'_{(A,B)}$. So ρ' is an epimorphism.

To show ρ' is a monomorphism let $u \in H_{\Phi}(A, B)$ be such that $\rho'(u) = 0$ and let (M, N) be a closed co- Φ nbhd of (A, B) and $v \in H(M, N)$ be such that $u = \{v\}_{(A, B)}$. Then

$$0 = \rho'(u) = \{v | (A, A \cap N)\}'_{(A,B)}$$

so there is closed B', $\underline{B} \subset \underline{B'} \subset A \cap N$, $\overline{A - B'} \in \Phi$ such that v | (A, B') = 0. Then $N \cap [X - \overline{A - B'}]$ is a co- Φ nbhd of \emptyset in X. By Lemma (3.1) there is a closed co- Φ nbhd N' of \emptyset contained in

$$\operatorname{int}(N \cap [X - \overline{A - B'}]) = (\operatorname{int} N) \cap [X - \overline{A - B'}].$$

Then $A \cup (B' \cup N') = A \cup N'$ and $A \cap (B' \cup N') = B'$ so there is an excision isomorphism

$$H(A \cup N', B' \cup N') \approx H(A, B').$$

Since v|(A, B') = 0, it follows that $v|(A \cup N', B' \cup N') = 0$. By continuity of H, there is a closed nbhd (M'', N'') of $(A \cup N', B' \cup N')$ in (M, N) such that v|(M'', N'') = 0. Then (M'', N'') is a closed co- Φ nbhd of (A, B) contained in (M, N) and

$$u = \{v\}_{(A,B)} = \{v | (M'', N'')\}_{(A,B)} = 0$$

proving that ρ' is a monomorphism.

4. Cohomology of open subsets. We consider relations between cohomology theories on a space X and cohomology theories on subsets Y of X.

A cohomology theory H, δ on a space X is said to be concentrated on a subset $Y \subset X$ if H(A) = 0 for all closed $A \subset X - Y$. An ES theory is said to be concentrated on Y if the corresponding cohomology theory is concentrated on Y.

EXAMPLE (4.1). Let Y be a closed subset of a normal space X and let H, δ be a cohomology theory on X. The restriction of H, δ to Y is a cohomology theory \overline{H} , $\overline{\delta}$ on Y and the direct image of \overline{H} , $\overline{\delta}$ under the

456

closed continuous map i: $Y \subset X$ is a cohomology theory H', δ' with $H'(A) = H(A \cap Y)$. Clearly H' is concentrated on Y.

The following shows how to obtain cohomology theories concentrated on an open subset $Y \subset X$ given an *ES* theory on *X*.

PROPOSITION (4.2). Let H, δ^* be an ES theory on X and let Y be an open subset of X. There is an ES theory H', δ' concentrated on Y with $H'(A,B) = H(A \cup (X - Y), B \cup (X - Y))$ for closed (A, B) in X.

Proof. H' as defined in the statement of the Proposition is clearly a contravariant functor on $cl(X)^2$. The exact cohomology sequence of the triple $(A \cup (X - Y), B \cup (X - Y), X - Y)$ in H, δ^* becomes the exact cohomology sequence of the pair (A, B) in H', δ' (this defines the natural transformation

$$\delta' \colon H'(B, \emptyset) \to H'(A, B)$$

of degree 1 such that H', δ' satisfy exactness). Excision for H', δ' follows from excision for H, δ^* . To verify continuity for H', δ' note that

$$H'(A, \varnothing) = H(A \cup (X - Y), X - Y) \approx H(A, A \cap (X - Y)).$$

As N varies over closed nbhds of A in X, $N \cap (X - Y)$ varies over closed nbhds of $A \cap (X - Y)$ in X - Y. It follows from continuity of H that

$$\rho \colon \lim_{X \to Y} \{ H(N, N \cap (X - Y)) | N \text{ a closed nbhd of } A \text{ in } X \}$$

$$\approx H(A, A \cap (X - Y)).$$

This implies that

 $\rho: \lim \{H'(N, \emptyset) | N \text{ a closed nbhd of } A \text{ in } X\} \approx H'(A, \emptyset)$

and so H' satisfies continuity.

Thus, H', δ' is an ES theory on X. It is concentrated on Y for if $A \subset X - Y$ then

$$H'(A, \varnothing) = H(A \cup (X - Y), X - Y) = H(X - Y, X - Y) = 0. \quad \Box$$

LEMMA (4.3). If H, δ is a cohomology theory on X concentrated on an open set $Y \subset X$, then for every closed $A \subset X$, there is an isomorphism

$$\rho'$$
: $H(A \cup (X - Y)) \approx H(A)$.

Proof. This is immediate from exactness of

$$0 = H(A \cap (X - Y)) \xrightarrow{\delta} H(A \cup (X - Y)) \xrightarrow{\alpha} H(A) \oplus H(X - Y) \to 0$$

and the fact that $H(X - Y) = 0$.

The following relates cohomology concentrated on an open subset and cohomology having supports in a nbhd family.

PROPOSITION (4.4). Let H, δ be a cohomology theory on X, Φ be a nbhd family of supports on X, and Y an open subset of X. Then H, δ has supports in Φ and is concentrated on Y if and only if H, δ has supports in $\Phi | Y$.

Proof. If H, δ has supports in $\Phi | Y$, it clearly has supports in the larger family Φ . We show it is concentrated on Y. Assume $A \subset X - Y$ and $u \in H(A)$. Since H has supports in $\Phi | Y$, $A = B \cup C$ where B is closed, $C \in \Phi | Y$ and u | B = 0. Since $C \subset A \cap Y = \emptyset$, B = A so u = u | B = 0. Therefore, H(A) = 0 so H is concentrated on Y.

Conversely, assume H has supports in Φ and is concentrated on Y. Let $u \in H(A)$ where A is closed in X. By Lemma (4.3) there is $u' \in H((A \cup (X - Y)))$ such that u'|A = u. Since Φ is a nbhd family, it follows from Proposition (2.7) that there is a closed co- Φ nbhd N of $A \cup (X - Y)$ in X and an element $v \in H(N)$ such that $v|[A \cup (X - Y)] = u'$. Since H is concentrated on Y, v|(X - Y) = 0. Again, by Proposition (2.7), there is a closed co- Φ nbhd M of X - Y contained in N such that v|M = 0. Since M is a nbhd of X - Y, $\overline{X - M} \subset Y$ so $\overline{X - M} \in \Phi|Y$. Then $A = (A \cap M) \cup (\overline{A - M})$ where $A \cap B$ is closed,

$$\overline{A-M} = A \cap \overline{X-M} \in \Phi \,|\, Y$$

and

$$u|(A \cap M) = (v|A)|(A \cap M) = (v|M)|(A \cap M) = 0.$$

Hence, H has supports in $\Phi | Y$.

The next result asserts, for Y open in a normal space X and Φ a nbhd family of supports on X, that cohomology theories on X with supports in $\Phi | Y$ are essentially the same as cohomology theories on Y with supports in $\Phi | Y$.

THEOREM (4.5). Given Y open in a normal space X and given Φ a nbhd family of supports on X, there is a bijection between cohomology theories H, δ on X with supports in $\Phi | Y$ and cohomology theories H', δ' on Y with supports $\Phi | Y$ such that, for A closed in Y, $H'(A) = H(A \cup (X - Y))$.

Proof. Given H, δ on X for A closed in Y define $H'(A) = H(A \cup (X - Y))$, and for closed A, B in Y define δ' : $H'(A \cap B) \to H'(A \cup B)$ to equal

$$\delta: H([A \cup (X - Y)] \cap [B \cup (X - Y)])$$

$$\rightarrow H([A \cup (X - Y)] \cup [B \cup (X - Y)]).$$

Then δ' is a natural transformation of degree 1 such that H', δ' satisfy MV exactness. By Proposition (4.4), H is concentrated on Y so that

$$H'(\emptyset) = H(X - Y) = 0.$$

By Proposition (2.7) there is an isomorphism

 $\rho \colon \lim_{\to} \{ H(N) \mid N \text{ a closed co-} \Phi \mid Y \text{ nbhd of } A \cup (X - Y) \text{ in } X \}$ $\approx H(A \cup (X - Y)).$

It is clear that N is a closed $\operatorname{co-}\Phi | Y$ nbhd of $A \cup (X - Y)$ if and only if $N = (N \cap Y) \cup (X - Y)$ where $M = N \cap Y$ is a closed $\operatorname{co-}\Phi | Y$ nbhd of A in Y. Therefore, there is an isomorphism

 $\rho \colon \lim_{\to} \{ H'(M) \, | \, M \text{ a closed co-} \Phi \, | \, Y \text{ nbhd of } A \text{ in } Y \} \approx H'(A).$

By Proposition (2.6) H' is continuous on Y and has supports in $\Phi | Y$. Therefore, H', δ' is a cohomology theory on Y with supports in $\Phi | Y$.

Conversely, let H', δ' be a cohomology theory on Y with supports in $\Phi | Y$. Define a contravariant functor H on cl(X) by $H(A) = H'(A \cap Y)$ for A closed in X. Also, for A, B closed in X define δ : $H(A \cap B) \rightarrow H(A \cup B)$ to equal

 $\delta' \colon H'((A \cap Y) \cap (B \cap Y)) \to H'((A \cap Y) \cup (B \cap Y)).$

Then δ is a natural transformation of degree 1 such that H, δ satisfy MV exactness. By definition, if $A \subset X - Y$, $H(A) = H'(A \cap Y) = H'(\emptyset) = 0$.

By Proposition (2.7) there is an isomorphism

$$\rho$$
: lim { $H'(M) | M$ a closed co- $\Phi | Y$ nbhd of $A \cap Y$ in Y }

 $\approx H'(A \cap Y).$

It is clear that M is a closed co- $\Phi | Y$ nbhd of $A \cap Y$ in Y if and only if $N = M \cup (X - Y)$ is a closed co- $\Phi | Y$ nbhd of A in X. Therefore, there is an isomorphism

 $\rho \colon \lim_{\to} \{ H(N) | N \text{ a closed co-} \Phi | Y \text{ nbhd of } A \text{ in } X \} \approx H(A).$

By Proposition (2.6), H is continuous and has supports in $\Phi | Y$. Therefore, H, δ is a cohomology theory on X with supports in $\Phi | Y$.

Given H, δ on X let H', δ' be the corresponding cohomology theory on Y and \overline{H} , $\overline{\delta}$ the cohomology theory on X corresponding to H', δ' . Then for closed $A \subset X$,

$$\overline{H}(A) = H'(A \cap Y) = H((A \cap Y) \cup (X - Y)) = H(A \cup (X - Y)).$$

Since H is concentrated on Y by Proposition (4.4), Lemma (4.3) implies that $H(A \cup (X - Y)) \approx H(A)$. Thus, $\overline{H} \approx H$ and similarly $\overline{\delta}$ corresponds to δ .

Given H', δ' on Y let H, δ be the corresponding cohomology theory on X and H'', δ'' the cohomology theory on Y defined by H, δ . Then, for A closed in Y,

$$H''(A) = H(A \cup (X - Y)) = H'([A \cup (X - Y)] \cap Y) = H'(A)$$

and similarly δ'' corresponds to δ . Thus, the passage from H, δ on X to H', δ' on Y is a bijection of cohomology theories with supports in $\Phi | Y$. \Box

Combining the last two results we obtain:

COROLLARY (4.6). If Y is an open subset of a normal space X and Φ is a nbhd family on X there is a bijection between cohomology theories H, δ on X with supports in Φ concentrated on Y and cohomology theories H', δ' on Y with supports in $\Phi | Y$.

5. Compact and paracompact supports. We consider the special cases of the nbhd family of compact supports in a locally compact space and the nbhd family of relatively paracompact supports in a locally paracompact space. We also consider the uniqueness theorem for compactly supported and paracompactly supported cohomology.

Given a topological space X let Φ_c be the nbhd family of all closed subsets of X having a compact nbhd in X and let $X_{lc} = \bigcup \{A \in \Phi_c\}$. Then X_{lc} is the union of all locally compact open subsets of X so is the largest open subset of X which is locally compact. Clearly $\Phi_c | X_{lc} = \Phi_c$ and Φ_c is exactly the family of all compact subsets in X_{lc} . It follows from Theorem (4.5) that cohomology theories on X with supports in Φ_c correspond bijectively to compactly supported cohomology theories on the locally compact space X_{lc} . Thus, the study of cohomology theories with supports in Φ_c is reduced to the study of compactly supported cohomology theories on locally compact spaces.

Our next result implies that the compactly supported cohomology theories on a locally compact space correspond to cohomology theories on its one-point compactification which are concentrated on the space.

THEOREM (5.1). Let X be an open subset of a compact space Z. There is a bijection between compactly supported cohomology theories on X and cohomology theories on Z which are concentrated on X.

Proof. If Φ is the nbhd family of all closed (or, equivalently, compact) subsets of Z, then every cohomology theory on Z has supports in Φ . Clearly $\Phi \mid X = \Phi_c$ the nbhd family of all compact subsets of X. The theorem follows from Corollary (4.6).

We consider similar definitions for the paracompact rather than the compact case. Given a space X let Φ_p be the family of all closed subsets of X having a paracompact nbhd in X. Clearly X_p is a nbhd family of supports and if $X_{lp} = \bigcup \{A \in \Phi_p\}$, then X_{lp} is the largest open subset of X which is locally paracompact. Obviously $\Phi_p | X_{lp} = \Phi_p$, but in this case Φ_p is *not* the family of all paracompact subsets of X_{lp} but is the family of all closed subsets of X_{lp} having paracompact nbhds in X_{lp} . It can be shown that this family is identical to the family of all relatively paracompact if given a collection \mathscr{U} of open subsets of X covering A which refines \mathscr{U} and is locally finite in X). In case X is paracompact the family $\Phi_p =$ the family of all closed sets.

It follows from Theorem (4.5) that cohomology theories on X with supports in Φ_p correspond bijectively to cohomology theories on the locally paracompact space X_{ip} with relatively paracompact supports. The following implies that cohomology theories with relatively paracompact supports on a locally paracompact space correspond to cohomology theories on its one-point paracompactification which are concentrated on the space.

THEOREM (5.2). Let X be an open subset of a paracompact space Z. There is a bijection between cohomology theories on X with relatively paracompact supports and cohomology theories on Z which are concentrated on X.

Proof. Analogously to Theorem (5.1) this follows from Corollary (4.6).

Let $\varphi: H, \delta \to H', \delta'$ be a homomorphism between compactly supported cohomology theories on the same space X such that for some $n \in \mathbb{Z}, \varphi_x: H(x) \to H'(x)$ is an *n*-equivalence for all $x \in X$. We would like to deduce that $\varphi_A: H(A) \to H'(A)$ is an *n*-equivalence for all closed $A \subset X$. In case H, H' are nonnegative if follows from [7, Theorem 3.1] and in case X is a finite dimensional separable metric case it follows from [8, Corollary (4.3)].

Now suppose $\varphi: H, \delta \to H', \delta'$ is a homomorphism between additive paracompactly supported cohomology theories on X such that for some $n \in \mathbb{Z}, \varphi_x: H(x) \to H'(x)$ is an *n*-equivalence for all $x \in X$. We would like to deduce that $\varphi_A: H(A) \to H'(A)$ is an *n*-equivalence for all closed $A \subset X$. In case H, H' are nonnegative it follows from [7, Theorem 4.1] and Theorem (2.5). In [8, Corollary (4.7)] it was shown to follow if X is a locally compact finite dimensional separable metric space. Below we show that the hypothesis of local compactness is unnecessary. First we prove a result about finite dimensional spaces. We use the definition of dimension denoted Ind in [5]. Thus, X has dimension -1 if $X = \emptyset$, and for $m \ge 1$, X has dimension $\le m$ if every pair of disjoint closed subsets of X can be separated by a closed set of dimension $\le m - 1$.

LEMMA (5.3). Let A, B be closed subsets of an m-dimensional space X such that $A \cup B = \operatorname{int}_{A \cup B} A \cup \operatorname{int}_{A \cup B} B$. Then there exist closed sets A', B' of X with $A' \subset A$, $B' \subset B$, $A \cup B = A' \cup B'$ and dim $A' \cap B' < m$.

Proof. Let $C = A \cup B$ -int_{$A \cup B} B and <math>D = A \cup B$ -int_{$A \cup B} A. Then C,$ $D are disjoint closed subsets of <math>A \cup B$. Since dim $(A \cup B) \le m$, there exists a closed subset $E \subset A \cup B$ with dim E < m which separates C, D. Therefore, $A \cup B - E = C' \cup D'$ where C', D' are each open in $A \cup B$ -E (so open in $A \cup B$), $C' \cap D' = \emptyset$, and $C \subset C'$, $D \subset D'$. Let $A' = C' \cup E$, $B' = D' \cup E$. Then A', B' are closed subsets of $A \cup B$ (so closed in X), $A' \subset A \cup B - D = \operatorname{int}_{A \cup B} A \subset A$, and similarly $B' \subset B$, $A' \cup B' = A \cup B$ and</sub></sub>

$$\dim A' \cap B' = \dim[(C' \cup E) \cap (D' \cup E)] = \dim E < m. \square$$

THEOREM (5.4). Let φ : $H, \delta \to H', \delta'$ be a homomorphism between additive cohomology theories on a finite dimensional normal space X both having paracompact supports and suppose there is $n \in \mathbb{Z}$ such that φ_x : $H(x) \to H'(x)$ is an n-equivalence for all $x \in X$. Then φ_A : $H(A) \to H'(A)$ is an n-equivalence for all closed $A \subset X$. *Proof.* By Theorem (2.5) it suffices to prove the result in case A is a paracompact subset of X. We do this by induction on dim A. If dim A = 0, $A = \emptyset$ and φ_A is an isomorphism. Assume the result valid for all paracompact subsets of dimension < m where $m \ge 1$ and let A be a paracompact subset such that dim A = m.

First, we show φ_A : $H^q(A) \to H'^q(A)$ is an epimorphism for q < n. Let $u \in H'^q(A)$ be fixed and let \mathscr{C} be the collection of all closed subsets $B \subset A$ such that $u | B \in \operatorname{im} \varphi_B$. The hypothesis on φ_x and continuity of H, H' imply that every point of A has a closed nbhd in A which is an element of \mathscr{C} . From the definition of \mathscr{C} it is clear that $B' \subset B$, $B \in \mathscr{C}$ imply $B' \in \mathscr{C}$. The additivity of H, H' imply that the union of a discrete family of elements of \mathscr{C} is an element of \mathscr{C} .

We prove that $B, B' \in \mathscr{C}$ and

$$B \cup B' = \inf_{B \cup B'} B \cup \inf_{B \cup B'} B'$$

imply $B \cup B' \in \mathscr{C}$. By Lemma (5.3) there exist closed C, C' such that $C \subset B$, $C' \subset B'$, $B \cup B' = C \cup C'$ and $\dim(C \cap C') < m$. The following diagram has exact rows and commutes up to sign

The two vertical maps on the ends are isomorphism because dim $(C \cap C')$ < m, q < n, and the inductive hypothesis. It follows [7, part 2) of Lemma 2.19] that $\alpha'^{-1}(\operatorname{im} \varphi) \subset \operatorname{im} \varphi$. Since $C, C' \in \mathscr{C}, (u|C, u|C') \in \operatorname{im} \varphi$. Therefore, $u|(C \cup C') \in \operatorname{im} \varphi$. Since $C \cup C' = B \cup B', B \cup B' \in \mathscr{C}$. By [4, Theorem 5.5] $A \in \mathscr{C}$ so $u \in \operatorname{im} \varphi_A$.

Next, we show $\varphi_A: H^q(A) \to H'^q(A)$ is a monomorphism for $q \le n$. Let $u \in \ker \varphi_A$ be fixed and let \mathscr{C} be the collection of all closed subsets $B \subset A$ such that u | B = 0. Again every point of A has a closed nbhd in A which is an element of \mathscr{C} , every closed subset of an element of \mathscr{C} is an element of \mathscr{C} , and the union of a discrete family of elements of \mathscr{C} is an element of \mathscr{C} . Using Lemma (5.5) as above, it is not hard to show that $B, B' \in \mathscr{C}$ and

$$B \cup B' = \inf_{B \cup B'} B \cup \inf_{B \cup B'} B'$$

imply $B \cup B' \in \mathscr{C}$. It follows again that $A \in \mathscr{C}$.

References

- [1] G. Bredon, Sheaf Theory, Mc Graw-Hill, New York, N. Y. 1967.
- [2] S. Eilenberg and N. E. Steenrod, *Foundations of Algebraic Topology*, Princeton University Press, Princeton, N. J., 1952.
- [3] J. D. Lawson, Comparison of taut cohomologies, Aeq. Math., 2 (1973), 201-209.
- [4] E. Michael, Local properties of topological spaces, Duke Math. J., 21 (1954), 163-171.
- [5] K. Nagami, Dimension Theory, Academic Press, New York, N. Y. 1970.
- [6] E. Spanier, Algebraic Topology, Springer Verlag, New York, N. Y. 1982.
- [7] _____, Cohomology isomorphisms, Contemporary Math., 12 (1982), 315–329.
- [8] _____, Cohomology theories on spaces, to appear.

Received October 22, 1984. The author gratefully acknowledges hospitality by the Institut des Hautes Etudes Scientifiques in Bures-sur-Yvette and partial support by the Max-Planck Institut für Mathematik in Bonn during the preparation of this year.

UNIVERSITY OF CALIFORNIA BERKELEY, CA 94720